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Multipole-Accelerated Capacitance Extraction
Algorithms for 3-D Structures with Multiple
Dielectrics

Keith Nabors and Jacob White, Member, IEEE

Abstract—This paper describes how to extend the multipole-
accelerated boundary-element method for 3-D capacitance com-
putation to the case where conductors are embedded in an
arbitrary piecewise-constant dielectric medium. Results are pre-
sented to demonstrate that the method is accurate, has nearly
linear computational growth, and can be nearly two orders of
magnitude faster than the standard boundary-element method
based on matrix factorization.

1. INTRODUCTION

E self and coupling capacitances associated with
integrated-circuit interconnect and packaging are be-
coming increasingly important in determining final circuit
performance and signal integrity. This has increased inter-
est in computationally efficient procedures for determin-
ing capacitances of general three-dimensional structures.
One recently developed approach to capacitance compu-
tation, the multipole-accelerated boundary-element
method, can accurately analyze complex structures ex-
tremely efficiently [1], [2], provided it can be assumed that
the dielectric is homogeneous. For realistic problems,
however, the dielectric inhomogeneity can not be ignored.
For example, integrated circuit interconnect consists of
multiple layers of polysilicon or metal conductors, sepa-
rated by conformal or space-filling insulators with very
different dielectric constants. In packaging and off-chip
interconnect, conductors typically pass through plastic or
ceramic holders with large relative dielectric constants.
In this paper we describe how to extend the multipole-
accelerated boundary-element method to the case where
conductors are embedded in an arbitrary piecewise-
constant dielectric medium. We start, in the next section,
by reviewing the standard equivalent charge approach to
including dielectric interfaces in boundary-element based
three-dimensional capacitance calculations. In Section III,
we show how this formulation allows for a multipole-
accelerated iterative solution method. The method’s util-

Manuscript received April 14, 1992; revised July 10, 1992. This work
was supported by the Defense Advanced Research Projects Agency
contract N00014-91-J-1698, the National Science Foundation contract
(MIP-8858764 A02), and grants from LB.M. and Digital Equipment
Corporation. This paper was recommended by W. W.-M. Dai.

The authors are with the Research Laboratory of Electronics and the
Microsystems Technology Laboratory, Department of Electrical Engi-
neering and Computer Science, Massachusetts Institute of Technology,
Cambridge, MA 02139.

IEEE Log Number 9205573.

ity is demonstrated in Section 1V, where we examine
results from our program, FASTCAP2, for several exam-
ples. The results presented demonstrate that the method
is accurate, has nearly linear computational growth, and
can be nearly two orders of magnitude faster than the
standard boundary-element method based on direct fac-
torization algorithms.

11. EQUIVALENT-CHARGE FORMULATION

To determine all the self and coupling capacitances of a
structure with m conductors, the conductor surface
charges must be computed m times, with m different sets
of conductor potentials. In particular, if conductor i is
raised to unit potential and the rest are set to zero, then
the total charge on conductor i is numerically equal to
conductor i’s self capacitance. Furthermore, any other
conductor’s total charge is numerically equal to the nega-
tive of its coupling capacitance to conductor i.

Given the conductor potentials, the conductor surface
charges can be computed using an equivalent charge
formulation. In this formulation, surface charge layers are
placed at the conductor-dielectric and dielectric-dielectric
interfaces, with densities o.(x) and o,(x), respectively,
and the problem domain is replaced with free space.
These surface charges therefore produce a potential given
by

1
¥(x) = fsoc(x')———dS'

drmegllx —x'l
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+fs(lo'd(x y—————dS

Amegllx — x'| (1)
where S, and S, are the conductor-dielectric and dielec-
tric-dielectric interface surfaces. The densities o,(x) and
0,(x) are determined in this equivalent free space prob-
lem by insisting that ¢(x) match the conductor potentials
for the original problem at conductor-dielectric interfaces,
and that the normal derivative of the potential satisfy

., (x) ap_(x)
€, — €

¢ on, an,

=0, x € ¢, €, interface (2)

at any point x on a dielectric-dielectric interface. Here n,
is the normal to the dielectric interface at x that points
into dielectric a; €,, and €, are the permittivities of the

1057-7122/92$03.00 © 1992 IEEE



NABORS AND WHITE: MULTIPOLE-ACCELERATED CAPACITANCE

corresponding linear, isotropic dielectric regions; ¢ (x) is
the potential at x approached from the ¢, side of the
interface, and _(x) is the analogous potential for the b
side [3], [4].

2.1. Discretization Scheme

To numerically compute o, and oy, the conductor
surfaces and dielectric interfaces are discretized into n =
n. + n, small panels or tiles, with n_ panels on conductor
surfaces and n, panels on dielectric interfaces as in Fig.
1. It is then assumed that on each panel i, a charge, g;, is
uniformly distributed. For each conductor surface panel,
an equation is written which relates the potential at the
center of that ith panel, denoted p;, to the sum of the
contributions to that potential from the n charge distribu-
tions on all n panels. For example, the contribution of the
charge on panel j to the potential at the center of panel i
is given by the superposition integral

_‘Q 1

/ —.——_lda,
a; panelj47r€0”xi —x'lf

3
where x; is the center of panel i, a; is the area of panel j,
€, is the permittivity of free space, and the constant
charge density g;/a; has been factored out of the integral.
The total potential at x; is the sum of the contributions
from all n panels,

p(x;) = Pyqy + Pygy, + - +Pq; + +Pnq, (4)
where

1 1
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Similarly, for each dielectric interface panel, an equation
is written that relates the normal displacement-field dif-
ference at the center of that ith dielectric interface panel
to the sum of the contributions to that displacement field
due to the n charge distributions on all n panels. In
particular, if panel i lies on the interface between di-
electrics with permittivities €, and ¢,, then from (2),

ap(x;) ap(x;,)
— € =0
an; on;

i

(6)

a
Here, n; is a normal to panel i, and x; and x; are x;
approached from the €, and e, sides of the interface,
respectively. Substituting for p from (4) breaks (6) into a
sum over all the panels,

Diyqy + Diyqy + -+ +Dyyq; + - +Dq, =0 (7)
where
J 1 1
D.. 2 — R —————da',i #]
i = (&= &) an; a; Lanelj47r60||xi —x'|l st 7
(8)

since if evaluation point j is not on panel i the limits
x; = x; and x; —x; just replace the intermediate vari-
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Fig. 1. The panels used to discretize a 2 X 2 dielectric-coated bus-
crossing problem. The lower conductors’ surfaces are discretized in the
same way as the two upper conductors’ surfaces.

ables with x;. Careful evaluation of the limits when i = j
leads to the important special case [5]

A (Ea + eb)

2a;€,

)

ii

Collecting all n equations of the form (4) and (7) leads
to the dense linear system
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P, P | 4 \

a ‘ S I 0
Dn[?l 1 Dnr+1,n q"c+1 0
L Dﬂ1 Dn" L qn ] 0

A more convenient form of (10) is derived by rescaling
the Equation (7) rows by 1/(e, — €,), which yields

Py Py, [ q, 7 D1
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where E;;, i # j, is just the normal electric field at x; due

to a unit charge on panel j, and is given by

L a1 1

LA ———da', i #j. (12
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Note that just like D;;, E;; is a special case, and is given by
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We will write this compactly as :

[£ ] - 7]

where P € R"™" is the matrix of potential coefficients,
E € R"¥*" is the matrix of electric field coefficients, g €
R" is the vector of panel charges, and p € R" is the
vector of conductor-panel center-point potentials, Using

el o2 (il

Agq=1b

(14)

AL (15)

gives
(16)

as the linear system to solve to for the conductor charge
densities.

2.2. Matrix Solution

The standard approach to solving the n X n linear
system (16) is to use Gaussian elimination, at a cost of
order n® operations [4], [6]. For this reason, the equivalent
charge formulation approach to capacitance calculation is
frequently considered computationally intractable if the
number of panels exceeds several hundred. To improve
the situation, consider solving (16) using a conjugate-
residual style iterative method like GMRES [7]. Such
methods have the general form below.

Algorithm 1: GMRES algorithm for solving (16)
Make an initial guess to the solution, g°.
Set k = 0.
do {
Compute the residual, r* = b — Ag*.
if 7l < tol, return g* as the solution.
else {
Choose a’s and B in
gt = Zj.‘:[)ajqi + Br*
to minimize ||r** 1.
Set k =k + 1.
}
}

If GMRES is used to solve (16), and assuming few
iterations are required to achieve GMRES convergence,
the dominant costs of the approach are calculating the n*
entries of A from (5) and (12), and performing n*® opera-
tions to compute Ag* on each GMRES iteration. In the
next section, we will describe an approach to computing
Ag* which eliminates the need to form most of A, and
produces an approximation to Ag® in order n operations
(8].

It should be noted that when applied to solving (16), the
standard GMRES algorithm frequently requires a large
number of iterations to achieve convergence. If the num-
ber of GMRES iterations approaches n, then the mini-
mization in each GMRES iteration requires order n’
operations, and the whole algorithm uses order n® opera-
tions. This problem can be avoided easily through the use
of the preconditioner described in [2], [9], which reduces

the number of GMRES iterations required to achieve
convergence with 1% error (fol = 0.01 in Algorithm 1) to
well below n for large problems.

I11. THE MULTIPOLE APPROACH
The product Ag* is, using (14),
Pq"
Eq" '

k

Ag* = (17)

Forming the product Pg* is equivalent to calculating the
potential at the conductor panel center points due to all
the panel charges, and can be approximated directly in
order n operations using the fast multipole algorithm [1],
[2], [10]. Computing Eq* is equivalent to calculating the
normal electric field at all the dielectric panel center
points and can also be approximated using a modification
of the fast multipole algorithm. Below we give a brief
description of the standard multipole algorithm for ap-
proximating Pg*, and then give the approach for comput-
ing Eq*.

3.1. Potential Evaluations

The key approximation employed in the multipole algo-
rithm is the evaluation of potentials using multipole ex-
pansions. Consider evaluating the potential at d panel
centers due to charges on another d panels as in Fig. 2. In
a direct evaluation, a single panel’s center-point potential
is calculated using an explicit equation like (4). In the Fig.
2 case, d P;;q; products are computed and added at a cost
of d operations. Repeating the process for all d evalua-
tion points requires d? operations.

When a cluster of panel charges are well-separated
from a set of evaluation points, the potential at the
evaluation points can be approximately computed in fewer
than d? operations by making use of multipole expan-
sions. A multipole expansion [10], [11] is a truncated series
expansion of the form

L Mk

piri d,0) = L )» j-:l)/ik(qbz’oi) (18)

j=0k=-jTi
where (r;, ¢;, 6,) are the spherical coordinates of panel i’s
center point (the evaluation point) measured relative to
the origin of the multipole expansion; Y/(&;,, §;) are the
surface spherical harmonics; [ is the expansion order, and
M} are the multipole coefficients that are determined

from the cluster of panel charges using

d 1 .
MEE T —[ (Y Ha, ) da
i=1 @; “panel i

(19)

The use of the multipole expansion is illustrated in Fig.
3, where a single multipole expansion for the potential
due to the d panel charges is used to compute the
potential at d evaluation points. Since the expansion
coefficients are computed once, but used d times, the cost
of the coefficient computation may be neglected. Thus by
using a multipole expansion, the cost of evaluating d
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. d evaluation points

/ ( d charge panels >\

v
"

\\

(i 61,6:)

>
P

Fig. 2. The direct evaluation of the potential due to d panel charges at
d points.
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Fig. 3. The evaluation of the potential due to d panel charges at d
points using a multipole expansion.

potentials from d panel charges is reduced to only order
d operations.

Expansions can also be used to accelerate the computa-
tion of d potentials due to d panel charges when the
evaluation points are clustered, if those points are well-
separated from the panel charges. In this case, expansions
are used to exploit the fact that the potential at any of the
d evaluation points is roughly the same as the potential
evaluated at the center of the cluster. Specifically, the
potential due to the d panel charges can be represented
by a local expansion with origin at the cluster’s center,
and the local expansion can be evaluated d times to
determine the potential at d evaluation points. This situa-
tion is depicted in Fig. 4. Local expansions have the form

1 J
piri ¢ 6) = X X ”i}L?ij(QSi,ez)

j=0k=~j

(20)

where (r;, ¢,, 6,) are the spherical coordinates of i’s center
point measured relative to the origin of the multipole
expansion, [ is the expansion order, and L] are the local
expansion coefficients, which are calculated using the
procedure in [1] and [10].

As the above examples make clear, multipole and local
expansions are accurate when the evaluation points are
well-separated from the panel charges being represented.
This implies that for a general distribution, the potential
due to nearby panel charges should be computed directly
using (3). This result can then be summed with the contri-
butions to the potential due to distant panels which, of
course, can be represented using multipole or local expan-
sions. Direct evaluations may also be used for small
groups of distant panels, as multipole and local expan-
sions are inefficient unless they are used to represent the
effect of a large number of panel charges.
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Fig. 4. The evaluation of the potential due to d panel charges at d
points using a local expansion.

This short section is by no means intended to provide a
complete description of the hierarchical multipole algo-
rithm, only to make clear that the algorithm’s efficiency
stems from coalescing panel charges and evaluation points
using multipole and local expansions. In addition, it should
be noted that multipole-algorithm potential evaluations
involve a combination of multipole and local expansion
evaluations, and nearby-panel charge direct evaluations.
A detailed description of the complete multipole algo-
rithm is given in [10], and its use in the context of
capacitance extraction is described in (1] and [2].

3.2. Electric Field Evaluations

A simple approach to using the multipole algorithm to
compute normal electric fields, which are required for the
equations associated with dielectric interfaces, is to use
divided-differences. The fact that a surface charge will
create a discontinuity in the electric field implies that
when using divided-differences to compute the field at an
evaluation point on a panel i, the field due to panel i’s
charge must be treated separately. Examining the ith row
of the matrix E, as defined in (11) and (12), the diagonal
entry relates the ith panel’s charge to the normal electric
field at the center of panel i, and the off-diagonal entries
relate the charges on other panels to the normal electric
field on panel i. Thus, the total normal electric field at
panel i’s center may be written as

E, =E, + E;q; (21)
where E, is the normal field due to all panels except
panel i.

The field E, can be approximated using divided-
differences constructed from two potential evaluations as
illustrated in Fig. 5. The potentials at two points x, and
x,, both the same perpendicular distance away from the
panel center x;, combine to give

- p(x,) —p(x,)

E
' h

0 (22)
The potentials p(x,) and p(x,) can be computed, along
with all the other evaluation point potentials, using the
standard multipole algorithm. Therefore, the Eq* product
can be rapidly computed using the multipole algorithm
followed by a multiply—subtract to form E,, and then a
multiply—add for the E;;gf term.
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approximate E,,
Lo
Fig. 5. The part of the normal electric field at the center of the

dielectric panel due to distant charge panels can be approximated with a
divided difference.

An alternative to the divided-difference approach is to
differentiate the multipole algorithm’s expression for the
potential analytically. As described in the previous sec-
tion, a multipole-algorithm potential evaluation consists
of multipole and local expansion evaluations combined
with direct evaluations of the nearby-charge contribu-
tions, all of which may be analytically differentiated to
obtain expressions for the normal electric field.

For the direct evaluations, the analytic differentiation
of the potential coefficients gives the electric-field coef-
ficients (12) and (13). Analytic differentiation of the multi-
pole and local expansion components of the potential
gives expansions for their contributions to the normal
electric field at evaluation point x,. In the context of (11),
these electric field expansions contribute to the normal
field at x; by replacing many E;;q; terms, leading to the
same kind of efficiency as in the potential evaluation case.
Details of the normal electric field calculation for both
multipole and local expansions are given in the appendix.

In this way the multipole algorithm can be modified to
calculate normal electric fields with a single evaluation
rather than the two potential evaluations required by the
divided-difference approach. Using the altered multipole
algorithm also avoids the added inaccuracy inherent in a
divided-difference approximation.

IV. RESULTS

To demonstrate the efficiency and accuracy of the mul-
tipole-accelerated capacitance extraction algorithm for
problems with multiple dielectrics, the capacitances asso-
ciated with several test problems are calculated. Execu-
tion times are reported for large problems of practical
interest and the computed capacitances are compared
with analytic results and with results computed using the
standard boundary-element method. All the results were
obtained using our implementation of the algorithm in
the program FASTCAP2, with the default 1% conver-
gence tolerance (tol = 0.01 in Algorithm 1) and second-
order expansions (/ = 2 in (18) and (20)).

4.1. Coated Sphere

Using the dielectric-coated sphere of Fig. 6, FAST-
CAP2’s accuracy is demonstrated by comparing its result

Fig. 6. The discretization used to compute the capacitance of a dielec-
tric-coated sphere in free space. Some of the outer dielectric-boundary
panels have been removed to show the inner conductor-surface panels.

to the exact result derived analytically. The inner conduct-
ing sphere of radius 1 m is coated by a 1-m thick dielectric
layer with relative permittivity 2. The surrounding region
is free space. By Gauss’s Law, such a structure has capaci-
tance 148.35 pF. The value calculated using FASTCAP2
applied to the discretization of Fig. 6 is 148.5 pF, well
within 1% of the analytic value.

4.2. Bus Crossing

Somewhat more interesting from a practical standpoint
is the bus-crossing structure of Fig. 1. The Fig. 1 problem
is called the 2 X 2 bus-crossing problem and is represen-
tative of the 1 X 1 through S X 5 bus-crossings examined
here. In all these problems the lower bus is covered with a
layer of conformal dielectric with permittivity e, = 7.5¢,
while the surrounding material has permittivity €, = 3.9¢.
All the conducting bars have 1-um X 1-um cross-
sections, and all overhang and inter-conductor spacings
are 1 um. The conformal dielectric is nominally 0.25 pm
thick.

The accuracy attained by FASTCAP2 is investigated
using the Fig. 1 problem. The smallest coupling and self
capacitances in the problem are calculated using FAST-
CAP2 and by Gaussian elimination applied directly to
(16). Note that the Gaussian-elimination based algorithm
is precisely the commonly used approach described in [4],
and is a standard method for capacitance computation.
The entries in Table I represent the capacitances associ-
ated with the top, rear conductor in Fig. 1. By default
FASTCAP2 is configured to produce capacitances within
1% of those calculated using direct factorization, as is
clearly the case here. Thus any error in the FASTCAP2
capacitances is dominated by discretization error rather
than multipole approximation effects.

The program’s execution speed for the four bus-cross-
ing problems is compared to the speed of the standard
direct method in Table II. The values in parentheses
indicate extrapolated execution times corresponding to
problems that could not be solved using the standard
method due to excessive memory and time requirements.
FASTCAP2’s lower complexity leads to much lower exe-



NABORS AND WHITE: MULTIPOLE-ACCELERATED CAPACITANCE

TABLE I
COMPARISON OF CAPACITANCE MATRIX ENTRIES (IN FF)
FOR THE FIG. 1 PROBLEM

C}l C32 C33 C34
Direct 02112  —02112 09854 —0.3200
FASTCAP2  —02113 —-02112  0.9886 -0.3212
TABLE II

CoMPARISON OF EXEcuTION TIMES IN I.B.M. RS600 / 540 CPU MIN.
VALUES IN PARENTHESES ARE EXTRAPOLATED

Problem 1x1 2xX2 3X3 4 x4
Panels 664 1984 3976 6640
Direct 1.4 41 (320) (1400
FASTCAP2 0.44 2.4 8.6 20

cution times even for moderate sized problems like the
2 X 2 bus crossing. In particular, in the time required to
compute the capacitance of the 4 X 4 bus crossing prob-
lem using standard direct methods, FASTCAP2 can per-
form 70 such calculations.

FASTCAP2’s execution time is shown to grow roughly
linearly with mn, where m is the number of conductors
and n is the number of panels. Fig. 7 is a plot of the
FASTCAP2 execution times in Table II versus mn for the
bus-crossing problems. The execution time data points lie
close to the best-fit straight line, indicating roughly order
mn complexity.

4.3. Backplane Connector

The analysis of the connector problem in Fig. 8 pro-
vides a further example of the kind of computation made
possible by FASTCAP2. Connectors of this type must be
analyzed carefully when considered for use in high-speed
bus connections [12]. The U-shaped polyester body, with
relative permittivity of 3.5, holds 16 pins with 0.65-mm X
0.65-mm cross-sections and 3.25-mm center-to-center
spacings. Using a 9524-panel discretization, FASTCAP2
computes all the self and coupling capacitances for the
pins in 30 CPU min on an IBM RS6000/540 (see also
Table III). An identical analysis using standard Gaussian
elimination algorithms requires roughly 1.5 CPU days on
the same machine. The four pins in the center have the
highest self capacitances: 0.547 pF. The lowest self capaci-
tance is 0.481 pF and is attained by the four corner pins.
The strongest coupling capacitances, slightly more than
0.2 pF, occur between pin pairs next to the sides of the
connector body. By grounding four pins on a main diago-
nal and the four pins on the remaining parallel two-pin
diagonals, the maximum signal-pin coupling capacitance is
reduced to around 0.065 pF. These capacitances compare
well with independently calculated values reported in [12].

4.4. DRAM Cells

Fig. 9 illustrates a second practical example, a simpli-
fied model of three adjacent DRAM cells in the 1-Mbit
DRAM described in [13]. In Fig. 9(b), the dielectric inter-
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Fig. 7. Demonstration of the order mn complexity of FASTCAP2 using
the four bus crossing execution times. Times are in CPU minutes on an
1.B.M. RS6000/540.

Fig. 8. The backplane connector example. The actual discretization
used for the computation is much finer than the one illustrated.

TABLE III
FASTCAP2 TimEs IN IBM RS6000 / 540 CPU MIN
DRAM Connector
cond. panels 4881 6464
dielec. panels 1248 3060
total panels 6129 9524
CPU minutes 17 30

faces are removed to show the conductors more clearly.
Each cell consists of a bit line running across the cell,
terminating in a via. In Fig. 9, the three-bit lines are
elevated on the right side of the figure and run downward
to the left where they are attached to the conical vias. The
vias connect to the drains of MOS transistors formed by
polycide word lines crossing the substrate at right angles
to the bit lines and 0.01 wm above the substrate. The
polycide word line that controls the transistors is the
lower left word line in Fig. 9. The transistors’ sources are
all connected to the polycide cell plate, which is also 0.01
wm above the substrate. The dimples in the ground plane
below the bit line vias model the capacitors formed by the
depletion regions surrounding the drains of the bit cell
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Fig. 9. (a) The complete DRAM model, and (b) with the dielectric
interfaces removed for clarity.

MOS transistors. There are three other word lines passing
through the cells at 0.7 wm (right), 1.8 um (left), and 2.2
wm (right) above the substrate. All the lines are 1 um
wide and either 0.3 pm (top) or 0.9 um (bottom) thick.
The bit lines are spaced 2.4 um apart and both sets of
word lines are 2 um apart. The upper, aluminum word
lines are covered with a silicon nitride passivation layer
with relative permittivity 7.0 and nominal thickness 0.7
pm. The passivation layer is represented by the two
dielectric interfaces illustrated in Fig. 9(a). The material
above the top interface is air, while below the lower
interface silicon dioxide, with relative permittivity 3.9, is
assumed.

Even though the DRAM example requires more than
6000 panels, FASTCAP2 was able to determine the capac-
itance matrix, given in Table IV, in less than 20 minutes
(see Table III). The computed capacitances correspond
reasonably with the measured data given in [13].

V. CONCLUSION

The multipole-acceleratgd capacitance extraction algo-
rithm has been extended to problems with arbitrarily
shaped, multiple-dielectric regions. The extended algo-
rithm as implemented in FASTCAP2 has the same 1%
accuracy and reduced time and memory requirements of
the original algorithm [1], [2]. In particular, FASTCAPZ2 is
fast enough to allow capacitance extraction of complex
three-dimensional, multiple-dielectric geometries to be
part of an iterative design process. It should be noted that
no comparisons were made to finite-difference or finite-
element based capacitance computation programs. The
program FASTCAP2 is publicly available, and the authors
hope this will facilitate completing such a study.

TABLE IV
BiT-LINE CAPACITANCE MATRIX, FF
near bit line center bit line far bit line
near bit line 211 —0.065 —-0.007
center bit line —0.065 2.12 —0.063
far bit line -0.007 —0.063 2.10
APPENDIX

NORMAL ELECTRIC FIELD FORMULAS

This appendix presents the formulas used to evaluate
the normal electric fields required to enforce dielectric-
interface boundary conditions in the capacitance extrac-
tion algorithm. The formulas use the same multipole and
local expansions which are used to calculate conductor
panel potentials, effectively finding the gradient of the
potential along each dielectric panel’s normal. The multi-
pole and local expansions used are expansions with real
coefficients in the style of [11] and are described in more
detail in [1].

A.1. Electric Fields From Multipole Expansions (M2E)

The contribution of an order / multipole expansion to
the potential at the point (r, 6, d) is

! 1 n — !
pmul(r’g’d)): Z rn+1 Z E:+:;'

n=0 m=0

X [1\7,:" cos(me¢) + M sin(m<,b)]. (23)

P*(cos 0)

If (r, 8, ¢) is the spherical-coordinate center of a dielec-
tric panel with unit Cartesian-coordinate normal n =
(n,, n,,n,), then the multipole expansion (23) contributes
1} 1 n

Emulén'V Z n+1 Z
it

n=0

(n —m)!
o (n+m)!

P (cos 6)

[ My cos(mo) + M sin(md))]} (24)

to the electric field in the normal direction. Expanding the
gradient in Cartesian coordinates using the chain rule
leads to the directional derivatives

d P ‘9pmul ar
axp,,,,,,(r, ) = ar 9x
OPur 90 ODmur 0P
Prmur 09 P 1__; (25)
00 Jx o Ix
d apmul ar
—_ ’0’ = —_—
aypmul(r d)) ar 0}7
P 90 17 /]
'Prmul htd pmul __f; (26)
a0 dy dp dy
0 OPmu OF
R ’0’ = —_—
3meul(r ¢) ar 9z
P 99 ODmui 0
Prmut 99 44 1 %% 27)
00 Jz dp dz

onmy
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Performing the dot product and rearranging gives

Dt [ OF or ar
mul = or —n,+t —n, + n,

ax ay ’ 9z
P [ 00 00 a6
+— z

—n,+ —n,+—n
06 \ox > 9y’ oz

Pmur [ 9P ¢ o
+—ﬁ¢—l(— +——Vly+gz‘nz). (28)

ax T y
For the case sin 6 # 0, derivatives obtained by implicit
differentiation of the coordinate conversion rules
z=rcosB; x =rcos ¢sin 6; y =rsin ¢sin 6 (29)
together with various derivatives of (23),

apmu! _ Z (ﬂ - m)!
a2 (n +m)!

—-(n+1) 2
n+2 Z

m=0

x [ M cos(me) + M, sin(md)]  (30)

- P (cos 0)

Wt _ o 1 g (= m)!
39 st a2y (n+m)!
(n—-—m+1) .
X sin 6 PrH—l(coS 9)
(n + 1)cos @
————P"(cos 0)
sin 6

[ My cos(me) + M sin(me)]  (31)
1 n
n+1 Z

m=0

X[ -mM7 sin(me) + mM" cos(ma)] (32)

(n—m)!

t;Pmul _ i
P noo”

(n ¥ m)!Pn"‘(cos 0)

are substituted into (28). The derivative of the associated
Legendre function in (31) has been replaced using the
identity [14]
_d
sin OEéP" (cos ) = (n —m + 1) P (cos 6)
—(n + 1)cos 6P (cos 6). (33)
After the substitutions (28) becomes

! 1
Emul = Z

n=0

X {{A,, cos(mp)Pr(cos 8) + [F cos(me)

n (n—m)!

pit = (n+m)!

+B™ sin(ma)] P/, (cos 0)} M
+{[G, sin(me) — B" cos(me)] P (cos 0)

+F" sin(me) P (cos §)}M,"}, sin 6 # 0
(34)
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where

a cos 6
A, =(n+1)]|—
sin 6

+n,sin ¢ cos § — n,sin 6)

(n, cos ¢ cos 8

—(n,sin 8 cos ¢ + n, sin sin ¢ + n, cos 9)
(35)

B™ 2 (n,sin ¢ — n,cos $) ——; (36)
sin 6
(m-n-1)
sin
(n, cos ¢ cos @ + n, sin ¢ cos § — n,sin 0);

Fr &

n

cos @

G, 2(n+1

n

S
- n, cos ¢ cos 6
sin 6 (n ¢

+n, sin ¢ cos § — n,sin 6)

—(n,sin @cos ¢ + n, sin 6sin ¢ +n,cos6)|.

(37)
For the special case sin 8 = 0, (35) is replaced by
! —(n+1 _
Epy= X —(——)P,,O(cos 0)M?, sin8=0. (38)

oy " +2
This equation’s derivation starts from (23) for the special
case sin @ = 0 and then proceeds as when sin 6 # 0, with
special attention to simplifications in P™(cos 8) and
(d/d06)P(cos 6).

The normal electric field evaluation at x; = (r, 8, ¢)
uses either (34) or (38), as appropriate, to replace the
E;;q; products in (11) corresponding to the charge panels
represented by the multipole expansion.

A.2. Electric Fields From Local Expansions (L2E)

The contribution of an order ! local expansion for the
potential at the point (r, 6, ¢) is

J n(n—m)!

? 97 = " - <1

pluc(r ¢) Z r Z (n + m)'

n=0 m=0

x| Ly cos(me) + L sin(me)]. (39)

P*(cos 8)

The multipole and local expansions differ only in the
powers of 7 that multiply each term. This similarity allows
a development analogous to that in the previous section
which gives

! n — 1
Fuom Tt £ O
x{A, cos(m@)P"(cos 6) + [F" cos(me)
+B™ sin(ma)] P (cos 8)}LT
+{[G, sin(m¢) — B™ cos(m)]P,"(cos 0)
+F™sin(m¢) P (cos 0)}L7}, sin 6 #0. (40)
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for the normal component of the electric field due to the
local expansion (39) evaluated at dielectric panel center
(r, 8, ). The weights A4,, B”, F" and G, are given by
(35)—(37) as in the multipole expansion case. When sin
= 0 the normal field is

!
E,.= Y nr" PYcos )L°, sinf=0. (41)
n=0

As in the multipole case, the evaluation of the normal
electric field at x; = (r, 6, @) uses either (40) or (41), as
appropriate, to replace the E,q; products in (11) corre-
sponding to the charge panels represented by the local
expansion.
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