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Abstract

In this survey paper we describe recently developed
algorithms for electromagnetic analysis of 3-D inter-
connect. The techniques described are fast enough to
use on complicated 3-D interconnect structures and
are sufficiently accurate that the results can be used
to perform signal integrity analysis.

1 Introduction

The electrical performance of integrated-circuit
packaging and on-chip interconnect is becoming pro-
gessively harder to predict. This is because new multi-
level metal fabrication processes and advanced packag-
ing techniques are generating three-dimensional inter-
connect structures of such geometric complexity that
they are not easily be analyzed analytically, Predict-
ing signal integrity problems, like too much cross-talk,
is a particularly difficult given complicated 3-D inter-
connect. This is because problems like cross-talk can
be the result of a large number of small coupling ca-
pacitances or small mutual inductances, each of which
maust be accurately computed. And in addition, cross-
talk may depend critically on the interaction between
the interconnect and attached driving circuitry.

Since the introduction of PEEC methods [9], the
dominate approach to accurate coupled interconnect-
circuitry analysis was modeling the interconnect with
a densely coupled equivalent circuit derived using the
method-of-moments [4]. PEEC-generated equivalent
circuits were then combined with the nonlinear drivers
and receivers and used as input to a circuit simula-
tion program. And since circuit simulators use Gaus-
sian elimination, the computational cost of that en-
tire approach grews as n3, where n was the number
of circuit elements in the interconnect model. There-
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fore, PEEC-plus-circuit-simulation methods were sim-
ply too computationally expense to use for modeling
complicated 3-D interconnect.

The above n® approach for coupled interconnect-
circuitry analysis have racently been replaced with a
variety of near linear-time, or nearly order n, algo-
rithms which combine PEEC methods with model-
order reduction and fast solvers. Such algorithms
are a result of three key developments: the intro-
duction of reduced-order modeling for interconnect,
as in AWE [1, 2]; the development of Lanczos-based
methods for constructing reduced-order models us-
ing only matrix-vector products [3]; and the devel-
opment of fast-multipole and precorrected-FFT al-
gorithms for rapidly computing dense matrix-vector
products associated with discretized integral equa-
tions [6, 5]. In this paper we survey recent work in
the topic with which we are most familiar, the fast-
multipole and precorrected-FFT methods. We start
in the next section by describing integral formulation
for purely electrostatic (just capacitance), electroqua-
sistatic (distributed resistance and capacitance), and
magnetoquasistatic (distributed resistance and induc-
tance) analysis. In section three we briefly describe the
main ideas behind fast-multipole and precorrected-
FFT methods. Results are given in section four and
conclusions in section five. :

2 Integral Formulations

Discretizations of the integral formulations of elec-
trostatic, electroquasistatic, and magnetoquasistatic
analyses all lead to dense matrix problems, where the
entries in the dense matrix are associated with 1/r ker-
nals. This commonality makes it possible to use the
same approach to reduce the matrix-vector product
time in all three problems.



2.1 Electrostatic and Electroquasistatic
Analysis

For conductors in a uniform dielectric medium, the
self- and coupling-capacitances can be determined by
solving the integral equation

P(z) = /S o(a') s’ (1)
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where S union of conductor surfaces, o{z') is the un-
known conductor surface charge, and ¥(z) is the given
conductor potential. To numerically compute o the
conductor surface is discretized into n small panels.
It is then assumed that on each panel i, a charge, ¢,
is uniformly distributed. Finally, a system of equa-
tions is generated by insisting that (1) be satisfied at
the center of each conductor panel. This leads to a
system of equations of the form

PQ=1 @)

where , ¥ € R" are the vector of panel charges and
panel center potentials, and P € £"*™ is the matrix
of potential coefficients given by

1
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Following a similar derivation [10], electroqua-
sistatic analysis yields a discretized integral equation
of the form

0

- 47rTElII = PV, + PJ*, 4)
where P is as given in (3),.and ¥,, € RV represents
(%‘g) at the n panels. Equation (4) simply states that
currents from within the conductor, ¥, and from ex-
ternal sources, J°°, both serve to charge or discharge
the conductor surfaces, which then causes the poten-
tial everywhere to change in time according to the
superposition integral.

2.2 Magnetoquasistatic Analysis

In the case of magnetoquasistatic analysis, used for
extracting inductances, the conductor current density,
J, satisfies V - J = 0 and for any point z in the con-
ductor,
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where here % is a scalar potential, ¢ is the conductiv-
ity, p is the magnetic permeability, w is the frequency
of interest, and V' is the conductor volume.

To numerically compute J, the conductor volume
is discretized into b filaments, and in each filament the
conductor current is assumed constant. A system of
equations for the filament currents, which are denoted
by the vector I, is then generated by insisting that
at filament intersection points, the directed sum of
currents associated with the intersecting filaments is
zero. In addition, the filament currents must satisfy

ZIy = (B+jwL)ly =V, (6)

where V;, I, € C®, b is the number of branches (num-
ber of current filaments), Z € C®*® is the complex
impedance matrix, R € R°*® is the diagonal matrix
whose elements are associated with the dc resistance
of each current filament, and. L € RP*? is the dense
matrix of partial inductances [9]. Specifically,
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where X;, X; € ®3 are the positions in filament ¢ and
Jj respectively, and I;,l; € R® are the unit vectors in
the direction of current flow in filaments 7 and 7.
Using mesh analysis, it is possible to combine the
current conservation constraint with (6) to yield

MZM', =V, (8)

where I, € R™ is a vector of mesh currents, M € Rnx?
is the mesh matrix, V; is the mostly zero vector of
source voltages, and n is the number of meshes [8].

3 Accelerated Approaches

If an iterative algorithm is used to solve (2), (4) or
(8), then each iteration of the algorithm will cost n?
operations. This is because the matrices in (2), (4)
and (8) are dense, and therefore evaluating candidate
solution vectors involves a dense matrix-vector multi-
ply. However, in all three cases, multiplying by the
associated matrix is equivalent to evaluting a poten-
tial at n points due to n sources. This computation
can be performed in order n operations using the fast
multipole algorithm [6] or in nlogn operations using
a precorrected-FFT method [7].

As a brief explanation of how the fast multipole
achieves its efficiency, consider the configuration, de-
picted in 2-D for simplicity, given in Figure 1. In the
figure, the obvious approach to determining the elec-
trostatic potential at the ny evaluation points from
the n, point-charges involves n, * nq.operations; at
each of the n; evaluation points one simply sums the
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Figure 1: Exploiting charge or evaluation point clus-
ters.

contribution to the potential from ny charges. An ac-
curate approximation for the potentials for the case of
Figure 1 can be computed in many fewer operations
using multipole expansions, which exploit the fact that
r >> R (defined in Figure 1). That is, the details of
the distribution of the charges in the inner circle of
radius R in Figure 1 do not strongly effect the poten-
tials at the evaluation points outside the outer circle
of radius r. There is also a dual optimization. If the
evaluation points are clustered inside the inner circle
of Figure 1 and the charges are outside the circle of
radius r, then it is possible to compute the evaluation
point potentials in many fewer than n *nq operations
using local erpansions. Local expansions exploit the
fact that the potential due to distant charges varies
slowly in space. Therefore, in this dual case, what
can be ignored are the details of the evaluation point
distribution.

Another approach to computing distant interac-
tions is to exploit the fact that evaluation points dis-
tant from a cube can be accurately computed by rep-
resenting the given cube’s charge distribution using a
small number of weighted point charges. If the point
charges all lie on a uniform grid, then the Fast Fourier
Transform (FFT) can be used to compute the po-
tential at these grid points due to the grid charges.
Specifically, Pq may be approximated in order nlogn
operations in four steps: (1) project the panel charges
onto a uniform grid of point charges, (2) compute the
grid potentials due to grid charges using an FFT, (3)
interpolate the grid potentials onto the panels, and (4)
directly compute nearby interactions. This process is
summarized in Figure 2.

The precorrected-FFT method uses less memory
than fast multipole algorithms, and is occasionally
faster, as will be demonstrated below. But the major
advantage of the precorrected-FFT methods is that
the FFT is independent of the kernal, and so the ap-
proach can be combineds with modified Green’s func-

Figure 2: Representation of the four steps of the
precorrected-FFT algorithm.

Figure 3: Half of a pin-connect structure. Thirty-five
pins shown.

tion methods for problems with ground planes or lay-
ered dielectrics [7].

4 Results

The 35-pin package shown in Figure 3 can have
sufficient inductive coupling to cause signal integrity
problems. To demonstrate the efficiency of multipole
acceleration, the CPU time versus number of filaments
for direct versus multipole methods is plotted in Fig-
ure 4 (from FASTHENRY (8]). Very little accuracy
is sacrificed to achieve the speed of the multipole-
accelerated algorithms. The mutual inductance be-
tween neighboring pins and distance pins computed by
direct methods are 0.0301 and 0.000208 respectively,
and the results computed with multipole-accelerated
algorithms are 0.0301 and 0.000207 respectively. As
this example demonstrates, multipole-accelerated al-
gorithms reliably compute small coupling inductances,
so these techniques are suitable for signal integrity
analysis.
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Figure 5: Neighboring DRAM cells.

As an example of capacitance extraction, con-
sider the model of neighboring dynamic memory cells
shown in Figure 5. The multipole-accelerated pro-
gram FASTCAP [5] computes the capacitance matrix
to one percent accuracy in 17 minutes on an IBM
RS6000/540, but the direct factorization approach
would take 1300 minutes.

The following table gives a comparison of the
precorrected-FF T algorithm with the multipole-based
code FASTCAP[5] on several realistic problems.
Numbers in the table are the ratic of precorrected-
FFT to FASTCAP CPU time or memory.

Example Time | Memory | Product
bus crossing | 0.59 | 0.26 0.15
via | 2.26 | 0.37 0.84
DRAM cell | 0.88 | 0.73 0.64

Note that the precorrected-FFT method can be as
much as 40% faster and can use as little as one fourth
the memory of FASTCAP[5]. Of course, this small
performance improvement is not the most aspect of
precorrected-FFT methods; their key advantage over

multipole-accelerated algorithms is its ability to. use-

general kernals.

5 Conclusions and Acknowledgements

Combining discretized integral equations with mul-
tipole or precorrected-FFT accelerated iterative meth-
ods leads to very efficient and accurate programs for
determining the electromagnetic interactions in 3-D
structures. Such tools make it possible to perform
much more complete signal integrity analysis than pre-
viously possible, as it is computationally feasible to
include many more coupling conductors. The authors
have would like to thank all the writers mentioned
in the references, we have valued their comments and
suggestions over the years.
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