[EEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS. VOL. 12, NO. 6. JUNE 1993 817

Computation of Drain and Substrate Currents in
Ultra-Short-Channel nMOSFET’s Using the

Hydrodynamic Model

Khalid Rahmat, Student Member, IEEE, Jacob White, Member, IEEE, and Dimitri A. Antoniadis, Fellow, IEEE

Abstract—The goal of this work was to develop a robust and
efficient numerical solution of the hydrodynamic model, which
solves the energy balance equation, and to compare predictions
of this model, using one set of parameters, with experimental
nMOSFET characteristics for a range of channel lengths down
to ultrashort channels. The substrate current was calculated by
direct integration of the energy distribution function, which
uses the computed temperature to obtain the number of high
energy electrons. The drain current calculated using this
method is accurate for a range of channel lengths and biases,
and correctly predicts the observed enhanced transconduct-
ance for ultrashort-channel devices. The substrate current
matches the experimental data for a range of channel lengths
and biases above threshold with one set of physically reason-
able parameters.

I. INTRODUCTION

IN this paper we use the basic formulation of [1] and
keep the full energy balance equation but neglect the
nonlinear convective term (v-Vv) in the momentum con-
servation equation. We then modify the discretization of
the energy balance equation to take into account explicitly
the variation of the thermal conductivity with carrier con-
centration. This scheme is shown to be numerically more
stable than the schemes proposed in [2] and [3], which
produce instabilities when used with coarse meshes. We
have implemented the hydrodynamic model for one car-
rier in steady state in a two-dimensional device simulator,
and the simulated device characteristics match well with
the experimental data for MOSFET’s with 0.16-0.90-pm
channel lengths. This was achieved by using one set of
model parameters for all channel lengths and with the
simulator calibrated at 0.90 pm [4].

We also present the results of a simple method to cal-
culate the substrate current based on computed electron
temperatures. The method predicts quite well the experi-
mentally observed substrate current for MOSFET’s over
a range of channel lengths, but only for transistor biases

Manuscript received May 22, 1991; revised June 5, 1992. This work
was supported by the Defense Advanced Research Projects Agency under
contracts N00014-87-K-825 and MDA972-88-K-008, and grants from
IBM. This paper was recommended by Associate Editor D. Scharfetter.

The authors are with the Research Laboratory of Electronics and the
Microsystems Technology Laboratory, Department of Electrical Engineer-
ing and Computer Science, Massachusetts Institute of Technology, Cam-
bridge, MA 02139.

IEEE Log Number 9206843.

significantly above threshold. Because the substrate cur-
rent is a sensitive measure of the hot carrier population,
accurate prediction of the substrate current provides an
independent check on the validity of the computed solu-
tion to the energy equation.

II. PuysicaL MODEL

Under suitable assumptions, the conservation laws for
electron charge, momentum, and energy, fora single car-
rier, along with Poisson’s equation can be written in sim-
plified form [1] as
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In the preceding equations, n is the electron concentra-
tion, J, is the electron current, and w is the average elec-
tron energy which is given by

w = %mffvi + %kBT %)

where v, is the electron velocity, m is the effective elec-
tron mass, T is the electron temperature, and kg is Boltz-
mann’s constant. In (2), 7,, D,, and p, are the electron
momentum relaxation time, diffusion constant, and mo-
bility. In (3), 7, &, and U are the energy relaxation time,
thermal conductivity, and the net recombination rate per
unit volume for the electrons. wy is the thermal energy of
the electrons in equilibrium and equals 3kpT,, where Ty is
the lattice temperature. In Poisson’s equation, @), Eis
the electric field, g is the absolute value of the electronic
charge, and e the permittivity of silicon. ¥ and ¢, are the
electrostatic potential and hole quasi-Fermi level, respec-
tively. The hole quasi-Fermi level is assumed to be con-
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stant and is determined by the biases on the contacts. Fi-
nally, the electrostatic potential and electric field E are
related by E = — V.

A. Relaxation Time Models

Given mobility, thermal conductivity, and energy re-
laxation time models, the preceding set of equations can
be solved to determine current and temperature distribu-
tions in MOS devices. We used the standard Weidemann-—
Franz law thermal conductivity model, and a mobility
model that is a function of doping and vertical field near
the device surface (see Appendix), and inversely propor-
tional to temperature [5]. For the energy relaxation time
we used a constant value of 0.1 ps. It should be noted that
this combination of a constant energy relaxation time and
a mobility inversely proportional to temperature leads to
two inconsistencies in the homogeneous case. To see this,
consider that simplifying (1)-(5) assuming spatial homo-
geneity leads to a relationship between electric field and
temperature given by

EHIGRGIE
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where it is assumed that 3mp? << 3kpT. It then follows

that, for high fields, the saturation velocity, u |E], is given

by
(24 u_>/ @
2 g 7,

where p,o is often referred to as the low field mobility,
but is, in fact, the mobility ignoring temperature effects.

Both Monte Carlo and experimental data indicate that
the saturation velocity is independent of doping and sur-
face effects; therefore, (7) suggests that 7, should be pro-
portional to u,, and not constant. However, the data also
indicate that the electric field versus temperature relation
is independent of doping at high fields, and therefore (6)
suggests 7, is inversely proportional to u,, and not con-
stant. In [6], a modified model for mobility dependence
on temperature was used which resolves this contradic-
tion.

As most of the current flow in an MOS device is near
the surface under highly inhomogeneous conditions, it is
not clear that homogeneous considerations are of primary
importance. In the bulk, the low field mobility is strongly
dependent on the doping, whereas at the surface the low
field mobility is essentially independent of the doping and
completely determined by surface effects. It then follows
from (6) and (7) that near the surface the saturation ve-
locity and the electric field versus temperature relation-
ship are independent of doping, which is consistent with
Monte Carlo results.

An example of the impact of surface effects can be seen
in the choice of the relaxation time. We found that an
energy relaxation time of 0.1 ps yielded the best match to
measured data over a range of channel lengths, and this
value is much lower than the 0.2-0.4 ps predicted from

Monte Carlo simulations of bulk silicon. The justification
for the lower energy relaxation time is that it models the
smaller mean free path for electrons near the surface,
which has been observed experimentally [13]. The situa-
tion is not changed significantly when we use a mobility
model which resolves the above-mentioned inconsis-
tencies. Both in our own experiments with such a mobility
model, and those reported in [6], best results were
achieved with an energy relaxation time much lower than
that determined from bulk simulations.

III. DISCRETIZATION SCHEME

In the discretization scheme used in [3], which is an
extension of the work in [2], the problem is cast in terms
of an energy flow density, S, defined by

—kVT — <§kBT> b. (8)
2 q

Thus the energy equation can be written as
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One advantage of this formulation is that a Scharfetter-
Gummel or exponentially fit discretization scheme can be
applied. This can be seen by projecting S onto an edge
between nodes i and j,

Treating S;;, J;;, and « as constant along the edge, (10) can
be integrated analytically to obtain.

(10)

Kjj
Sy = = 7 (BT, ~ B-pT], (1)
i
where
5 J.d;
L= = 2 12
Wjj 2 Bq Kij ( )

and B(x) = x/(¢* — 1) is the Bernoulli function, «; is an
average thermal conductivity between the two nodes, and
d;; is the distance between nodes i and j.

A. Temperature Instabilities

The preceding discretization technique was imple-
mented in a two-dimensional finite-box-based device
simulator and used to simulate a short-channel MOSFET.
To solve the nonlinear algebraic problem generated by the
discretization, Newton’s method was used combined with
sparse Gaussian elimination to solve for the Newton up-
dates. We observed that the temperatures computed using
a coarse rectangular mesh with the discretization method
described earlier exhibited numerical instabilities in cer-
tain regions of the device. In particular, the computed
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temperatures oscillated in space, occasionally dipping be-
low the lattice temperature. An example of this anomalous
behavior is shown in Fig. 1. Although such instabilities
can be eliminated by refining the mesh, this may not al-
ways be practical as the instability may artificially make
the discretized problem more nonlinear, which in turn
worsens the convergence of any iterative nonlinear sol-
ver, such as Newton’s method. Without a converged so-
lution, it may not be obvious where to add additional mesh
points.

The source of this numerical instability is that the dis-
cretization of the energy equation in (11) and (12) inap-
propriately assumes that the thermal conductivity is a con-
stant. To see why such an approximation leads to coarse-
grid instability, consider computing the divergence of (8)
assuming J,, but not «, is constant. The result is

—kVIT — <V;< + <§k3>‘-]—">VT. (13)
27/4q

To be stable for coarse grids, a method for discretizing
(13) must upwind the V T term, i.e., discretize V T in the
upwind direction given by the sign of

s ()

Equation (12) does not include the Vk term, therefore, the
resulting Scharfetter-Gummel scheme will not upwind
correctly unless the V term can be ignored. This is not
the case, as can be seen if we write the thermal conduc-
tivity as

(14)

5
k=1{3 + ¢ | kgDyon, (15)
where ¢ is a constant that depends on the dominant scat-
tering mechanism [S], and substitute this relation in (14)

to yield
5 2 3
(3) ((1+3¢)pamn+%)

Clearly, (1 + %¢) D, Vn and J,/q will be comparable
when diffusion contributes significantly to current flow.
In particular, this implies that the V7 term in (13) may
not be discretized in the upwind direction when Vn is
large. Our numerical experiments verify this, as the tem-
peratures computed with the preceding approach oscillate
in device regions where the electron concentration gra-
dients are large.

(16)

B. Modified Energy Discretization

In this section, we develop a better stabilized discreti-
zation scheme for the energy equation. The convective

term in (2)
q n

is neglected explicitly, which makes it possible to substi-
tute the expressions for the thermal conductivity, «, and

amn
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Fig. 1. Simulated electron temperature for a MOSFET with L.z = 0.16
um, along the device at a depth of 0.15 um from the oxide interface using
the discretization method described by (10) (dash) and (20) (solid).

electron current density, J,, into the energy equation as
suggested in [7]. The justification for neglecting the con-
vective term is that in MOSFET’s where current flow is
by majority carriers, this term is generally small com-
pared with J,, in regions where the electron concentration
is large.

Neglecting the convective term, (2) becomes

kgT,
Mun[rVn + nV (r — u)]
q

J.=q (18)
where r = T/T, is the electron temperature normalized
by the lattice temperature and u is the normalized electro-
static potential given by u = [q/(ksTo)]¥. Note (18) is
identical to (6.4) in [2], once the convective term is ne-
glected. The temperature dependence of the mobility
model can be included explicitly into the current equa-
tion, as in

D""[rVn +nV (r — w).
p

J.=q 19
Substituting both the expression for the current (19) and
the thermal conductivity (15) into the energy flux equa-
tion yields

S =

This expression for 8 has the same form as that for J,,
(19), but with a different coefficient in front of the Vr
term. Hence, the Scharfetter-Gummel method can be ap-
plied just as easily to this equation as to the current equa-
tion, with presumably equal success. Just as in the equa-
tion for J,, we have assumed that the electron temperature
and electrostatic potential vary linearly between the two
nodes. This assumption more naturally captures the phys-
ical variation of these variables, as it is the electron con-
centration that needs to be ‘‘exponentially fitted’’ rather
than the electron temperature. It should be noted that the
method is consistent with respect to temperature: in both
the current and energy equations temperature is assumed
to vary linearly; but it is inconsistent with respect to elec-
tron concentration; the assumed form of the spatial vari-
ation is different in the two equations.

The discretization of the right-hand side of (9) poses no
special difficulties, and is handled in a conventional man-
ner.

~ 3kgToDyo [FVn + n (2 + 30Vr — V). (20)
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Fig. 2. Simulated electron temperature for a MOSFET with L.s = 0.16
um along the device at a depth of 0.15 um from the oxide interface using
the discretization method described by (10) (dash) and (20) (solid). Same
as Fig. 1 but with a finer mesh.
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Fig. 3. Electron temperature normalized to the lattice temperature in the

0.16 pm MOSFET: (a) at the silicon-oxide interface (b) contour plot in the
channel region.

Note that the above modified discretization has a dis-
advantage if the equation system is solved with an itera-
tive scheme that decouples the current continuity from the
energy equation. That is, given the electron concentration
and the electric field, the original discretization scheme
yields an energy equation that is linear in temperature,
and, therefore, is easy to solve. However, the modified
discretization scheme yields an energy equation which is
exponentially nonlinear in temperature, and may not con-
verge with an arbitrary electron concentration produced
by a decoupled scheme.

Using the modified discretization scheme with the same
mesh spacing and biases as used for the unstable case, the
solution shown in Fig. 1 does not display any instability.
Of course, this solution should not only be stable, but also
accurate in the sense that it should be close to the ‘‘cor-
rect’’ solution. To check that this is the case, we com-
puted solutions with much finer mesh (in both dimen-
sions) using both the stable and unstable discretization
techniques. The results obtained on this mesh are shown
in Fig. 2. Note that the temperature profiles obtained from
both methods on the finer mesh are similar, and that the
stable discretization solution on the coarse mesh is at least

qualitatively similar to the finer mesh solutions. The mesh
size in the coarse case was 31 X 24 while it was 37 X 38
in the finer case, where most of the added mesh lines were
placed in the region where the instability appeared.

Fig. 3 shows an example of the temperature calculated
using the discretization method described here for the
shortest channel device.

IV. SIMULATION RESULTS

In this section we compare the results obtained from
our two-dimensional simulator for devices with effective
channel lengths from 0.16 pm to 0.90 um with experi-
mental data rePorted in [8]. Gate oxide thickness for these
devices is 52 A, the junction depth is about 0.09 um, and
the device width is 10 um for all the simulated MOS-
FET’s. One set of parameters was used for all devices,
and a constant series resistance of 30 Q was added to the
source and drain of the simulated devices to account for
extrinsic device resistance.

A. Drain Current Calculation

The drain current predicted by the simulator and that
actually measured for three different channel lengths is
shown in Fig. 4. The predicted current is within 10% of
the measured value for all three channel lengths and all
the biases.

A question of some technological interest is whether
the hydrodynamic model is needed for the prediction of
drain currents and, if so, at what channel length. It has
been suggested that, as a result of velocity overshoot near
the source, the current in an ultrashort channel may ex-
ceed the value predicted by the drift-diffusion model,
which imposes velocity saturation. In the hydrodynamic
model, of course, no such limitation is built-in and we
should expect greater fidelity to experiment.

To answer this question, we performed simulations us-
ing the hydrodynamic model described earlier and the
drift-diffusion model using an electric field dependent mo-
bility given by (A4) in the Appendix. In Fig. 5 we plot
the computed small-signal transconductance of MOS-
FET’s with different channel lengths using the drift-dif-
fusion and hydrodynamic models. The transconductance
was calculated at a bias voltage of Vpg = 2.0 V and Vg
= 1.2 V. Clearly, for devices with channel lengths much
longer than about 0.15 um, the difference between the
two simulations is not significant. For shorter channel
lengths, the simulations based on the hydrodynamic model
predict a more rapid increase in transconductance than
those based on the drift-diffusion model. The results ob-
tained by the hydrodynamic model are quite similar to the
experimental data reported in [9] although exact compar-
ison is difficult because of the different device structures.

B Substrate Current Calculation

Because the substrate current in MOS transistors at high
drain biases is caused primarily by impact ionization, our
approach for calculating the substrate current is to assume
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that it is proportional to the total number of electrons that
have an energy above a threshold value. That is,

Le pLy ™
Isub = CsuquS SO dx d)’ n(x, Y) S d€ F(E, T(X, )’))

0 EThresh

1
where € and epprsn are the electron and threshold energies,
respectively; F(e, T) is the product of the electron energy
distribution as a function of temperature and the density
of states; L,, Ly, and W are the device length, height, and
width, respectively; and Cy, is a proportionality constant.
Note that w, which is the average electron energy for the
ensemble, is distinct from e, which is a random variable
for the energy of each electron in the ensemble.
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For the two-dimensional simulations discussed herein,
uniformity along the width is assumed implicitly, and
therefore integration with respect to the width is replaced
by mulitiplication.

Under high field conditions, it is well known that the
actual electron energy distribution is substantially differ-
ent from Maxwellian [10]. Recent Monte Carlo studies
[11], [12] suggest that the tail of the distribution function
decays much faster than an exponential dependence. In
[11], it is proposed that a more accurate model would be
to use a cubic energy dependence in the exponent. This
result was derived analytically using nonparabolic bands
which, of course, also changes the density of states. Thus,
in our notation, this leads to

3
Fle, T) = Cau(De"> exp <-— X 5§r§>’ (22)

1/&6”%m<—x?ﬁ) (23)

The preceding substrate current model has only one free
parameter, X, in the distribution function, as we keep the
threshold energy fixed at a value of 1.8 eV in (21), which
is a reasonable value for the ionization energy. Changing
x is equivalent to scaling the energy axis; hence, x can
be thought of as a contraction or dilation factor for the
distribution function. The value of the proportionality
constant, C,p, is determined by equating the measured
current and the calculated current at one bias point for the
longer channel device. This constant, which for our sim-
ulations was 8.10 x 10''s™', is then used for all the other
calculations.

To verify the accuracy of the preceding distribution
function and choose an appropriate dilation factor, x, we
compared the experimentally measured impact ionization
coefficient, «, in silicon with that obtained by using our
approach. The generation rate per unit volume for elec-
trons can be written as

where

Ca(T) =

G = an|v,|, (24)

where « is the impact ionization coefficient, n is the elec-
tron concentration, and v, is the electron velocity usually
taken to be the saturation velocity. In our approach, the
generation rate per unit volume is

G=Cyn S de F(e, T). 25)
€Thresh
Hence, the impact ionization coefficient is given by
C oo
a =2 S de Fe, T). (26)
|I},,| €Thresh

The impact ionization rate thus obtained would be a
function of the electron temperature; the measured data
and models proposed for the impact ionization rate are
given as a function of electric field; therefore, it is nec-
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essary to convert the temperature dependence to a field
dependence. To accomplish this, the relationship for the
homogeneous case, given in (6), can be applied. Note that
in our mobility model, the ‘‘low field mobility’’ is inde-
pendent of the doping near the oxide interface, as surface
effects dominate. Using the expression in (6) for electric
field versus temperature with p, = 450 cm® /(V - s),
and the energy distribution function in (22) with a dilation
factor of 1.0 X 10°, where the energy is measured in elec-
tron volts and the temperature in Kelvin, (26) results in
impact ionization coefficient versus inverse electric field
curve as shown in Fig. 6. Experimental data from [13]
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Fig. 8. Simulated (©) and measured (solid) substrate current for a device
with L.y = 0.20 pwm as a function of the gate voltage for three different
drain voltages.

are also shown in this figure. Although the two do not
match exactly, this is to be expected due to the large un-
certainty in the measured data and the approximations in
the model.

Fig. 7 shows the simulated and measured substrate cur-
rents as a function of the drain voltage at different gate
biases for both devices using the cubic distribution func-
tion with the parameters outlined earlier. Generation-re-
combination is ignored in our simulator so that only a
comparison with the hot carrier part of the substrate cur-
rent is appropriate.

Fig. 8 shows the substrate current as a function of the
gate voltage with the drain voltage as a parameter. The
threshold voltage for this device is about 0.23 V, and the
accuracy of the calculated substrate current seriously de-
grades for biases near the threshold voltage, although the
peak substrate current is predicted correctly. This inac-
curacy cannot be attributed to errors in the threshold volt-
age because a careful comparison of the simulated and
measured drain currents even at low gate biases shows
very little error. An explanation for this effect can be
found if we consider that. in the subthreshold regime with
high drain voltage, the electric fields are extremely high
(over 5 x 10° V/cm) in a very narrow region near the
drain. Consequently, the carriers do not fully thermalize
before entering the drain; therefore, the electron temper-
ature in this region does not accurately reflect the tails of
the distribution function.

V. CONCLUSION

The results in this paper demonstrate that the hydro-
dynamic model can be used successfully to simulate sili-
con MOSFET’s with channel lengths as short as 0.16 um.
Equally important is the fact that one set of parameters
was used to simulate devices with channel lengths varying
from 0.90 um down to 0.16 um, and all the parameter
values used were physically reasonable. We have also
shown the importance of using a stable discretization
method in the energy balance equation to avoid spurious
numerical results. Finally, an approach to computing the
substrate currents by the direct integration of the energy
distribution function yielded a simple, but reasonably ac-
curate, method.
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. APPENDIX

The expression for electron mobility which includes the
effects of the scattering of the electrons by the lattice and
jonized impurities is [15]:

T, ~0.57
= 88 | —
(7] <300>

N 1252 (Ty/300) >
1+ [N/(1.432 x 107)](Tp/300) "

(AD

where N is the total doping concentration in em™?, and T,
is the lattice temperature.

The effects of surface scattering are included by using
an expression that depends on both the distance from the
surface and the lateral electric field [14]

s T (e = Brsw) (1= 1)
| + f(E,/EREF)"5

Bris = (A2)

where f is given by
2.06—1 x 101242

= 1.0 + e—ZXlO'zd2

f (A3)

where d is the distance from the silicon-oxide interface
in centimeters and E, is the transverse electric field in volts
per centimeter. The constants in the preceding expression
are pys,, = 638 cm?/(V - s); EREF = 5.0 X 10° V/em;
LIS, = 1.30

The distance function, f, has a value of one at the sur-
face, and its value approaches zero deeper in the bulk.
Consequently, near the surface the mobility is dominated
by surface effects whereas deeper into the bulk, the sur-
face effects become negligible.

To include the high field effects in the drift-diffusion
simulations we used the electric field dependence given
by equation 4.1-56 in [15]:

2pps

VPLISE = \/—————— .
1+ ~vi+ (Z#LISE/Usam)z

(A4)
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