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Abstract

We have implemented a Galerkin method for the solution of the Boltzmann equation
which allows arbitrary order spherical harmonic expansions in momentum space. The
implementation of the method in one real space dimension shows the importance of
including harmonics beyond first order to accurately calculate the distribution function
in high field regions.

I Introduction

An approach to solving the Boltzmann equation using the basis function expansion for
the distribution in momentum space was first proposed in [1]. As this was done for the
homogeneous real space case, the problem was considerably simplified and only needed
discretization in energy (momentum) space. More recent work in [2] has extended this idea
to the inhomogeneous real space problem. In the method in [2], the distribution function is
written as a sum of spherical harmonics at each point in real space, and this expansion is
substituted into the Boltzmann equation. A set of coupled partial differential equations is
then derived by matching coefficients of the spherical harmonics. Finally, this set of partial
differential equations along with Poisson’s equation is discretized to solve the problem. One
difficulty with such an approach is that the order of the expansion is fixed @ priori, and the
set of partial differential equations is determined by the order. If a higher order solution is
needed then a new expansion and discretization must be done and therefore it is difficult to
extend the method to arbitrary order. To overcome this difficulty, we propose a Galerkin
method in this paper which allows arbitrary order expansion.

II A Galerkin Method for Arbitrary Order Expansion
As in [2] we expand the distribution function in spherical harmonics:
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Substituting the spherical harmonic expansion into the Boltzmann equation, multiplying
by the conjugate spherical harmonic and integrating over a sphere in k-space yields:
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where S denotes the scattering operator, v(k) is the electron velocity and F(r) is the electric
field. For brevity, the expansion above will be written out only for the first term, assuming
parabolic bands, and in one real space dimension, z. A two point approximation for the
space derivative is:
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where the i index denotes discretization in space and the j index denotes discretization in
energy. The first term of the BTE can then be written as
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where v/ is the magnitude of the velocity vector and the the matrix elements Gym/im and
Hyr i, are given by
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This procedure is repeated for each term in the expansion, leading to the matrix equation,
shown below, for the fi,,,. First some notation is introduced to simplify the final form:
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The above equation (after including the scattering terms and boundary conditions) can
be solved for a*/, the coefficient vector of spherical harmonics at a given point (%, ) in the
energy-space mesh. The order of the expansion enters only through the block matrices G
and H and the size of the vector &, otherwise the formulation is the same. G and H can
be computed up to any desired order. Although we have assumed a particular form for the
discrete approximation to the derivatives in space and energy, the development described
above holds equally well for a different discrete approximation, the only change being that
the non-zero blocks would be at a different position in the matrix.

III Implementation and Results

Currently parabolic bands are assumed and scattering by acoustic phonons, optical phonons
and ionized impurities (Brooks-Herring model) is included. In one dimension in real space,
due to the symmetry of the distribution about the electric field direction, the spherical
harmonic expansion reduces to a Legendre polynomial expansion and no ¢ dependence is
needed. Fig. 1 shows the computed spherical harmonics coefficients for an ntnnt diode
as a function of position at different energy values (separated by 25 meV). In Fig. 2 the
distribution functions obtained using different orders of spherical harmonics are compared.
Although the electron temperature obtained in the two cases are close, the current differs
by about 8%. The actual discretization stencil used for the coefficients in space and energy
is shown in Fig. 3. At the boundaries, f; is assumed to be a Maxwellian and f; and higher
even order coefficients are set to zero; all odd order coefficients are computed for all points
in real space. This discretization is not unconditionally stable and if the mesh is coarse or
the doping step large then instabilities of the type shown in Fig. 3 can result.

IV Conclusion and Future Work

We have solved the Boltzmann equation self-consistently with Poisson’s equation using a
Galerkin method. The advantage of the Galerkin method is that a higher order expansion
only increases the size of the matrix generated from the algebraic equations, whereas in
earlier methods the set of coupled partial difference equations would need to be augmented
and discretized anew. Another benefit of a Galerkin method is that it seamlessly allows the
use of different order expansions in different space regions. Finally we show that including
higher order harmonics can significantly alter the calculated distributions in the high field
regions. Further work will focus on developing a more stable method of discretization and
on using higher order approximations to the derivatives.
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Figure 1: Spherical harmonic coefficients and Poisson equation solution for a 0.6 pm ntnnt diode
with a doping of 2 X 10'8¢m =3 and 1 x 10'7¢m =2 in the nt and n regions and a bias of 0.8V
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Figure 2: Contours of constant distribution function (separated by 3x) over a normalized k., k,
plane for the device of Fig. 1 up to the first and up to third order harmonic expansions at

z=0.3 pm and z = 0.44 ym. On the right, the associated electron temper
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Figure 3: On the left is shown the discretization used for the coefficients and on the right the
instability that can result if too coarse a mesh size is used in the spatial discretization.



