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Abstract

In this paper techniques are described for coupled
simulation of complicated 3-D interconnect and non-
linear transistor drivers and receivers. The approach
is based on combining: multipole-accelerated method-
of-moments techniques for extracting frequency-
dependent inductances and resistances for the inter-
connect; a sectioning method for fitting the frequency-
domain data with a rational function; a balanced-
realization approach to reducing the order of the ra-
tional function in a guaranteed stable manner; and
an implementation of fast recursive convolution to in-
corporate the rational function in sPICE3. Results
are presented to demonstrate some of the frequency-
dependent effects in a packaging analysis problem.

1 Introduction

The dense three-dimensional packaging now com-
monly used in compact electronic systems may pro-
duce magnetic interactions which interfere with sys-
tem performance. Such effects are difficult to simu-
late because they occur only as a result of an inter-
action between the field distribution in a complicated
geometry of conductors, and the circuitry connected
to those conductors. Effective simulation techniques
which combine interconnect and circuitry have been
developed based on simplified physical models and
Padé style methods [1], but in this paper we examine
an approach more tuned to packaging problems. In
particular, multipole accelerated algorithms are used
to efficiently compute frequency-dependent coupling
resistances and inductances of the complicated three-
dimensional packaging. Then, a section-by-section
plus balancing approach is used to approximate the
frequency-dependent elements with a rational func-

tion. Finally, the rational function is converted to
a SPICE-compatible circuit model and combined with
the connecting circuitry to perform the coupled simu-
lation.

2 Inductance Extraction

The frequency dependent resistance and induc-
tance matrices describing the terminal behavior of a
set of conductors can be rapidly computed with the
multipole-accelerated mesh-formulation approach as
implemented in FastHenry [2, 3]. To describe the ap-
proach, consider that each conductor is approximated
as piecewise-straight sections. The volume of each
straight section is then discretized into a collection
of parallel thin filaments through which current is as-
sumed to flow uniformly. The interconnection of these
current filaments can be represented with a planar
graph, where the n nodes in the graph are associated
with connection points between conductor segments,
and the b branches in the graph represent- the cur-
rent filaments into which each conductor segment is
discretized (See Fig. 1). ‘

2.1 Mesh Formulation

To derive a system of equations for the filament
currents we start by assuming the applied currents
and voltages are sinusoidal, and that the system
is in sinusoidal steady-state. Following the partial
inductance approach in [4, 5], the branch current
phasors can be related to branch voltage phasors
(hereafter, phasors will be assumed and not restated)
by

ZI, =V, 1)
where Vi, I, € C°, b is the number of branches
(number of current filaments), and Z € C*** is the
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complex impedance matrix given by
Z =R+ jwL, (2)

where w is excitation frequency. The entries of the
diagonal matrix R € R3*? represent the dc resistance
of each current filament, and L € R?*? is the dense
matrix of partial inductances [6].

Kirchhoff’s voltage law, which implies that the sum
of branch voltages around each mesh (a mesh is any
loop of branches in the graph which does not enclose
any other branches) in the network is represented by

MV, =V, (3)

where V), is the vector of voltages across each branch,
V, € R™ is the mostly zero vector of source branch

voltages, and M € R™*? is the mesh matrix. The

mesh currents, that is the currents around each mesh
loop, satisfy
MI,, = I, 4)

where the superscript ¢ denotes matrix transpose, and
I,, € R™ is the vector of mesh currents. Note that
one of the entries in the mesh current vector will be
identically equal to the source branch current, shown
as I source in Fig. 1. Combining (4) with (3) and
(1) yields

MZM'I,=V,. (5)

The complex admittance matrix which describes
the terminal behavior of the conductor system, de-
noted Y, = Z; 1, can by derived from (5) by noting
that _ _

I.=Y,V,, (6)

where I, and V, are the vectors of terminal source
currents and voltages. Therefore, to compute the t*
column of Y, solve (5) witha V', whose only nonzero
entry corresponds to I,,, and then extract the entries
of I, associated with the source branches.

2.2 Multipole Acceleration

To solve (5) by Gaussian Elimination would re-
quire order m3 operations. To improve the situation,
FastHenry uses a preconditioned GMRES iterative al-
gorithm [7]. In general, the cost for each iteration
of an iterative algorithm applied to solving (5) is or-
der m2. This follows from the fact that each itera-
tion requires computing the dense matrix-vector prod-
uct,( MZM Y)I,,. However, it is possible to approxi-
mately compute MZM ‘T fn in order b operations us-
ing a hierarchical multipole algorithm [8]. Such algo-
rithms also avoid explicitly forming M ZM t and so
reduce the memory required to order b.

To show how a multipole algorithm can be applied
to computing MZM ‘1%, consider expanding the
matrix-vector product using (2),

MZM'I* = MRM'I%, + juMLM'IL;,.  (T)

Except for LM*I%,, all of the products in (7) involve

sparse matrices and can be computed in order m

operations. To compute LM 'r fn, or equivalently LI,
it is shown in [3] that

1

(LL)i=— [  AX)-W(X)dz.  (8)

a; Jgit;

where X; € R3 is the position in filament i, A(X;) is
the vector potential at X, [; € R3is the unit vector in
the direction of current flow in the filament, a; is the
cross sectional area, and fil i represents the volume
of filament . Furthermore,

Ho Ib-/ GX)E s
Ax)=0%y = CilRiDk g8y, (9
+(%) 4w aj Jyilament; X - X i )

where Ay is the k** component of the vector potential.
Thus by viewing (Is,/a;)1;(X;)x as a ‘charge’ then

~ computing each component of A to eventually give

LI, involves the evaluation of electrostatic potential
along b filaments due to b filament charges for three
separate sets of filument charges. 1t is the evaluation of
these electrostatic potentials which can be accelerated
to order b operations with the hierarchical multipole
algorithm {8].

To see roughly what the multipole algorithm ex-
ploits to achieve its efficiency, consider the two con-
figurations given in Figs. 2 and 3, depicted in 2-D for
simplicity. In either figure, the obvious approach to
determining the electrostatic potential at the ny evalu-
ation points from the ny point-charges involves 1) *n2
operations; at each of the ny evaluation points one
simply sums the contribution to the potential from n2
charges.

An accurate approximation for the potentials for
the case of Fig. 2 can be computed in many fewer
operations using multipole ezpansions, which exploit
the fact that r >> R (defined in Fig. 2). That is,
the details of the distribution of the charges in the
inner circle of radius R in Fig. 2 do not strongly
affect the potentials at the evaluation points outside
the outer circle of radius r. It is also possible to
compute an accurate approximation for the potentials
at the evaluation points in the inner circle of Fig. 3
in many fewer than nj * na operations using local
ezpansions, which again exploit the fact that r >>
R (as in Fig. 3). In this second case, what can
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Figure 1: One conductor, (a) as piecewise-straight sections, (b) discretized into filaments, (c) modelled as a
circuit.
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Figure 2: The evaluation point potentials are approx- Figure 3: The evaluation point potentials are approx-
imated with a multipole expansion. imated with a local expansion.
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be ignored is the details of the evaluation point
distribution. This brief description of the hierarchical
multipole algorithm is only intended to make clear
that the algorithm’s efficiency stems from coalescing
charges and evaluation points using multipole and
local expansions.

3 Rational Function Approximation

The most commonly used approaches to fitting
rational functions to frequency domain data are the
Padé or moment-matching methods. These methods
compute the coefficients of a rational function by
matching that approximation to the value of the
system function and its derivatives around s = 0
or s = oo. Here, we describe a different approach
to the approximation problem which is more suitable
when matching tabulated data like that produced by
FastHenry.

3.1 Sectioned £, Minimization

One approach to generating a rational function
which best matches a frequency response F(s) spec-
ified at a set of frequencies {s1, s2,---,5m}, is to set
up and solve, as accurately as possible, the following
set of equations:

H(SJ):F(SJ) j:1’2a"'5m

(10)

where

_U(s) _ ugs?+---+uis+up
T V(s)  vpsP+---+uis+ 1

H(s) (11)
is the low-order approximation.

Typically, the system in (10) will be over-
determined as the number of frequency points will
exceed the number of unknown coefficients in the ap-
proximation (11), that isif m > p+ ¢ + 1. In that
case there will be, in general no exact solution, and
the best that we can expect is that the approximation
error be minimal in some sense. For instance we can
force the 2-norm of the error to be minimized, that

is, make sure that the coeflicients of the polynomials
U(s) and V(s) are chosen such that

U(s)
Vo (12)

is minimized for all s € {s1, 52, - -, 8m }. However, this
is a nonlinear optimization problem whose solution

1H(s) = F(s)llz = || — F(s)ll2

is difficult to compute. Instead, the problem can be
made linear by weighting the 2-norm by V(s). Then,
the minimization problem becomes

pplUe) - VE el i=1em
(13)
Minimizing this weighted 2-norm does not guaran-
tee that the resulting rational function will be accurate
at any particular frequency, and this is unacceptable
for use in circuit simulation. In order to insure that
the steady-state will be computed exactly, the £, min-

" imization must be constrained as follows:

YR=rF0)

min 7 y |[U(s5) = V(5;)F(s5)ll2

lim, oo gi(-% = lim, o0 F(s)

(14)

This constrained £,-minimization however presents
some difficulties, especially in the case when the nat-
ural frequencies of the problem are spread out over a
wide range. In that situation, the minimization can
become ill-conditioned, and also the weighted £, min-
imization improperly focuses too much attention on
the high frequencies. To avoid both these problems,
it is possible to perform local approximations in a re-
peated fashion. Initially, the frequency range of in-
terest, 2 = [Wmin, Wmaz), is partitioned into small
sections, 21,825, -+, 2, such that 2 = Uf‘_l__l ;,
where each £2; is a decade or two long. Then, starting
with the lowest frequency range 2, with frequency
values F(wy1), F(w12),- -+, F(wim), a constrained £,
minimization is performed and a local approximant is
computed. Once the first local approximation, H (s),
is obtained in the form of a collection of poles and
their corresponding residues, it is examined and the
stable poles are retained while the unstable ones are
discarded, leaving us with a forced stable approxi-
mation, Hi(s). Next, the second section 25, the
values F(wa1), F(waz), - - -, F(wam) are computed and
fit again using the constrained weighted £, minimiza-
tion. Note that since the previous fit at the lower
frequencies has captured the low frequency dynam-
ics, F(s) — H1(s) will contain primarily the higher-
frequency error information. This results in a new
approximation for F(s)— H 1(s), H2(s) and therefore
F(s) ~ H;(s) + H2(s). The procedure is repeated
until data in the last frequency section, $2y, is ap-
proximated.

ji=1,--
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3.2 Model Order reduction

The section-by-section approach just described is
reliable in that it obtains a stable collection of pole-
residue pairs which form an accurate approximation
to F'(s). Unfortunately since H(s) is represented as a
sum of local approximations the approach introduces
redundancies resulting in many more poles than nec-
essary. However it is possible to further reduce the
order of the approximation using robust model order
reduction techniques.

In particular, the high order model can be con-
verted to a state-space form as in

T Az + Bu,
y = Cue,

z €R"” ucR™
y € RP (15)

whose transfer function is G(s) = C(sI — A)~1B.
Since we assume that (15) corresponds to passive in-
terconnect, the transfer function is stable, i.e., all the
poles (or equivalently all the eigenvalues of the ma-
trix A) are in the left half plane. It is well known [9]
that for a given transfer function, the choice of the
triplet [A, B, C] is not unique. Indeed, a linear coordi-
nate transformation T in the state space modifies the
triplet [A, B, C] to [;i,i?,é'] without modifying the
transfer function. For the specific purpose of extract-
ing stable reduced-order models from the state-space
representation, it is desirable that the new triplet
[A, B, C] be in a form that allows such an extraction
using simple state truncation. In a seminal paper in
the field of system theory, Moore has shown [10] that
such a triplet exists and called it a “balanced real-
ization” of the transfer function G(s). The balancing
transformation T' can be computed explicitly for any
triplet [A4, B, C]. The numerical cost of such a com-
putation is that of solving two matrix Lyapunov equa-
tions, one Cholesky factorization, and one symmetric
eigenvalue problem. The resulting triplet [A4, B, C]
has the remarkable property that simple reordering
and truncation of the state vector & with the corre-
sponding reordering of the system matrices necessarily
produce stable reduced-order models at any desirable
order. Let k be this order, and let [Ay, B, C}] be the
reduced-order model with a transfer function Gg(s).
It can then be shown [10, 11] that the impulse response
of the error transfer function Ex(s) = G(s) — Gi(s)
has an energy norm that consistently decreases to zero
as k is increased to n, the order of the original model.

Judging the validity of the reduced-order model
depends not only on meeting the L, error criterion
mentioned above but also on meeting the goals of the
circuit simulation task for which this reduced model is

used. Typically, in circuit simulations, it is essential
that the reduced model match the original transfer
function at s = 0 so that the steady-state behavior
of both the reduced and full models is identical.
To achieve this, we apply a least-squares/collocation
technique to match the reduced-order model with the
full model at zero frequency.

4 Results

In this section we describe an example that demon-
strates the value of using the reduced order mod-
els with the frequency dependent data acquired with
FastHenry. The example is an investigation of
crosstalk between a small set of package pins con-
necting on-chip drivers to off-chip receivers. The fre-
quency dependent resistance and inductance data for
the package pins computed with FastHenry is approxi-
mated with low order rational functions, and then the
time domain responses are computed with recursive
convolution [12] implemented in SPICE3 [13].

Consider the crosstalk between seven adjacent pins
of a 68-pin cerquad package as shown in Fig. 4.
Assume the five middle lines carry output signals from
the chip and the two outer pins carry power and
ground. The signals are driven and received with
CMOS inverters. The drivers are capable of driving a
large current to compensate for the impedance of the
package pins. The inductance of the pins is computed
with FastHenry and the capacitance is assumed to
be 8pF. The interconnect from the end of pin to the
receiver is modelled with a capacitance of 5pF. The
overall configuration is illustrated in Fig. 5 and a
more detailed view for a single pin is given in Fig. 6.
A 0.1pF decoupling capacitor is connected between
the driver’s power and ground to minimize supply
fluctuations.

To compute the resistance and inductance matrix
at each frequency with FastHenry, the pins were dis-
cretized into five filaments along their height and nine
along their length. This allows accurate modelling of
changes in resistance and inductance due to skin and
proximity effects. Matrices were generated for the fre-
quency range 1MHz to 10MHz, with three points per
decade.

The frequency dependence of each element in the
admittance matrix is fit with a rational approximation
using the algorithms described in Section 3. First, the
section-by-section approach is used to obtain approx-
imations which have orders in the range of 12 to 24.
Following the section-by-section algorithm a realiza-
tion is determined and balanced. We have found that
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Figure 4: Seven pins of a cerquad pin package.
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Figure 5: General configuration for the connection
between received and driver chips. All the circuit
elements inside the same chip share that chip’s power
and ground.

power pin Ydd
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—>o0+rra—> >0
Driver _J_ _l_ Receiver
Chip SpF Chip
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Cuip Gnd

Te: e
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Figure 6: Detailed view of the connection between
driving and receiving chips, showing the power and
ground connections. Decoupling capacitance between
the power and ground lines are also shown. Pin
capacitance and receiver interconnect capacitance are
also modeled as small capacitive loads.

truncated models of 374 order are sufficiently accurate
to provide approximation with less than 5% error. The
following two figures demonstrate this fact. Figure 7
shows the magnitude of the self-admittance term at
pin 4. Shown in the plot are data points computed
with FastHenry, the 12t order section-by-section ap-
proximant and the 3"¢ order rediiced model computed
by truncating the balanced realization. As can be seen
on the plot, the three curves match each other almost
perfectly.

Figure 8 shows the magnitude of the mutual ad-
mittance term between pins 3 and 4. Again, shown
in the plot are data points computed with FastHenry,
a 20*® order section-by-section approximant and the
37 order reduced model. As on the previous plot, the
three curves match each other almost perfectly.

As a sample time domain simulation, imagine that
at time ¢, = 4 ns the signal on pin 4 of Fig.5 is to
switch from high to low and pins 2,3,5, and 6 are
to switch from low to high but that due to delay on
chip, pins 2,3,5, and 6 switch at £, = 5 ns. In this
case, significant current will suddenly pass through the
late pins while pin 4 is in transition. Due to crosstalk,
this large transient of current has significant effects on
the input of the receiver on pin 4, as shown in Fig. 9.
Note that the input does not rise monotonically. Fig. 9
also shows that the bump in the waveform is carried
through to the output of receiver, as a large glitch.

As a demonstration of the importance of frequency
dependent analysis, consider the same scenario but
with constant inductance and resistance matrices.
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Figure 7: Magnitude of the self-admittance term at
pin 4. Shown in the plot are data points computed
with FastHenry, the 12** order section-by-section ap-
proximant and the 3" order reduced model computed
by truncating the balanced realization. The error in
both approximations is less than 0.5%.
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Figure 8: Magnitude of the mutual admittance term
between pins 3 and 4. Shown in the plot are data
points computed with FastHenry, a 20t* order section-
by-section approximant and the 37¢ order reduced
model. The error in both approximations is less than

1%.

Input to receiver of pin 4 Output from receiver of pin 4

+ 6

-i é 8 6 8
time (nS) time (nS)
Figure 9: Pin 4’s receiver when four adjacent pins
switch 1 ns after pin 4.

Fig. 10 is a comparison of the waveforms from Fig. 9 to
waveforms resulting from simulations using constant
resistance and inductance values corresponding to the
high or low limit. Note that for the receiver input
waveforms, the large voltage bump swings by approx-
imately 0.5V more for the full frequency-dependent
case. While this is small on the input, this is a very
sensitive region for the receiver and doubles the size
of the output glitch.

Now consider changing the design by swapping
the ground pin, pin 7, with signal pin 5. Now the
ground pin sits between signal lines and adds greater
separation between pin 4 and the signals which are
now on lines 6 and 7. As might be expected, the
crosstalk is significantly reduced and the voltage bump
does not exceed 1.5V as shown in Fig.11.

Next, consider adding many extra ground and
power pins outside of seven pins of this example.
This would effectively eliminate the inductance and
resistance effects of the power and ground pins. For
the above example, this could be modelled by letting
Vaq and ground for both the drivers and the receivers
be 5V and 0V, respectively, and then no current will
flow along power pin 1 or ground pin 5. In this case,
the crosstalk appears to have worsened as shown in
Fig.12. This effect can be explained by realizing that
current through the ground pin flows in the opposite
direction to the current in the late pins, as shown in
Fig. 13. Then since the ground path is now adjacent
to pin 4, its current counteracts the inductive effects
on pin 4 from the other pins’ current.
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Figure 10: Pin 4’s receiver using frequency dependent
data (full), constant value from low frequency (low),
and constant value from high frequency (high).
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Figure 11: Pin 4’s receiver with ground pin 7 and
signal line 5 swapped.
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Figure 12: Pin 4’s receiver with ground pin 7 and

signal line 5 swapped but no current through ground
pin.
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Figure 13: Total current travelling toward drivers on
the four late signal lines (signal), and the current
travelling back along ground pin {ground).
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5 Conclusions and Acknowledgements

In this paper techniques are described for coupled
simulation of complicated 3-D interconnect and non-
linear transistor drivers and receivers. The approach
is based on combining multipole-accelerated method-
of-moments techniques for extracting frequency-
dependent inductances and resistances for the inter-
connect and a sectioning plus balancing method for
fitting the frequency-domain data with a rational func-
tion. Results are presented to demonstrate both
the effectiveness of the algorithms and some of the
frequency-dependent effects in a particular packaging
problem.
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