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Abstract

Reduced-order modeling techniques are now com-
monly used to efficiently simulate circuits combined
- with interconnect, but generating reduced-order mod-
els from realistic 3-D structures has received less at-
tention. In this paper we describe a Krylov-subspace
based method for deriving reduced-order models di-
rectly from the 3-D magnetoquasistatic analysis pro-
gram FAsTHENRY. This new approach is no more
expensive than computing an impedance matrix at a
single frequency.

1 Introduction

The dense three-dimensional packaging used in
compact electronic systems may produce magnetic in-
teractions which interfere with system performance.
Such effects are difficult to simulate because they oc-
cur only as a result of an interaction between the
field distribution in a complicated geometry of con-
ductors, and the circuitry connected to those conduc-
tors. Recent work on reduced-order modeling tech-
niques have made it possible to efficiently simulate cir-
cuits combined with interconnect [1], but generating
the reduced-order models from realistic 3-D structures
has received less attention. The most commonly used
approach to generating reduced-order models is to use
a 3-D field solver to compute impedance matrices over
a range of frequencies, and then use a rational poly-
nomial fitting algorithm [2]. This approach has been
shown to produce accurate frequency-domain reduced-
order models which are directly amenable to inclusion
into a standard circuit simulator [3].

In order to use frequency-domain fitting as de-
scribed above, it is necessary to use the field solver to
compute impedance matrices at dozens of frequency
points, and this is computationally expensive. It is

possible to derive a more efficient approach by ex-
ploiting the fact that 3-D field solvers typically use
Krylov-subspace based iterative methods. These iter-
ative methods can provide more than just a solution
at a particular frequency, they can be used to directly
construct reduced-order models [4].

In this paper, we present a numerically robust and
accurate approach for computing reduced-order mod-
els of magnetoquasistatic coupling in complicated 3-
D structures. The approach is based on using the
multipole-accelerated program FASTHENRY [5], com-
bined with the Krylov-subspace algorithm Arnoldi [6].
We begin, in section 2, by describing the mesh-
formulation approach of FASTHENRY. In section 3,
the standard Padé approximation approach as well as
an Arnoldi-based approach are derived. In section 4
results are presented comparing the accuracy of the
two model-order reduction methods on an RLC fil-
ter and a package example. Finally, in section 5, we
present conclusions and acknowledgments.

2 The Mesh Formulation Approach

The frequency dependent resistance and induc-
tance matrices describing the terminal behavior of a
set of conductors can be rapidly computed with the
multipole-accelerated mesh-formulation approach as
implemented in FASTHENRY [5]. To describe the ap-
proach, consider that each conductor is approximated
as piecewise-straight sections. The volume of each
straight section is then discretized into a collection
of parallel thin filaments through which current is as-
sumed to flow uniformly.

To derive a system of equations for the filament cur-
rents, we start by assuming the system is in sinusoidal
steady-state and following the partial inductance ap-
proach in [7], the branch current phasors can be re-



lated to branch voltage phasors by
Vi =(R+jwLl)I, = ZI, (1)

where V3, I, € C°, b is the number of branches
(number of current filaments), and w is excitation fre-
quency. The entries of the diagonal matrix R € R?*?
represent the DC resistance of each current filament,
and L € R®*? is the dense matrix of partial induc-
tances. :

Kirchhoff’s voltage law, which implies that the sum
of branch voltages around each mesh (a mesh is any
loop of branches in the graph which does not enclose
any other branches) in the network is represented by

MV,=V, MTI, =1, (2)
where V; € C™ is the mostly zero vector of source
branch voltages, I, € C™ is the vector of mesh cur-
rents, M € R™*? js the mesh matrix. Combining (2)
and (1) yields

MzZM*1, =V, (3)

The complex admittance matrix which describes
the external terminal behavior of a t-conductor sys-
tem, denoted ¥; = Z; !, can by derived from (3) by
noting that ,
I, =Y.V, 4

I: and V; are the terminal source currents and voltages
of the ¢-conductor system, which are related to the
mesh quantities by I; = NTIm, Vs = NV, where
N € C™** is a terminal incidence matrix that is easily
derived when the mesh equations are formulated.

Hence, to compute the i** column of ¥;, solve (3)
with a V, whose only nonzero entry corresponds to
Vi,, and then extract the entries of I,, associated
with the source branches.

To solve (3) by Gaussian Elimination would re-
quire O(m?) operations. Instead, programs like Fas-
THENRY solve (3) using a multipole-accelerated GM-
RES iterative algorithm [6], which requires O(b) oper-
ations. The complexity is reduced to O(m?) by us-
ing GMRES instead of Gaussian elimination, and then
down to O(b) by using a hierarchical multipole algo-
rithm [8]. '

3 Reduced-Order Modeling

3.1 State-Space Formulation

As mentioned in the introduction, to use frequency-
domain fitting to generate a reduced-order model for

the frequency-dependent entries of Y, it would be nec-
essary to construct and solve (3) for dozens of values
of w. To derive a more efficient approach, consider
forming the state-space representation of (3). To that
end, expand Z into R+ sL to get

s(MLM™)I,, = —(MRM™)I,, + NV, 5
I, = NTI,. (®)

With the representation in (5), the (i, ;)-th entry of
the complex admittance matrix computed using a set
of terminal voltages whose only nonzero entry corre-
sponds to V;;, and written as

I,
V.,

J

= xi,j(s) =c’ (I- SA)_I b (6)

where A = —(MR]ViTT)“l(MLMT) and b =
(MRMT)_le and ¢ = N;, where IN; indicates the
i column of N. It is possible to derive extensions
of all the approximations methods mentioned in this
paper to directly compute approximations to the sys-
tem in (5) directly, that is a system with ¢ inputs and
t outputs. In the remainder however, we will for the
most part restrict our discussion to single-input single-
output systems characterized by a transfer function
such as (6).

The standard approach to derive a reduced-order
model of (6) is to compute a Padé approximation [9].

" To that end note that

Y, (s) = T(I—sA)_lb:imksk. (7
k=0

where my, = ¢T A*b is the k' moment of the transfer
function. A Padé approximation of ¢** order is defined
as the rational function -

be—157"1 + -+ bys + bg ®)
ags? +ag_189" 1+ tas+1

GL(s) =

whose coefficients are selected to match the first 2¢—1
moments of the transfer function.

Padé approximates can be computed using direct
evaluation of the moments, though the approach is ill-
conditioned, because the computation of the moments
relies on a power iteration with the system matrix A.
Instead, Lanczos-style algorithms can be used [4], that
are numerically more robust.

3.2 Arnoldi-based Approximations

An alternative approach, which robustly gener-
ates a somewhat different approximation, can be de-



Algorithm 1 (Arnoldi process)

arnoldi(input A, b,¢; output
V'q; Vg+1, H«I? hj+1,j)

vy = b/[[b|l
for (j=1; j<=¢q; j++) {
w = Av;

for (1 = 1; i <= j7—~1; i ++4) {

th = wTvi
o w=w—hv; -
}
hit1s = |lwll
if (hj;1;'=0) {
Vjt1 = w/hjy,

}

V, =0 v,]
Hq:(hi,j)) Z,le,,q

rived using an Arnoldi process as in the GMRES al-
gorithm. The idea behind this approach is simi-
lar to that of [4], and is that of selecting an or-
thonormal basis for the Krylov subspace Ki(A,b) =
span{b, Ab, A®b, ..., A¥=1b}. The Arnoldi algorithm
is a better conditioned process than direct evaluation
of the moments because it generates an orthogonal
set of vectors which span A¥b,k =0, ..., ¢g. Note that
the computation of b is inexpensive since M RM7T
is sparse. Also, because L is dense, the dominant
cost of each step of an Arnoldi process is a matrix-
vector product, Az = -(MRMT)~"'(MLMT)z. In
practice, the matrix-vector cost dominates even when
the dense part, (M LM7 )z, is rapidly computed with
a hierarchical multipole-algorithm as in FASTHENRY.
The basic outline of the Arnoldi process is given in
Algorithm 1.

After ¢ steps, the Arnoldi algorithm returns a set of
g A-orthonormal vectors, as the columns of the matrix
V, € R™X¢ and a ¢ x ¢ upper Hessenberg matrix
H, whose entries are the scalars h;; generated by
Algorithm 1. These two matrices satisfy the following
relationship:

AV, = ViH + hji1,jv441€] (9)

where e, is the ¢** unit vector in R™*™,
From (9), it can easily be seen that after ¢ steps of

an Arnoldi process, for k < ¢ — 1,
A"b = |62 A Ve = bV, Her.  (10)

With this relation, the moments can be related to H,
by
my = cT A% = ||bll2cT V, H e, (11)

and so the ¢'* order Arnoldi-based approximation to
Y;; can be written as

G (s) = IBll2cT Vo (I —sHy) ler  (12)

corresponding to the state-space realization using the
triplet [A, by, cx] = [Hq, ei, ||b”2¥TC]

Using the eigendecomposition H, = S,A,S q_l, the
expression for the approxjmating rational function be-
comes

GA(s) = [[b]l2 i PP (13)
! k=0 §— Dk

where p = ——cTVqquq"l, v = S;lel, and p =
diag(A;l) are the poles of the approximation.

Note that the rational function G‘:(s) is not a Padé
approximation as it has ¢ poles, but only matches ¢ —2
moments, since (10) is only valid for k < ¢ — 1. How-
ever, computing the rational function requires only ¢
matrix-vector products, roughly half the number of
matrix-vector products required to compute a ¢** or-
der Padé approximate which matches 2¢ — 1 moments.
For the same computational effort required to compute
the ¢** order Padé approximant Gf (s) one could ob-

tain qu(s), which has 2¢ poles and matches 2¢ — 2
moments. The extra number of poles presumably im-
plies more accuracy in the approximation, which is ob-
tained at no extra cost. ki is not clear whether the loss
of moments matched is of any concern. The moments
are local properties or values of a complex function but
the information sought with these approximations is
more global in nature.

The Arnoldi-based approximation method, despite
this “loss” of matched moments terms of matching
moments is quite accurate on a global sense. Further-
more, the Arnoldi-based method, as described, has a
very interesting property when used to obtain the full
matrix system transfer function of a #-terminal con-
ductor system. In that situation end one would run
the Arnoldi process t times, each one with a different
column of the b matrix and notice that, in each run,
the derivation leading to (10) is still valid. The model
then obtained via (12) would in that case consist of a
full column of the complex admittance matrix, given
that the full ¢ matrix, could now be used. Therefore



each run of the Arnoldi method would produce one
column of the admittance transfer function. If a Padé
approximation were sought for this system, one would
have to run the robust Padé-via-Lanczos algorithm ¢2
times.

3.3 Bounds on the approximation error

4 Experimental Results

In the preceding section, we described algorithms to
compute Padé approximations of order ¢ and Arnoldi-
based models of orders ¢ and 2¢. In this section we
compare the accuracy of these three approximations
first for a difficult to model RLC filter example, and
then when used to obtain reduced-order models for
the frequency-dependent admittance for a small set of
package pins. This reduced-order model is then used
to investigate crosstalk between the package pins.

4.1 Filter Example

Figure 1 shows the Bode plots of the the 7t or-
der Padé and the 7" and 14** order Arnoldi-based
approximations to a 14'*-order RLC filter’s transfer
function. Also shown in the picture is the exact trans-
fer function. For the low frequency range all approxi-
mations are indistinguishable. However, for higher fre-
quencies, as is clear from the figure, the 7** order Padé
and the 7' order Arnoldi-based approximation have
comparable accuracy, while the 14** order Arnoldi-
based approximation, which requires the same number
of matrix-vector products as the 7**-order Padé, is in-
distinguishable from the exact transfer function and
thus much more accurate. This last observation is un-
surprising, in exact arithmetic the Arnoldi-based al-
gorithm converges to the exact transfer function of an
n'® order system in n iterations. It should be noted,
however, that any 14** order approximation will be
significantly more expensive to use in a circuit simula-
tor than a T** order approximation. Nevertheless the
ability to compute higher orders of approximation at
no extra cost remains an interesting property of the
Arnoldi-based approximation method.

4.2 Package Example

Consider the small set of package pins. as shown in
Figure 2. To compute the resistance and inductance
matrices with FASTHENRY, the pins were discretized
into three filaments along their height and four along
their length producing a system of size m = 887. This
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Figure 1. Bode plots for the approximations G¥ (s),
G7(s) and G{4(s) to the RLC filter’s transfer func- -
tion.

Figure 2: Seven pins of a cerquad pin package.

allows modeling of changes in resistance and induc-
tance due to skin and proximity effects.

Figure 3 shows the Bode plots of the 5t* order Padé
and the 5" and 10®* order Arnoldi-based approxima-
tions to the coupled admittance transfer function be-
tween pins 1 and 2. Also shown in the picture is the
exact admittance transfer function obtained by eigen-
decomposition of the full system. As can be seen from
the plot, all three approximations seem equally accu-
rate and are virtually indistinguishable from the full
transfer function.

To investigate the crosstalk effects between the
package pins in Fig 2, the configuration shown in
Fig. 4 is used were it was assumed that the five mid-
dle lines carry output signals from the chip and the
two outer pins carry power and ground. The signals
are driven and received with cMos inverters which are



Bode plots for mutual admittance between pins 1 and 2
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Figure 3: Bode plots for the approximations G¥ (s),
G% (s) and G2(s) to the coupled admittance transfer
function between pins 1 and 2.

capable of driving a large current to compensate for
the impedance of the package pins. The capacitance
is assumed to be 8pF and the interconnect from the
end of pin to the receiver is modelled with a capac-
itance of 5pF. A 0.1uF decoupling capacitor is con-
nected between the driver’s power and ground to min-
imize supply fluctuations. The frequency dependence
of each element in the admittance matrix is modeled
via Arnoldi-based approximations of 5** order whose
error is below 5%. These models are then incorpo-
rated into SPICE3 as a frequency-dependent voltage-
controlled current source vccs. As a sample time do-
main simulation, imagine that at time ¢, = 4ns the
signal on pin 4 of Fig.4 is to switch from high to low
and pins 2, 3,5, and 6 are to switch from low to high
but that due to delay on chip, pins 2, 3, 5, and 6 switch
at t; = bns. In this case, significant current will sud-
denly pass through the late pins while pin 4 is in tran-
sition. Due to crosstalk, this large transient of current
has significant effects on the input of the receiver on
pin 4, as shown in Fig. 5. Note that the input does not
rise monotonically. Fig. 5 also shows that the bump
in the waveform is carried through to the output of
receiver, as a large glitch.

5 Conclusions

In this paper we described an accurate approach
for using the iterative method in the FASTHENRY pro-
gram to compute reduced-order models of frequency-
dependent inductance matrices associated with com-
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Figure 4: General configuration for the connection be-
tween received and driver chips. All the circuit ele-
ments inside the same chip share that chip’s power
and ground. :
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Figure 5: Results of the timing simulation of a receiver
pin in the presence of changes on other adjacent pins.
Pin 4’s receiver when four adjacent pins switch lns
after pin 4.



plicated 3-D structures. The key advantage of this
method is that it is no more expensive than comput-
ing the inductance matrix at a single frequency. We
also compared two approaches to the model-order re-
duction, the reformulated Padé-based approach using
the Lanczos algorithm (PVL) and an Arnoldi-based
approach using an algorithm based on the Arnoldi pro-
cess. We showed that the Arnoldi-based algorithm can
have advantages over PVL in certain applications. In
particular, in the Arnoldi-based algorithm, each set

of iterations produces an entire column of the induc- -

tance matrix rather than a single entry, and if matrix-
vector product costs dominate then the Arnoldi-based
algorithm produces a better approximation for a given
amount of work. We should note that block gener-
alizations of these algorithm can be used to directly
obtain matrix transfer function for multi-terminal sys-
tems. '
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