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Abstract

This paper describes an efficent implementation of a Galerkin based multipole-accelerated boundary-

element method for 3-D capacitance extraction of conductors in an arbitrary piecewise-constant
dielectric medium. Results are presented to demonstrate that the Galerkin method is substantially
more accurate than the commonly used collocation scheme for problems with dielectric interfaces.
In addition, it is shown ezperimentally that for a given discretization, a careful implementation
of the Galerkin method in a multipole-accelerated program is only slightly more computationally
expensive than the collocation method.

1 Introduction

The self and coupling capacitances associated with integrated-circuit interconnect and pack-
aging are becoming increasingly important in determining final circuit performance and signal
integrity. This has increased interest in computationally efficient procedures for determining
capacitances of general three-dimensional structures. One recently developed approach to capac-
itance computation, the multipole-accelerated boundary-element method, can accurately analyze
complex structures extremely efficiently|[1, 2], provided it can be assumed that the dielectric is ho-
mogenous. For realistic problems, however, the dielectric inhomogeneity can not be ignored. For
example, integrated circuit interconnect consists of multiple layers of polysilicon or metal conduc-
tors, separated by conformal or space-filling insulators with very different dielectric constants. In
packaging and off-chip interconnect, conductors typically pass through plastic or ceramic holders
with large relative dielectric constants.

In this paper we describe how to extend the multipole-accelerated boundary-element method
to the case where conductors are embedded in an arbitrary piecewise-constant dielectric medium.
In addition, we show that to achieve accurate results with reasonable discretizations, it is neces-
sary to use Galerkin rather than collocation schemes. We start, in the next section, by reviewing
the collocation-based multipole-accelerated boundary-element method for three-dimensional ca-
pacitance calculations. In Section 3, we derive the formulas needed to efficiently implement a
Galerkin-based multipole-accelerated algorithm. In Section 4, results are presented to demon-
strate that the Galerkin method is substantially more accurate than the collocation method for
problems with dielectric interfaces, and it is shown that for a given discretization, a careful im-
plementation of the Galerkin method in a multipole-accelerated program is only slightly more
computationally expensive than the collocation method.



2 Standard Collocation Formulation

In this section we describe the multipole-accelerated algorithms currently used in the FASTCAP
program to calculate the capacitance of conductors in multiple dielectric regions [3].

2.1 Equation Formulation

To determine all the self and coupling capacitances of a structure with m conductors, the con-
ductor surface charges must be computed m times, with m different sets of conductor potentials.
In particular, if conductor i is raised to unit potential and the rest are set to zero, then the total
charge on conductor ¢ is numerically equal to conductor 4’s self capacitance. Furthermore, any
other conductor’s total charge is numerically equal to the negative of its coupling capacitance to
conductor z.

Given the conductor potentials, the conductor surface charges can be computed using an equiv-
alent charge formulation: In this formulation; surface charge layers are placed- at the conductor-
dielectric and dielectric-dielectric interfaces, with densities oc(z) and o4(z) respectively, and the
problem domain is replaced with free space. These surface charges therefore produce a potential
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where S, and S; are the conductor-dielectric and dielectric-dielectric interface surfaces. The
densities o.(z) and o4(z) are determined in this equivalent free space problem by insisting that
(z) match the conductor potentials for the original problem at conductor-dielectric interfaces,
and that the normal derivative of the potential satisfy
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at any point z on a dielectric-dielectric interface. Here n, is the normal to the dielectric interface at
z that points into dielectric a, €, and €, are the permittivities of the corresponding linear, isotropic
dielectric regions, ¥4 (x) is the potential at z approached from the ¢, side of the interface, and
¥_(z) is the analogous potential for the b side 4, 5].
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2.2 Collocation Discretization

To numerically compute o, and o4, the conductor surfaces and dielectric interfaces are dis-
cretized into n = n. + nq small panels or tiles, with n. panels on conductor surfaces and ng
panels on dielectric interfaces. It is then assumed that on each panel 4, a charge, ¢;, is uniformly
distributed. For each conductor surface panel, an equation is written which relates the potential
at the center of that i-th panel, denoted p;, to the sum of the contributions to that potential from
the n charge distributions on all n panels. For example, the contribution of the charge on panel
j to the potential at the center of panel 7 is given by the superposition integral
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where z; is the center of panel i, a; is the area of panel j, € is the permittivity of free space, and
the constant charge density gj/a; has been factored out of the integral. The total potential at z;
is the sum of the contributions from all n panels,

p(z;) = Pag1 + Paga + - + Pijgj + - + Pintn, (4)
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Similarly, for each dielectric interface panel, an equation is written that relates the normal
displacement-field difference at the center of that i-th dielectric interface panel to the sum of the
contributions to that displacement field due to the n charge distributions on all n panels. In
particular, if panel 7 lies on the interface between dielectrics with permittivities €, and ¢, then

from (2),
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Here, n; is a normal to panel 4, and z;, and z;, are z; approached from the ¢, and ¢, sides of
the interface, respectively. Substituting for p from (4) breaks (6) into a sum over all the panels,
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since if evaluation point j is not on panel ¢ the limits z;, — z; and z;, — z; just replace the
intermediate variables with x;.
Careful evaluation of the limits when ¢ = j leads to the important special case [6]
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Collecting all n equations of the form (4) and (7) leads to the dense linear system
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A more convenient form of (10) is derived by rescaling the rows by ﬁ, which yields
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where E;;, i # j, is just the normal electric field at z; due to a unit charge on panel j, and is
given by
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Note that just like D;;, Ey; is a special case, and is given by
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where P € R"*" is the matrix of potential coefficients, E € R™*™ is the matrix of electric field
coefficients, ¢ € R" is the vector of panel charges, and p € R™ is the vector of conductor-panel

center-point potentials. Using
AP Alp
A=[E], b:[o}, (15)

Ag=15b (16)
as the linear system to solve to for the conductor charge densities.
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We will write this compactly as

gives

2.3 Matrix Solution

The standard approach to solving the n x n linear system (16) is to use Gaussian elimination,
at a cost of order n® operations [7, 5]. For this reason, the equivalent charge formulation approach
to capacitance calculation is frequently considered computationally intractable if the number of
- panels exceeds several hundred. To improve the situation, consider solving (16) using a conjugate-
residual style iterative method like GMRES [8]. Such methods have the general form below:

Algorithm 1: GMRES algorithm for solving (16)
Make an initial guess to the solution, ¢°.
Set & = 0.
do {
Compute the residual, r* = b — AgF.
if ||| < tol, return ¢* as the solution.
else {
Choose a’s and £ in
k+1 = ZJ Oan] + :67'
to minimize ||rE+1].
Set k =k +1.

}

If GMRES is used to solve (16), and assuming few iterations are required to achieve GMRES
convergence, the dominant costs of the approach are calculatlng the n? entries of A from (5)
and (12), and performing n? operations to compute Aq on each GMRES iteration. In the next
section, we will describe an approach to computlng Ag¥ which eliminates the need to form most
of A, and produces an approximation to A¢® in order n operations [9].

It should be noted that when applied to solving (16), the standard GMRES algorithm frequently
requires a large number of iterations to achieve convergence. If the number of GMRES iterations
approaches n, then the minimization in each GMRES iteration will require order n? operations,
and the whole algorithm becomes order n> operations. This problem can be avoided easily through
the use of the preconditioner described in 2, 10], which reduces the number of GMRES iterations
required to achieve convergence with 1% error (tol = 0.01 in Algorithm 1) to well below n for
large problems.
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Figure 1: Approximately computing the potentials at d evaluation points due to a cluster of d
charged panels in order d operations using a multipole expansion.

2.4 Multipole Acceleration

In the case of collocation, computing the dense matrix-vector product Pg is equivalent to
evaluating the potential at N collocation points, {1, ...,zx}, due to a charge density described by
Zi]\;l g;0;(z). It is possible to avoid forming P, and to substantially reduce the cost of computing
Pgq, using the fast multipole algorithm |11, 12]. The fast multipole algorithm uses a hierarchical
partitioning of the problem domain and careful application of multipole and local expansions to
accurately compute potentials at N points due to N charged particles in order N operations.

To understand how the fast multipole algorithm achieves this efficiency, consider again the
case where the expansion functions represent uniform distributions over flat panels and centroid
collocation is used to determine the coefficients of the expansion. Then evaluating the potential
due to the charge distribution on d panels at d centroid collocation points, or evaluation points,
requires d? operations. If the panels are in a cluster, then the cost of this calculation can be
reduced if some approximation is allowed. The potential due to the cluster of panels can be
represented by a truncated multipole expansion, and this expansion can used to compute the
potential at d evaluation points, as shown in Figure 1. Multipole expansions have the general
form
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where [ is the expansion order; r, # and ¢ are the spherical coordinates with respect to the
multipole expansion’s origin (usually the center of the charge cluster); Y,*(0, ¢)’s are the surface
spherical harmonics; and the M *’s are the multipole coefficients [13].

Multipole expansions can be used to efficiently evaluate the potential due to a cluster of charges
at any point where the distance between the evaluation point and the cluster’s center is signifi-
cantly larger than the radius of the cluster. A dual optimization is possible using local expansions,
as shown in Figure 2. That is, for a cluster of evaluation points, the potential due to charges
whose distances from the cluster’s center are significantly larger than the radius of the cluster
can be combined into a local expansion at the cluster’s center. Then, this local expansion can be
used to efficiently compute potentials at evaluation points in the cluster. A local expansion has

the form l
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where [ is the order of the expansion; 7, § and ¢ are the spherical coordinates of the evaluation
location with respect to the expansion’s center; and the L™’s are the local expansion coefficients.
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Figure 2: Approximately computing the potentials at a cluster of d evaluation points due to d
charged panels in order d operations using a local expansion.

The above examples make clear that multipole and local expansions can be used to improve
computational efficiency, at the cost of some accuracy, when a set of evaluation points are well-
separated from a set of panel charges, and one of the sets is clustered. The loss in accuracy
can be made arbitrary small by increasing the order of the multipole expansions. For a general
distribution of panels, nearby interactions should therefore be computed directly. This result can
then be summed with the contributions to the potential due to distant panels which, of course,
can be represented using multipole or local expansions. Direct evaluations may also used for small
groups of distant panels, as multipole and local expansions are inefficient unless they are used to
represent the effect of a large number of panels.

3 Galerkin Formulation

In this section, we describe the formulation of the galerkin approach to the multiple dielectric
problem.

We are still facing the same set of boundary constrains as given by equations (1) and (2) and
trying to solve them simultaneously, and we still use the same approach to discretize both the
conductor surfaces and dielectric interfaces as in the case of collocation, and still assume that on
each panel 7, the charge ¢; on that panel, is uniformly distributed. To summarize, we can write
the following expansion function to describe the charge distribution for both conductors surfaces
and dielectric interfaces,

o) = 3 Loi(o), (19)
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where o(z) is the charge density at point z in space, ¢; is the total charge on panel 4, a; is the
area of panel 4, §;(z) is one when z is in panel i, and zero otherwise. The set of §;(z)’s forms a
basis for the expansion. _

The potential at any point in space can be approximated by substituting equation (19) into
equation (1). We define the residual, denoted as R(z), as the difference between the exact solution
and the discretized solution, so the residual is
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The Galerkin condition requires that the expansion function to be orthogonal to the residual
R(z), which is also equivalent to have §;(z) to be orthogonal to R(z) for i = 1,2, ...,n.



We say that 6;(z) is orthogonal to R(z) if
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Thus, by evaluating the orthogonality equation (21) for ¢ = 1,2, ...,n, we form a similar equation
as in equation (4),

p(z;) = Paq1 + Piag2 + - + Pijgj + -+ + Pingn, - (22)

but now
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Substituting (22) into (2) and we get
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For close panel interactions, equation (23) can be evaluated with two dimensional Gaussian
quadrature in combination with the closed form expression of the inner integral [14, 15]. The
number of close panel interactions can be reduced by half by realizing the fact that the P;; = Fj;.

Since the inner integral of the expression (23) describes the potential at point z; due to panel
j, if panel i is far away from panel j, we can use local expansion (18) to approximate the inner
integral. Therefore,
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After switching the summations and integral, and taking the local expansion coefficient Ly’ out
of the integral,
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In the above equation, the integral part is actually the conjugate of the multipole expansion
coeficients for panel i, and therefore we have the following formula,



Figure 3: One plate discretized with 5x5 square panels.
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After writing P;; in'terms of multipole and local expansion coefficients, the galerkin approach
is easily incorporated into the multipole algorithm as described in sections2.4.

4 Preliminary results

To demonstrate the efficiency and accuracy of the Galerkin-based multipole-accelerated capaci-
tance extraction algorithm, the capacitances associated with several test problems were computed.
All the results were obtained using our Galerkin implementation of the algorithm in the program
FASTCAP?2, with the default 1% convergence tolerance (tol = 0.01 in Algorithm 1) and second-
order expansions (I =2 in (17) and (18)).

To demonstrate that using the Galerkin method produces more accurate capacitances for single
dielectric problems, consider the comparisons in graphs (4) and (6). These graphs compare the
self capacitance of a square plate (Fig. 3) and a cube (Fig. 5) calculated using collocation and
the Galerkin method. The Galerkin method is somewhat better for coarse discretizations. This
results agrees with [16].

The additional accuracy of the Galerkin method is much more pronounced in problems with
multiple dielectrics. Fig. 7 shows two concentric spheres. The inner sphere is a conducting
interface of radius 1 and outer sphere is a dielectric interface of radius 2. The outer sphere is cut
to expose the inner sphere. )

Fig. 8 shows the comparison of the sphere capacitance calculations with different permittivity
ratios (ep/€,). It can be seen that as the permittivity ratio gets larger, the solution computed by
collocation becomes quite inaccurate, but the solution computed with the galerkin is still quite
accurate.

As mentioned in Section 3, Gaussian quadrature is used to compute the Galerkin integrals for
nearby panels, and expansion inner products are used to compute the Galerkin integrals for panels
approximated by multipole expansions. To show that the approach is not much more expensive
than using collocation methods for large problems, we generated progressively larger problems by
replicating a sphere problem. The results, tabulated in Table (1), show that for large problems
the collocation method is only twenty percent slower than collocation, but as noted above, much
more accurate.
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Figure 4: The self capacitance of the square plate vs. number of panels.

Figure 5: A cube discretized square panels.

spheres panels Galerkin CPU Seconds Collocation CPU Seconds

1 1600 111.05 49.38

2 3200 275.18 145.93
3 4800 469.07 250.73
4 6400 737.740 639.960

Table 1: Comparison of CPU times for Galerkin and Collocation for problems with progressively
more spheres
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Figure 6: The self capacitance of a cube vs. number of panels.

Figure 7: The dielectric sphere example. Outer sphere is cut to expose the inner one.
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Conclusion

In this paper we described an efficient approach to using Galerkin methods in a multipole-
accelerated capacitance extraction program. We showed that the Galerkin method is twenty
percent more expensive than using collocation for a fixed discretization on large problems. In
addition, we showed that for problems with widely varying dielectric constants and coarse dis-
cretizations, the Galerkin method can be thirty times more accurate.
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