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1 Introduction

The electrical performance of integrated-circuit packaging is becoming progessively harder to predict
because advanced packaging techniques are generating complicated three-dimensional interconnect structures.
Such structures are nearly impossible to analyze analytically, particularly when trying to evaluate signal
integrity, and designers are becomlng more reliant on accurate computer simulation tools. Signal integrity
problems, like ground-plane noise, are particular hard to simulate because so much of the problem geometry
must be included to achieve accurate results.

Multipole and precorrected-FFT accelerated Method-of-Moments techniques [1, 3 2, 4, 8] are one of the
few techniques that are fast enough to analyze signal integrity problems, so optimizing these techniques seem
worthwhile even if the resulting optimizations are somewhat incremental. In this paper we describe two
optimizations to accelerated method-of-moments simulation, the first is an even better preconditioner than
presented in [4] and the second is several optimizations of the FFT-based convolution used in precorrected-FFT
methods [8]. :

2 A New Preconditioner for Efficient Inductance Extraction

Iterative algorithms used to solve the dense systems of equations resulting from the integral equations of
magnetoquasistatic analysis rely on preconditioning to insure fast convergence. The preconditioning matrix
must be a good approximation to the inverse of the original system and be incxpensive to compute.

Various approaches to preconditioning for magnetoquasistatic analysis have been explored in [4, 5] which
show that since the original system is positive definite, so must the preconditioner. The dominant technique
presented involves deriving a positive definite sparsification of the partial inductance matrix.

Recently, a method has been proposed for stably approximating the partial inductance matrix to any
degree of sparsification [6]. The central idea of this approach is to assurne that the partial element conductor
currents return at some finite and constant radius from their origin rather than from infinity. The coupling
inductances within the “shells” of return current are shifted, while those outside become zero.

By choosing the radius small enough, the resulting matrix will be sparse enough that this shell approach
can be used as a preconditioner. Conductor segments which are only partially outside the shell can be treated
approximately. Table 1 compares using block-diagonal preconditioners to the shell preconditioner for various
radii. Clearly, the shell preconditioner converges in many fewer iterations, however the overall execution speed
up is not as dramatic since the preconditioner is more dense than the block-diagonal matrix.

It may be possible to improve the results for the small radii preconditioners by more accurately treating
the conductor segments that are partially outside the current shells.

3 An Optimization for Precorrected-FFT Methods

When an iterative algorithm is used to solve the Method-of-Moments matrices associated with integral
formulations of electrostatic and magnetoquasistatic analysis, the major cost of the algorithm is computing
the dense matrix-vector products. A variety of sparsification techniques have been applied to rapidly compute
the matrix-vector products, such as fast multipole algorithms [3] or precorrected-FFT methods [8].

The precorrected-FFT approach to computing distant interactions is to exploit the fact that evaluation
points distant from a cube can be accurately computed by representing the given cube’s charge distribution
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[ Preconditioner type | # iterations | non-zeros in precond | total CPU time |

Block diagonal-of-L 1537 4613 - 1187
Diagonal | cube-block 774 101671 729
r=10.25 643 24829 590

Shell r=05 474 184295 565
Current | r=0.75 389 326579 595
r=1.0 349 432121 656

Table 1: Results of using various preconditioners to solve for the admittance of a coarse discretization of a 35
pin package at a high frequency. Cube-block refers to dividing space into cubes whose side lengths are roughly
1/8th of the package width. The radii are relative to the cube side length,

| Example [ Grid Order | Setup | Solve | CPU | Memory | Product |

via p=2 0.58 0.22 1028 |0.28 0.078
p=3 (.57 0.61 | 0.61 | 0.37 0.23
wovendxh | p =2 0.16 0.19 | 0.19 | 0.20 0.037
r=3 0.87 043 | 0,45 : 0.48 0.22
cube p=2 0.14 0.31 }0.21 | 0.22 0.046
p=3 0.42 0.34 | 0.38 | 0.32 0.12
bus3xf p=2 0.29 0.10 | 0.12 | 0.18 0.019
p=3 0.30 0.24 |0.26 | 0.2085 0.052
bus3x8 p=2 0.19 0.16 | 0.16 | 0.17 0.027
p=3 0.50 0.26 1027 |0.27 0.074

Table 2: Comparison of FASTCAP and precorrected-FFT codes. Table entries are ratios of precortected-
FFT/FASTCAP times.

using a small number of weighted point charges. If the point charges all lie on a uniform grid, then the Fast
Fourier Transform (FFT) can be used to compute the potential at these grid points due to the grid charges.
Specifically, Pq may be approximated in order nlogn operations in four steps: (1) project the panel charges
onto a uniform grid of point charges, (2) compute the grid potentials due to grid charges, which is a three-
dimensional convolution, using an FFT, (3) interpolate the grid potentials onto the panels, and (4) directly
compute nearby interactions.

The precorrected-FFT method uses less memory and is much faster than even the optimized fast multipole
algorithms used in programs like FASTCAP [2). However, to achieve the best speed from precorrected-FFT
methods, the three-dimensional convolution associated with computing grid charges from grid potentials must
be optimized. For the results presented in [8], the three-dimensional convolution was computed using zero-
padding combined with the gencral three-dimensional FFT routines from [7]. The convolution can be made
nearly five times faster by combining three tricks specific to our problem.

The first trick for optimizing the use of the FFT to compute the 3-D convolution is to exploit the fact
that the FFT’s shuffle exchange and reexchange can be avoided when performing convolution. The second
trick is to exploit the fact that computing direct convolution requires that the grid be zero-padded by a factor
of two in each dimension before performing the transform. If the 3-D FFT is computed using a sequence of
one-dimensional FFTs, then it is possible to avoid nearly half the one-dimensional transforms by ignoring lines
of zeros. Finally, if the one-dimensional FFTs are reorganized within each dimension, then it is possible to
insure better locality in data accesses which can improve workstation performance by nearly a factor of two
on large problems.

In the following table, we compare the performance of the precorrected-FFT method to the fast multipole
algorithm used in the FASTCAP program. We used second-order multipole expansions with FASTCAP and
compared it with both the 2 x 2 x 2 and 3 x 3 x 3 grid in the precorrected-FFT method. The 2 x 2 x 2 grid
results were occasionally slightly less accurate than the FASTCAP results, but the 3x 3 x 3 grid results were
almost always much more accurate.

With the optimized convolution, it was possible to compute all the coupling capacitances for one of the
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Figure 1: Three dimensional .Woven Buss from Table 2 (actual discretization is 82,000 panels) and 35 pins of
a cerquad package from Table 1.

interior conductors in the following woven buss problem. What is most impressive about the results is that the
problem was discretized into nearly 100,000 panels but the matrix solution time was less than three minutes.

4 Conclusions

In this paper we presented two optimizations to accelerated Method-of-Moments algorithms. Although
neither of the results provides astounding preformance improvement, we hope thatr the results are of interest
because of the importance of having faster 3-D analysis techniques.
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