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COMPARING PRECORRECTED-FFT AND FAST MULTIPOLE
ALGORITHMS FOR SOLVING THREE-DIMENSIONAL POTENTIAL
INTEGRAL EQUATIONS
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1. Introduction. Mixed first- and second-kind surface integral equations with 1 and
56:;% kernels are generated by a variety of three-dimensional engineering problems. For

such problems, Nystrém type algorithms can not be used directly, but ap expansion for

with a Galerkin or collocatijon scheme for computing the expansion coefficients is a general
approach, but generates dense matrix problems. Recently developed fast algorithms for
solving these dense matrix problems have been based o multipole-accelerated iterative
methods {1, 2, 3], in which the fast multipole algorithm is used to rapidly compute the
matrix-vector products in a Krylov-subspace based iterative method. Another approach
to rapidly computing the dense matrix-vector products associated with discretized integral
equations follows more along the lines of a multigrid algorithm [4], and involves projecting

the surface unknowns onto a regular grid, then computing using the grid, and finally

algorithm for accelerating the dense matrix-vector product associated with discretized
potential integral equations. The precorrected-FFT method, sketchily described below,
is an order nlogn algorithm, and is asymptotically slower than the order n fast multipole
algorithm. However, initial experimental results indicate the method may have significant
constant factor advantages for a variety of engineering problems.

2. Problem Formulatijon, For exposition in this short Paper, we consider only
a simplified discretization applied to a first kind formulation, though the techniques

(1) P(z) = /mrfam a(m’)ﬁx—éﬂda', T € surfuces.

where v(x) is the known surface potential, da’ is the incremental conductor surface area,
z, ' € R®, and ||z is the usual Euclidean length of z given by (/22 4 23 + 2.
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A standard approach to numerically solving (1) for ¢ is to use a piece-wise constant
Galerkin scheme. That is, the surfaces are discretized into n small panels or tiles, and it is
assumed that on each panel i, a charge, g;, is uniformly distributed. Then for each panel,
an equation is written which relates the known potential at the center of that i-th panel,
denoted P;, to the sum of the contributions to that potential from the n charge distributions
on all n panels. The result is a dense linear system,

(2) Pg=7

where P € R™*", ¢ is the vector of panel charges, 7 € R" is the vector of known panel
potentials, and

1 1
Pi=— [ [ o dadd,
(3) ’ a;d; Jpanel; panel; 47!'60”.’1." — 33’“ ada

where a; and a; are the areas of the i-th and j-th panel.

The dense linear system of (2) can be solved to compute panel charges from a given
set of panel potentials, and the electrostatic capacitances can be derived by summing the
panel charges. If Gaussian elimination is used to solve (2}, the number of operations is
order n3. Clearly, this approach becomes computationally intractable if the number of
panels exceeds several hundred. Instead, consider solving the linear system (2) using a
Krylov-subspace style iterative method. The dominant costs in such an algorithm will be
calculating the n? entries of P using (3) before the iterations begin, and performing n?
operations to compute Pg on each iteration. Described below is a precorrected-FFT based
algorithm which, through the use of approximate grid projections, avoids forming most of
P and reduces the cost of forming Pgq to order nlogn operations.

3. The precorrected FFT method. After a three dimensional problem has been
discretized into panels, consider then subdividing the cube containing the problem into
an n X n X n array of small cubes so that each small cube contains only a few panels.
Several sparsification techniques for P are based on the idea of directly computing only
those portions of Pgq associated with interactions between panels in neighboring cubes. The
rest of Pq is then somehow approximated to accelerate the computation [7].

One approach to computing distant interactions is to exploit the fact that evaluation
points distant from a cube can be accurately computed by representing the given cube’s
charge distribution using a small number of weighted point charges. In particular, if the
point charges all lie on a uniform grid, then FFT can be used to compute the potential at
these grid point due to the grid charges. More specifically, one method for approximating
Pgq in nlogn operations has four steps:
directly compute nearby interactions,
project the panel charges onto a uniform grid of point charges,

e compute the grid potentials due to grid charges using an FFT, and

e interpolate the grid potentials onto the panels.
The difficulty, as will be made clearer below, is that the calculations using the FFT on
the grid are not only approximate, but also nearly duplicate the calculation of the nearby
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interactions. This can be precorrected, at almost no cost, by modifying the way the direct
interaction is computed.

3.1. Projecting onto a grid. For panel charges contained within a given cube, the
potentials at evaluation points distant from the given cube can be accurately computed
by representing the given cube’s charge distribution with a small number of appropriately
weighted point charges on a uniform grid thoughout the cube’s volume. For example,
consider the cube embedded in the center of a 3 X 3 x 3 array of cubes, and assume that
the potential will be evaluated at points exterior to the 27 cube array. Then, since the
potential satisfies Laplace’s equation, the error in the point charge approximation over the
entire exterior can be minimized by minimizing the potential error on the surface of the
cube array.

The above observation suggests a scheme for computing the grid charges used to
represent charge in a given cube a. First, test points are selected on the surface of the
3 x 3 x 3 cube array which has cube a as its center. Then, potentials due to the grid
charges are forced to match the potential due to the cube’s actual charge distribution at
the test points. Since such collocation equations are linear in the charge distribution, this
projection operation which generates a subset of the grid charges, ¢?, can be represented
as a matrix, W,, operating on a vector representing the panel charges in cube a, g,. In
particular, if there are G grid charges and A panels, then

| pat 17 pat
(4) g9 = Waga = [ 1...1 ] l 1.1 ]qﬂf

where P9t € R(G-1XG 4

1
5 gt .
®) S
Pt ¢ RG-1)xA 5pd
1
; R R e —
( ) t panelja(m ) “.’L‘f — 2',"“ .

Here z} and zJ are the position of the i-th test point and the j-th grid point. The rows of
ones in (4) insure that the sum of grid charges is equal to the net charge in the cube. For an

alternative approach based more generally on matching multipole expansion coefficients,
see [6].

3.2. Using the FFT. For a general three dimensional problem, consider subdividing
a cube containing the entire problem domain into a n X n X n array of small cubes. Then,
the collocation approach above can be used to generate point charge approximations for
charge distributions in every cube, effectively projecting the charge density onto a three-
dimensional grid. For example, if the representative point charges are placed at the cube
vertices, then the resulting charge distribution will be projected to a (n + 1) x (r + 1) x
(n + 1) uniform grid. Fast multipole algorithms also effectively create a uniform grid by
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constructing multipole expansions at the center of each cube, but due to sharing, the point
charge approach can be more efficient. For example, a point charge at a cube vertex is used
to represent charge in the eight cubes which share that vertex.

Once the charge has been projected to a grid, computing the potentials at the grid
points due to the grid charges is a three—dimensional convolution. We denote this as

(7) (4,5, % Z h(i =1 — 3"k — K)g (&, 5, k).

TN 3

where 1,7,k and ¢/, j', k' are triplets specifying the grid points, 1, is the vector of grid point
potentials, g, is the vector of grid point charges, and k(i —¢',j — 7',k — k') is the inverse
distant between grid points i, 7,k and #',j',k¥’. As will be made clear below, £(0,0,0) can
be arbitrarily defined, and is set to zero. The above convolution can then be computed in
nlogn time using the Fast Fourier Transform.

Once the grid potentials have been computed, they can be interpolated to the panels
in each cube using the transpose of W, {4]. Therefore, projection, followed by convolutlon,
followed by interpolation, can be represented as

(8) ¢fft = WtﬁWq,

where ¢ is the vector of panel charges, ¥4, is an approximation to the panel potentials, W
is the concatenation of the W's for each cube, and H is the Toeplitz matrix representing
the convolution in (7).

3.3. Precorrecting. In s of (8), the portions of Pg associated with neighboring
cube interactions have already been computed, though this close interaction has been badly
approximated in the projection/interpolation. Before computing a better approximation,
it is necessary to remove the contribution of the inaccurate approximation. In particular,
denote as P, the portion of P associated with the interaction between neighboring cubes
a and b, denote the potential at grid points in cube a due to grid charges in cube b as H.s,

and denote v, and ¢, as the panel potentials and charges in cubes a and b respectively.
Then

(9) o = Yagpe + (Pop — WEHLWWY)) @5

will be a much better approximation to ..
Assuming that the Pg product will be computed many times in the inner loop of an
iterative algorithm,

(10) <o = (Pop = WEHLWY))

will be expensive to initially compute, but will cost no more to subsequently apply than
Poy.



4. Conclusions. Using the above notation, the precorrected FFT algorithm for
computing Pq can be briefly described as two steps. First compute

(11) T,[)fft = W‘HWq
using the FFT to diagonalize H. Then, for each cube a, compute

(12) ¢0 = Z :,‘i)rqb + ¢ajf;;

b € neighbors

Numerical experiments indicate that using a uniform grid with an average of eight grid
points associated with each cube (making G = 27 in (4)) results in potentials outside nearest
neighbors which have errors similar to those produced by evaluating second-order multipole
expansions (which have nine coefficients) outside second nearest neighbors. Assuming a
homogenous distribution of eight panels per cube, this implies that for commensurate
accuracy, the precorrected FFT method has a complexity of (216 + Kz logn) x n and the
fast multipole algorithm has a complexity of at least 2700n. So, although the fast multipole
algorithm is asymptotically faster, it is only of practical significance for extremely large n.

It should be noted that the above result is NOT general. The fast multipole algorithm
retains its linear-time behavior even in the arbitrarily inhomogenous case [5]. The
precorrected FFT method is only suitable when the distribution can be made to lock
homogenous. More detailed experiments are required to better understand these pragmatic
issues.
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