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1 Introduction

Engineering programs which compute electrostatic capacitances for complicated
arrangements of conductors commonly set up the electrostatic potential u as a
superposition of surface carges o

u(z) = / G(z,9)o(y) dS(y) .

where G(z,y) = 1/4w|z — y| is the Green’s function for the Laplacian in the
three-space. For a specified potential on the conductor surface(s) S, this ap-
proach leads to an integral equation of the first kind on S for the charge density
o. The capacitance is the net-charge on the conductors and is given by the
surface integral of o.

It is standard to discretize this integral equation with a collocation scheme.
The resulting linear system is dense and can be large for complex geometries of
S. In the recent past, there has been a major progress to sparsify this system
with the fast multipole method. As a result the matrix vector product can be
carried out in O(N) operations and thus the solution of the linear-system with
an iterative scheme like GMRES is feasible [1, 3].

However, discretizations of the first kind integral formultation lead to matri-
ces with condition numbers which increase as the mesh is refined. This behavior
makes the iterative solution of the linear system more expensive and sometimes
impossible without a good preconditioner. Furthermore, the numerical analysis
of the discretization error as well as the design of adaptive mesh refinement
stragies are more difficult for first kind formulations. Some of these issues are
still unresolved for collocation schemes.

For smooth surfaces, the difficulties associated with the first kind formulation
can be entirely avoided using a second kind integral formulations for the capac-
itance problem, and we investigate two different types. Typically, the arising
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operators are compact on smooth surfaces and thus the Riesz-Fredholm theory
provides a framework for analyzing the second kind formulation. Of particular
importance is the result that the condition number of a discretized second-kind
formulation is bounded independent of discretization mesh, and so requires no
preconditioning.

The issues are quite different when the surfaces contain edges and corners,
as is quite common in engineering problems. The integral operators in the
second kind formulations are no longer compact, and the discretizations generate
somewhat more ill-conditioned matrices. In addition, for problems with corners,
empirical evidence suggests that first kind formulations produce significantly
more accurate results for a given discretization. Since the corners introduce
localized nonsmoothness, we investigate local inversion preconditioners for first
and second kind formulations for the nonsmooth case.

2 Second Kind Formulations

The first formulation we consider was suggested by Mikhlin [2] and is based on
writing the electrostatic potential as a superposition of a surfacé dipole potential
and the potential due to one point charge in each conductor

u(z) = Kp+ Z%G(w, zj) = /S %G(w, y)u(y) dS(y) + qu'G(x, z5) -

The point charges in this approach are necessary to ensure that the potential
decays like 1/r. Tt turns out that the scalars ¢; are the desired capacitances,
if the net-dipole density for each conductor vanishes. Taking into account the
jump relations of the dipole operator, we obtain the integral equation

(1/2+K+P)u+ZqJ'G(I,$j) = f(z), =€S§

j
/p = 0, 7=1,...,n.
S.

3

The operator P is defined by
Pu@) =Y [ ndsx(@),
i S5

where x; denotes the characteristic function of conductor j.
Once the dipole density u has been determined, the charge denstity o can
be calculated by an application of the hypersingular integral operator

o(6) = [ gy S D) 500) ~ i)

We also investigate an alternative approach which allows the direct calcula-
tion of the charge density without resorting to the dipole density: To obtain this



formulation we remark that in the capacitance problem the potential assumes
a constant value p; within each conductor. Thus the normal derivative of the
potential on the conductor surfaces when approached from the inside vanishes.
Taking into account the jump relation of the adjoint operator, we obtain

(1/24 K*)o(z) = 1/2 0(x) +[q %G(z,y)a(y) dS(y) =0, ze€S.

The integral equation above is singular. This is because the orthogonal com-
plement of the range of the operator (1/2 4 K*) consists of the functions which
are constant on each conductor surface. Thus the equation

(1/2+K*+P)o = gjx; =0
5

has a unique solution for any choice of the scalars g;. We can choose these
scalars so that the potential of o satisfies the given conductor potentials. This
leads to the integral equation

(1/2+K*+P)o+) gix; = 0, z€S5
J
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Note that this integral equation is adjoint to Mikhlin’s formulation.

3 Preconditoning

Since the eigenvalues of a compact operator can only accumulate in the origin,
discretizations of second kind integral equations will require only a relatively
small number of iterations to converge. This situation changes when corners
and edges are present. In this case the operators are no longer compact and the
iteration may be accelerated with a preconditioner.

The fast multipole algorithm decomposes the problem domain into a hierar-
chy of cubes, this decomposition can also be used to construct preconditioners
[4, 3].

Denoting the intersection of the surface S with cube i by S;, the part of the
operator K from S; to S; is given by

9
Kijoi(z) 1=/S' By

1

G(z,y)o(y)dS(y) z€S;.

The idea of the (nonoverlapping) local inversion preconditioner is to solve the
integral equation for each surface S; neglecting the interaction of the other
pieces. Thus the preconditioner factors the second kind integral equation (1/2+
K)o = f in the form

a; + 2(1/2 + K;;)‘1[<;j&j =f;
i#]



where
o; = (1/2 + I{,',:)O',' .

This approach is conceivable for isolated corners like the tip of a cone, because
In this case the operators K;; are compact for i # j. Moreover, if the integral
operator is weakly singular in the corner, then the size of the cubes can be made
small enough such that the norm of the operators Kj; is less than 1 /2 and thus
the operator 1/2+ K;; has a continuous inverse. Hence the transformed system
is of second kind with a compact operator.

In the case of edges, the operator Kj; is not compact if the cubes i and j are
adjacent and intersect the same edge. Still, the integral equation can be trans-
formed into the form “identity plus compact” by an overlapping preconditioner.
Denoting all neighbors of cube ¢ by N (i) and the operator on the cube i and its
neighbors by K N(i) We can factor the integral equation in the form

o + Z (1/2 + Kny) " Kij6; = f; -
JEN(D)

4 Preliminary Numerical Results

Numerical experiments were carried out for two different domains, namely the
unit sphere and an L-shaped domain. The sphere gives rise to compact integral
operators, whereas the L-block has corner and edge singularities. For the sphere
the discretization is almost uniform, wereas the mesh of the L-block was refined
towards the edges.

All equations were discretized with piecewise constant collocation, the aris-
ing linear systems were solved with multipole accelerated GMRES, where the
expansion order in all experiments was set to three. Increasing this value did
not result in significant changes.

The discretization errors of the capacitance and the numbers of iterations for
the sphere are dispayed in Table 4. The results there suggest that the discretiza-
tion errors for all three integral formulations decay like O(h?). The number of
GMRES iterations varies between the formulations, they remain constant for
both second kind formulations, but grow for the first kind formulation without
preconditioner as the mesh is refined. The increase can be avoided by precon-
ditioning, but only if the same cube hierarchy is used for all mesh refinements.
If the cubesize is reduced to avoid expensive preconditioners, then the number
iterations grows as well. —

Table 4 displays the iteration results for the L-block. The capacitances
suggest that the first kind formulation converges faster to the true value than
the second kind formulations. As expected, the number of iterations for the
first kind formulation increases when refining the mesh and the increase can
be slowed down by the use of the overlapping preconditioner. The second kind
formulations require a comparatively small number of iterations to converge,
even for small panel sizes. Preconditioners can further accelerate the iteration.



number Panels 192 768 3072
First Kind  no PC_ 0.321 (4) 0.085 (9) 0.022 (il)

oL 1 (6) (©) (6)
oL 2 (5) @ (9)
Dipole no PC 0.286 (5) 0.074 (6) 0.019 (6)
Adjoint no PC_ 0.382 (5) 0.100 (4) 0.025 (3)

Table 1: Comparison of the discretization errors and iterations obtained for the
sphere. The number of iterations required to reduce the residual to 10~¢ are
shown in brackets. OL 1 refers to the overlapping preconditioner with constant
cube size, OL 2 refers to the overlapping preconditioner with decreasing cube
size

number Panels 350 1400 5600

First Kind  no PC_ 12.626 (17) 12.658 (27) 12.663 (40)
oL (12) ) (8)

OL* (12) (18) (24)

Dipole no PC 12.467 (13) 12.602 (14) 12.648 (15)
OL1 (9) (9) (10)

OL 2 (7) (8) (10)

Adjoint no PC 12.310 (10) 12.485 (12) 12.582 (14)
OL 1 (7) (8) (®)

OL 2 (8) (9) (11)

Table 2: Comparison of the calculated capacitances and iterations obtained for
the L-shaped domain. The number of iterations required to reduce the residual
to 10% are shown in brackets.

5 Conclusion

For problems with smooth surfaces discretizations of the second kind formula-
tions result in better conditioned linear systems than the first kind formulation
by maintaining the accuracy of the approximation. In addition, the adjoint for-
mulation directly produces surface densities which are more useful in subsequent
application than the dipole layer.

The conditioning of all formulations worsens in the case of non-smooth do-
mains, although the ill-conditioning appears to be milder for the second kind
formulations. Local inversion preconditioners are effective at removing this ill-
conditioning, though the spatial extent required for the preconditioner is still
under investigation. Finally, the convergence of discretization error is slower
for the second kind formulation, and this may be an artifact of the piecewise
constant collocation used for the experiments. We will investigate higher order
approximation schemes in our future research.
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