Abstract

In this paper we present results obtained by solving the
Boltzmann equation in two real space dimensions using
a spherical harmonic expansion in momentum space.
We show that if the coordinate system in momentum
space is rotated to be aligned with the electric field then
the magnitude of most of the harmonics can be assured
to be small and thus they can be neglected without a
significant loss of accuracy, which considerably reduces
the complexity of the problem. Numerical results are
presented for two dimensional structures in which flow
occurs through both drift and diffusion.

Introduction

To accurately model hot carrier phenomena such as gate
and substrate currents in advanced semiconductor de-
vices, it is necessary to solve the Boltzmann transport
equation to obtain the carrier distribution functions.
The most common approach to solve the Boltzmann
equation is the Monte Carlo method (1] [2] [3]. Al-
though such a method can be accurate, it is computa-
tionally expensive and, because of its stochastic nature,
rare events are hard to model well. Recently, another
approach using a basis function expansion of the dis-
tribution has been suggested [4] [56]. The simulation
results presented in earlier work were mostly for the
homogeneous or the one-dimensional examples and low
order, which considerably reduced their complexity. In
this work we present results from the solution of the
Boltzmann transport equation in two real space dimen-
sions using a spherical harmonic expansion in momen-
tum space which is rotated to be aligned with the field
direction at all points. As described in [6], we use a
Galerkin method to generate a set of coefficients (to ar-
bitrary order in principle) for the spherical harmonics
at each point in two-dimensional real space.

When expanding the distribution in spherical har-
monics in momentum space one obvious method is to
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use a fixed coordinate system for all space. But this
choice implies that when the electric field changes di-
rection, the polar direction, k., will not be aligned with
the electric field and therefore any symmetry in the dis-
tribution function about the electric field would not be
exploited. Consequently, many of the ‘ofl-diagonal’ har-
monics (eg. f1,—1, f2,2) would be non-zero. An alternate
approach is to rotate the k-axes in such a way that the
polar direction is always aligned with the electric field
and thus minimize the ‘off-diagonal’ harmonics. This
effect is demonstrated in Fig. 1. With a rotated co-
ordinate system we therefore expect to be able to ne-
glect off-diagonal terms, without a significant loss in
accuracy. The real impact of this would be for higher
orders where retaining all the coefficients will become
prohibitively expensive and therefore a method which
allows those coefficients to be neglected without a high
penalty in accuracy would be greatly advantageous.

Formulation Using A Rotated
Coordinate System
Consider the case where the electric field direction is
at an angle u from a fixed k. direction, and we wish
to expand the distribution function in terms of local
spherical harmonics using the electric field direction as
the polar direction. Then the relationship between the
local variables, in the z, y frame which is rotated by an
angle p from a global 7, g frame (see Fig.2), and the
variables in the global frame is given by

sinécosqg 1 0 0 sinf cos ¢
sinfsing | = | 0 cospg sinp sin fsin ¢
cos f 0 —sinpg cosp cos @

(1)
Thus the harmonic expansion can be written in terms
of either the local or the global coordinate system:

F=3 fim(r, k)Yim(0,6) =YTf =YTRf  (2)
Im
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A S S S two-dimensional (y,z) problem is summarized below:

] 100 1. Expand the distribution function in local coordi-
= oo nates.
ol evin ] 2. Insert the expansion in the drift, diffusion and scat-
5:v2:2 , tering terms of the BTE in local coordinates.
§10 ::o' ] 3. Convert to global harmonics by multiplying by the
§ avas rotation matrix.
o wvez | 4. Discretize in space and energy.
9. Multiply by conjugate harmonics and integrate over
o [] a unit sphere in k-space to form the coefficient matrix.
6. Solve the matrix problem to obtain the coefficients
| at all points in real space.
. Spherical coeficiert sbel This approach only differs in Step 3 from that followed
T T T in the one-dimensional problem [6]. In the following
1: Y00 . . .
wl — NV section, for brevity, we only illustrate the above steps
avio for the diffusion term and acoustic phonon scattering.
4:Y11
" 5:v2:2

The Diffusion Term

§1o ::o' The diffusion term of the BTE is
J H . v(K) - V. £(r, k)
) H ]__l which after substituting the spherical harmonic expan-
sion can be written as
L R R S O A v(k) - V. YT f =v(k) - V. (YT Rf).

Figure 1: Coefficients of the spherical harmonics for a If we assume spherical bands then v(k) is in the ra-
Maxwellian distribution displaced from the k, direction dja] direction and its projection onto the z-axis is

along directions 45° (top) and 10° (bottom) from the v(k) cos 6 and onto the y-axis is v(k)sin8sin$. Then

k. axis. the diffusion term is
A
I(R
z v(k) YTMCOSH#-YTa—(R—f)Sinﬁsimﬁ .
Oz Jy
= Finally the derivatives in space and energy must be dis-
cretized to generate a matrix problem for the coeffi- .
n cients in space and energy for any desired order. The
//,” e discretized version of the diffusion term is:
2 v(E) (G (R — RUF) 4+ G (R 1+ — R f7)]
Y
where
. G. = i/dQ Y*Y7 cos (3)
Az
Figure 2: Rotated coordinate system 9y = Aiy /dQ Y*Y7 sin6sin ¢ (4)

where Y, Y are the vectors of the local and global spher-  form the non-zero blocks in the sparse coefficient matrix .

ical harmonics functions respectively and f is the vector and i and j are the indices for the discretized variables

of coeflicients. The rotation matrix, R, up to first or- in the z and y directions, respectively.

der, was given in (1). Note that the rotation matrix The Scattering Term

reduces to an identity matrix when p = 0. A rotation We include acoustic and optical phonon and ionized im-

matrix can also be constructed for higher orders. purity scattering; and for all three cases assume a sin-
The approach we will follow for the solution of the gle spherical band for simplicity. The scattering term |
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is handled in the same way as in the one-dimensional
case with the important difference that we convert local
harmonics to global ones, as done for the other terms,
by multiplying by the rotation matrix. For example the
expression for acoustic scattering is given as

Cacg(E)YT Sac f

where S, is understood to be the operator (matrix) for
acoustic phonons scattering, cs. is the scattering rate
and g(FE) is the density of states. With rotation this is
modified as follows:

cacg(E)YT Sac R f.

The last step is to generate the coefficient matrix entry
by multiplying the conjugate harmonics and integrating
over the unit sphere in k-space:

/ dQY*YT ¢acg(E)Sac R f.

Equations to First Order

Although in our approach we do not need to explicitly
write down the set of PDE’s that arise in the problem,
we give below the PDE’s up to first order, for the ro-
tated formulation:

where £ is the magnitude of the electric field and
‘U/(E) = v_&l?
Numerics

Boundary Conditions

To solve the discretized problem we need to impose
physically consistent boundary conditions. For ohmic
contacts we assume that the isotropic part of the dis-
tribution, fo 9, is Maxwellian; otherwise we assume a
boundary condition which ensures that the current nor-
mal to the boundary is zero, but the distribution itself
- at the boundary is not explicitly constrained.

- Self-Consistent Solution

.. We obtain a self-consistent solution by using a decou-
Pled Gummel type iteration between Poisson’s equation
and the Boltzmann equation. Specifically, the electron

d(=sin pfi,-1) d(cos pfi,0) (5)
0z ' Oz
+5(C05#f1,—1) + d(sin pfi,0)
dy Oy
O(frio)  fiel 1 dfap
‘g[ B *T] = v’(E)( ot )
 [9(fo,0) foo)l _ -fi,-1, .. —hpo
v[ By - & 8E] = COSp 5 +smp7_(E)
, [0(fo,0) fo0)] _ .. —fim —-fio
”[ 5. Yo ] = msmp gy TOSETE)

concentration obtained from the Boltzmann equation
solution is used to solve the non-linear Poisson equation,
and the electric field obtained from this is in turn used
in the Boltzmann equation. We have usually achieved
convergence in approximately ten iterations.

Matrix Solution

In two real space dimensions, the matrix problem
is equivalent to solving a three dimensional problem.
When the problem size is less than 10,000 or so un-
knowns, direct sparse matrix solution is feasible but for
much larger problems we use an iterative solver. Both
preconditioned GMRES and CGS yield acceptable re-
sults, converging in about 150 iterations. For the pre-
conditioner we use the matrix formed when only the en-
ergy coupling is considered. Thus only a block diagonal
matrix needs to be factored to form the preconditioner,
which can be done quite efficiently.

Simulation Results
A simple test to check if the coordinate rotation ap-

proach works as expected is to use this method to sim-
ulate flow in a resistive structure as shown in Fig. 3.
Here the potential and the electron concentration at the
two contacts is fixed, and a boundary condition enforc-
ing no normal current flow is imposed elsewhere. Fig. 4
shows the results obtained from a structure which mim-
ics the channel region of a MOSFET with a factor of 10
change in the doping concentration.

Conclusions
The work reported in this paper has demonstrated:
1. Self-consistent simulations of the Boltzmann and
Poisson equations using a Gummel type iteration
scheme.
2. Successful implementation of ohmic contacts and no
normal current boundaries.
3. The effectiveness of a rotated momentum space coor-
dinate system in reducing the off-diagonal coefficients.
4. Simulation of two-dimensional structures.
5. Use of an iterative sparse matrix solver with a pre-
conditioner.
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Figure 3: In the top figure the sine and the cosine of
the rotation angle, the electric potential and the electric
field are shown for a resistive structure. In the center
the current flow lines and the equipotentials are shown
for the same structure. The bottom plot shows the har-
monic coefficients f; o and fi, _1 at an energy of 50meV.
Note that fi _y is zero almost everywhere except at the
contact corners, even though the current has significant
components in both directions.
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Figure 4: In the top figure the the electric potential, the
electron concentration (normalized by 1.0 x 10'8), the
electric field and the doping profile are shown for a two
dimensional structure which mimics the flow near the
surface of a MOSFET. In the middle figure the current
flow lines and the equipotentials are shown for the same
structure. The bottom plot shows the fg g spherical har-
monic coefficient as a function of energy at (2=0.12 pm,
y=0.22 um) solid, and (2=0.22 pm, y=0.22 pm), dash.
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