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Abstract

Mulitipole-accelerated surface-volume methods have
proved to be very efficient techniques for delay and
cross-talk simulation of three-dimensional integrated
circuit interconnect. However, 1o be efficiently com-
bined which transistor circuitry in ¢ SPICE-level sim-
ulation, reduced-order models which have accurate low-
frequency behavior must be constructed. Asymptotic
Waveform FEwvaluation (AWE) or Pade-via-Lanczos
(PVL) algorithms can not be used directly to construct
the reduced-order models from the surface-volume for-
mulation, because the formulation generates dense ma-
trices which are too expensive to factor. In this paper
we describe a two-level approach to efficiently generat-
ing reduced-order models with accurate low frequency
behavior. First, reduced-order models which match
Taylor series terms at s = oo are efficiently generated
from the surface-volume formulation using an Arnoldi
method, and then these fairly high-order models are
used to efficiently construct lower-order models which
match Taylor series terms at s = 0. Ezamples are
given to demonstrate the accuracy of the resultant low-
order model.

1 Introduction

When analyzing high-performance integrated cir-
cuit designs, it is well-known that the single lumped
resistor-capacitor model of interconnect is insuffi-
ciently accurate. It has been suggested [1] that rea-
sonably accurate electro-quasistatic, or transient in-
terconnect, simulations could be performed by com-
puting the time evolution of the electric field both in-
side and outside the conductors via a finite-difference
discretization of Laplace’s equation. More recently, a
mixed surface-volume approach [2] was introduced, in
which only the surfaces and the interior volume of the
conductors are discretized, thereby avoiding the large,
exterior domain mesh and computation. The capaci-
tive coupling among the boundary elements is dense,
but the computation of this dense interaction can be
multipole-accelerated [3, 4, 5] when an iterative ap-
proach is used to solve the linear system to yield the

solution at each timestep [2].

For such three-dimensional interconnect structures
to be included along with the actual devices, both lin-
ear and non-linear, in a SPICE-type circuit simula-
tor, it is necessary to construct low-order macromod-
els whose terminal behaviors essentially capture the
complicated 3-D field interactions among the inter-
connect. The Asymptotic Waveform Evaluation [6]
technique has been widely used to obtain reduced-
order models from the lumped-element model of the
interconnect, which result in sparse matrices that can
be factored to match low-frequency moments of the
transfer function. Very recently, a Pade-via-Lanczos
algorithm [7] was shown to be more numerically robust
process for computing the same reduced-order macro-
model. This is achieved by exploiting the connection
between the the Pade approximation and the Lanc-
zos bi-orthogonalization process, which avoids the ill-
conditioned problem of matching the moments explic-
itly.

For the reduced-order modeling of 3-D interconnect
using the surface-volume formulation, it is impracti-
cal to factor the dense interaction matrix directly. It-
erative solutions are more practical, especially when
the matrix-vector product compuatation can be ac-
celerated. In this paper, we show how to avoid the
dense linear system solution all together by matching
moments at infinite frequency, requiring only a small
number of matrix-vector products. The resulting low-
order model is represented by a small matrix, which
can be factored directly to match several moments at
zero frequency to further reduce the model order. The
final reduced-order model is shown to be an highly ac-
curate representation of the original system.

2 Background

In this section, we describe previous work on the
time-domain surface-volume formulation of the tran-
sient interconnect problem and the Arnoldi-based
model order reduction approach. The results recalled
below will be used in the subsequent sections to help
derive the nested model order reduction approach in
the frequency-domain.



2.1 The Surface-Volume Formulation

For the transient interconnect problem, the sys-
tem is assumed to be in the electro-quasistatic (EQS)
regime. The scalar potential v satisfies

z ¢S, (1)

which states that Laplace’s equation holds everywhere
except on conductor surfaces. Here S is the union of
all conductor surfaces. Therefore, the potential 1 is
related to the conductor surface charge density, p;,
through the superposition integral,
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Charge conservation [8] at the surface yields the con-
tinuity condition Métﬂ = internal(x) - Jea;ternal(x);
where Jinternal and Jegternar are the normal current
densities taken just inside and just outside the con-
ductor surface. The internal current obeys the consti-
tutive relation Jinternai(z) = —0'%%(:6), where n is the
outward normal to the surface S.

Combining (2) with charge conservation and
the current constitutive relation, and noting that
Jezternal = 0 for non-contact surfaces, we have
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We now break up the conductor surfaces into N
small tiles or panels. It is then assumed that on each
panel [, the potential 1);, its normal derivative % ;» and
the external current density Jf**, are all constants. A
collocation scheme [9], in which (3) is enforced at the
centroid in each of N panels, is used to generate a
system of N equations. The result is a dense N x N

linear system

- 471'1'%\11 = PV, + PJ*, (4)

where 7 = o /¢ is the dielectric relaxation time. W,
U, J¢ are N-vectors whose clements represent the
potential, its normal derivative, and the external cur-
rents on the N panels, respectively,. P € V%V isa
dense matrix whose elements are
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where 2, is the centroid of the k** panel, q; is the area
of the l;;, panel.

For each conductor in a given problem, if the po-
tential is known on the entire surface, Laplace’s equa-
tion can be solved for the interior domain via finite-
differences to yield ¥,, everywhere just inside the sur-
face. Let X be defined such that

XU =V, (6)

and applying X' implies solving the interior problems.
Using (6) in (4), and letting D = PX,

- 4%7%\1’ = DV + PJ*"t, (7)

Since D is singular [2], the steady-state voltage ¥

_is not uniquely specified by the external current J°*'.

Instead, (7) will be reformulated as a differential-
algebraic problem in Section 3, in which voltage
sources are assumed instead of current sources.

2.2 Order Reduction using Arnoldi Iter-
ations

Consider a linear, time-invariant system, such as a
large linear circuit or 3-D interconnect, which is de-
scribed by the system of first-order ordinary differen-
tial equations

x = Ax+ bu,

y = cTx. (8)
Here, the vector x represent the circuit variables or
the detailed internal voltages of the interconnect, the
matrix A represents the detailed interations among
internal elements, bu is the input excitation vector,
and y is the output of interest. The state-space repre-
sentation of (8) is

X sAX 4+ bU,
Y = Tx, (9)

where X, U, and Y denote the Laplace transforms of
X, u, and y, respectively. The transfer function H(s) =
Y (s)/U(s) is then

H(s) = cT(I— sA)"'b. (10)

In general, the size of the linear system can be of the
order of tens of thousands, which is much larger than
the number of input and output terminals, generally
of the order 10. It is thus impractical to include the
entire linear system (8) into the circuit simulator, such
as SPICE. Instead, an N-port reduced-order model is
needed which is simple enough to be included in a



circuit simulator and which is accurate enough from
the perspective of terminal currents and voltages, i.e.
matches the transfer function in (10).

It has been shown in [10] that an Arnoldi-based
orthogonalization process can be used to construct an
orthonormal basis for the Krylov subspace

Ki(A,b) = span{b, Ab,A%b ..., AK-1b}. (11)

After ¢ steps, the Arnoldi algorithm returns a set of
g orthonormal vectors, as the columns of the matrix
V, € ®7*¢, where m is the size of A, and typically
¢ € m. The reduced-order transfer function can then
be constructed as

H(s) = &T(d-sA)'b,
z T
A = VIAVgq=Hqg,
b = VIb=|blley,
eT = Ty, (12)

where Hq is ¢ x ¢ upper Hessenberg. The trans-
fer function of the reduced ¢*-order system (12) can
be obtained directly by using the eigen-decomposition

Hq = SqAqSq’, resulting in

Hs) =Y 1"_’“’;’/‘\16 (13)

The ¢**-order transfer function has been shown in [10]
to match (¢ — 2) derivatives, or moments, of the exact
transfer function in (10) at s = 0, the low-frequency
limit,

3 Algorithm

In this section, we describe an efficient algorithm
for computing a reduced-order model for the transient
interconnect problem which avoids solving large, dense
linear systems.

Because the matrix D in (7) is singular, we will
reformulate the problem into a differential-algebraic
(DAE) system. This is done by using voltage sources
instead of current sources, and then computing the
resulting ¢-port frequency-dependent admittance ma-
trix, which is then well-behaved near zero frequency.
Assume that M of the N total surface panels de-
scribed in Section 2.1 are connected to external volt-
age sources, whose potentials are thus known a priori.
The N unkowns in (7) are now the (N — M) float-
ing potentials and the M externally supplied currents

JE®'. The result is a system of differential equations
with algebraic constraints. In frequency domain, the
result is a system of equations

— P11 J% — D19y = (Dyy — sI)W,,  (14)

— Py JE® + (sI — Dg3)¥; = Dy .., (15)

where D1, Dys, Doy, Das are partitions of the D ma-
trix and Pyj, Po; are partitions of the P matrix. The
subscript 1 denotes panels in contact with voltage
sources and the subscript 2 denotes the free-floating
panels. Now let b € RM be a vector of ones and zeros
which selects a single input voltage source and effec-
tively grounding the other sources. Then ¥, = bu,
where u is the scalar input. Since the number of con-
tact panels is typically much smaller than that of float-
ing panels, P is a small matrix and can be inverted
to perform a block LU factorization

- PllJcem — Dlz\I’f = (dl -+ sds)u, (16)
(SI - A)‘I’f = (bl + sz)u, (17)

where dl = Dllb, d2 = —b, bl = Dzlb - P21P1_11d1,
bz = —lepl_lldz, and A = Dzz - P12P1_11D12.

It is now necessary to manipulate (17) into a form
suitable for model-order reduction. We first expand
¥, as a sum of two power series in (—;—), and then re-
combine terms of like powers to obtain the result (1)

¥, =byut (é) (I— G) A)_l vu,  (18)

where v = by + Aby. Let the transfer function be

defined as

e - T.(s)
u(s)

By combining (16), (18), and (19), we immediately
get

h(s) = (ko+ k1s) + (%) a (1— (%) A>_lv, (20)

in which the first term on the RHS can be computed
exactly cheaply. The second term is expensive to com-
pute since A is large and dense in our problem.

To match the moments of (20) at zero frequency
directly using AWE [6] or PVL [7] would require solv-
ing the dense system several times, which is pro-
hibitively expensive for large problems. We propose
here an efficient, two-level approach for constructing
a low-order model for the triplet [/, A,v]. In the first
stage, the Arnoldi iteration is used to generate an

h(s) = (19)



intermediate-order model [I; A, v'] by matching mo-
ments, or Taylor series terms, at s = co. Only a few
matrix-vector products with A are required here, and
this computation can be multipole-accelerated as in
[2]. Enough moments are generated to ensure that
the model also produces the exact solution at s = 0.
For the transient-interconnect, or 3-D distributed RC
problem, tenth-order models are adequate. In the sec-
ond stage, the intermediate model is further reduced
by moment-matching at s = 0. The matrix A’, typ-
ically 10 x 10, is inverted explicitly, and this inverse
is repeatedly applied to v’ to produce moments about
s = 0. Three moments generally give sufficient accu-
racy, and this final third-order model [I”, A", v"] can
be very efficiently incorporated in a SPICE-like circuit
simulator.

4 Preliminary Results

Figure 1: Four-port Bus Crossing Example

In this section we demonstrate the effectiveness of
two-level model-order reduction technique by using
the method to construct a reduced-order model for the
four-terminal bus-crossing example shown in Figure 1.
Each conductor is bum long and has a lum x lpym
cross-section. The separation between them is lum.
It is assumed that the conductors are polysilicon, with
p = .01Q — cm, and ¢, = 12 everywhere, which imply
7 =2 x 107, The conductor surfaces are discretized

into a total of 396 square panels of equal area, 36 of
which belong to the four end-faces, and each face is
connected to an independent voltage source. The volt-
age source at one of the end-faces is a unit-ramp with a
rise-time of 507, or 1 picosecond, and the other three
end-faces are grounded. The resulting current flow-
ing in each of the four terminals is computed from
the frequency-domain transfer function, which can be
computed exactly or from a reduced-order model. The
reduced-order model obtained by matching 10 mo-
ments at infinite frequency is seen to produce the exact
low-frequency limits of the exact transfer function. A
further reduction of this 10°* order model to a 374 or-
der model by matching 3 moments at zero-frequency
is seen to produce virtually the identical time-domain
response as the 10*"-order model. This is shown in
Figures 2, 3. The exact transfer function was also com-
puted by explicit eigen-decomposition of the 360 x 360
matrix A, and the absolute error produced by the 37¢-
order model in the time-domain shown in Figure 4.
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Figure 2: I; (unit=5 mA) vs. time (unit=2 x 10~*s)

5 Conclusions

In this paper we described a two-level approach
to efficiently generating accurate low-order models
directly from three-dimensional interconnect. First,
a multipole-accelerated Arnoldi method was used to
generate tenth-order models by matching Taylor se-
ries terms in the transfer function at s = oo. Then,
the tenth-order models where used to generate three-
order models which matched Taylor series terms in the
transfer function at s = 0. Preliminary results from a
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Figure 3: I, (unit=5 mA) vs. time (unit=2x 1071*s)

cross-over example was examined to demonstrate the
accuracy of the two-level approach. In particular, it
was shown that the generated third-order model pro-
duced ramp response which were nearly indistinguish-
able from the exact ramp responses.

Future work is to examine a broader collection of
examples, and to gain a better understanding of how
to automatically pick the orders in each level of the
algorithm.
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