Fast Simulation Algorithms for RF Circuits

R. Telichevesky, K. Kundert I. Elfadel, J. White
Cadence Design Systems Massachusetts Institute of Technology
San Jose, California Cambridge, Massachusetts
Abstract

RF integrated circuit designers make extensive use of simulation tools which perform nonlinear periodic
steady-state analysis and its extensions. However, the computational costs of these simulation tools have
restricted users from examining the detailed behavior of complete RF subsystems. Recent algorithmic de-
velopments, based on matrix-implicit iterative methods, is rapidly changing this situation and proViding new
faster tools which can easily analyze circuits with hundreds of devices. In this paper we present these new
methods by describing how they can be used to accelerate finite-difference, shooting-Newton, and harmonic-

balance based algorithms for periodic steady-state analysis.

1 Introduction

The intensifying demand for very high performance portable communication systems has greatly expanded
the need for simulation algorithms that can be used to efficiently and accurately analyze frequency response,
distortion, and noise of RF communication circuits such as mixers, switched-capacitor filters and narrow-band
amplifiers. Although methods like multitone harmonic balance, linear time-varying, and mixed frequency-time
techniques [6, 3, 1, 4] can perform these analyses, the traditional implementations of these techniques grow so
rapidly with increasing circuit size that they have been too computationally expensive to use for more complex

circuits.

*This work was supported by a grants from Motorola and Cadence Design Systems

Recent algorithmic developments, based on preconditioned matrix-implicit Krylov-subspace iterative methods,
is rapidly changing the situation and providing new tools which can easily analyze circuits with hundreds of
devices. Preconditioned iterative techniques have been applied to accelerating periodic steady-state analysis
using both harmonic balance methods [2, 5] and time-domain shooting methods [9]. Additional results for more
general analyses are also under investigation.

In this tutorial paper, we try to present these accelerated methods for periodic steady-state analysis in a
cohesive fashion, and perhaps make the more specialized papers that have or will shortly appear a little more
approachable. We start in the next section by presenting the time domain finite-difference-Newton and shooting-
Newton methods, give a brief idea of their computational costs using standard factorization, and give the faster
matrix-implicit algorithm. In section three we present, using as much common notation as possible, the same
aspects of the harmonic-balance approach. Where possible, we give some computational results so as to give the
reader a feel for the cost reductions. Also, we have tried to pay particular attention to providing approachable

references in the mathematical literature. Finally, conclusions and acknowledgements are given in Section 4.

2 Time Domain Methods

Finding the periodic steady-state solution of a circuit means finding the initial condition for the circuit’s
associated system of differential equations such that the solution at the end of the period matches the initial

condition. More precisely, the steady-state solution must be a particular solution to the circuit equations, as in

F(0),1) = Fa(o®) + iCo(t)) + u(t) = 0, 1)

where u(t) € R is the vector of input sources, v(t) € R is the vector of node voltages, and i(v(t)), ¢(v(t)) € RV
are the vectors of resistive node currents and node charges (or fluxes), respectively. In addition to satisfying (1),

the periodic steady solution must also satisfy the two-point constraint
v(T) — v(0) = 0. (2)

A sampling discretization is usually introduced to numerically solve the combination of (1) and (2), by which

we mean that v(t) is represented over the period T" by a sequence of M numerically computed discrete points,

’U(tl) f)(tl)

v tz v tg

G2) =S (.) =9, (3)
] v(tM) | I f)(tM)]

where ¢y = T, the hat is used to denote numerical approximation, and & € RMYN is introduced for notational
convenience.
A variety of methods can be used to derive a system of equations from which to compute #. For example, if

the backward-Euler method is used to approximate the derivative in (1), then © must satisfy

Fa(o, i) = L= 00ED 4 itu() + uen) = 0 @

and for j € {2,..., M}

Fy(o) = LED Z00=1)) i) 4wy =, (5)

where h; =t; —t;_; and (%) is the unknown differential equation initial condition which generates the periodic
steady-state. Combining (2) with (5) yields a system of nonlinear equations for ¢ and %(to).

Two variants of Newton’s method are commonly used to solve the combination of (2), (4) and (5): the finite-
difference-Newton and the shooting-Newton methods [10, 11]. The finite-difference method is a direct Newton
method but the shooting-Newton method uses an additional inner Newton iteration. The use of an inner iteration
implies that the shooting-Newton method is a multi-level Newton method, and therefore has typically better global
convergence properties for stable problems. Despite this convergence property difference, computing the Newton
iterates in these two methods leads to surprisingly similar systems of linear equations, and both these linear
systems are easily solved using iterative methods like preconditioned GMRES [7]. Below we will present the two

methods, and then describe how to apply the iterative matrix-implicit solution techniques.
2.1 Finite-Difference-Newton Method

The finite-difference-Newton method is precisely Newton’s method applied directly to (5), where (2) is included

by the identification 9(2p) = 9(¢pr). Before giving the finite-difference-Newton iteration equation, we establish

some notation. Let L be the block lower bidiagonal matrix given by

%‘—I—Gl
-4 &g
L= ha ha ’ 3 (6)
Cum—
_ G GG
and define B as -~ -
0 .. 0 g
0
B=) (M
0 0

where C;,Gj € RVXN denote dg(d(t;))/dv and di(#(t;))/dv, respectively. For most practical circuits, the con-
nectivity is very sparse. This implies that for typical problems, there are fewer than ten entries per row in C; and
G;, regardless of the circuit size.

Using the above notation, the finite-difference-Newton iteration equation is given by
(L+B) (85— 8%) = —Fu(@), 8)

where k is the Newton iteration index and

—Fy (8%, 5% (tar))

—Fy(d*
— Fpa(v*) = ‘(: -)

—Far(9%)

2.2 Shooting-Newton Method

Another approach to solving (5) is to exploit the fact that if 9(¢) is given, then the nonlinear equation

a(9(?1)) — 9(3(t0))
hy

+1i(8(t1)) +u(t1) =0 (10)

can be solved, presumably using Newton’s method, for 4(¢1). Then, 9(¢1) can be used to solve

q(f)(tz))h— 9(0(ts)) i(5(t2)) + u(ts) = 0 (11)
2

for #(¢2). This procedure can be continued, effectively integrating the differential equation one timestep at a time
in the standard fashion, using the initial condition #(¢p). And since the nonlinear equations are solved at each
timestep, 9(t;) is an implicitly defined function of 9(¢g). This function, computed by the numerical integration,

is referred to as the state-transition function of the discretized system and is denoted as

QS({)(tO):tﬂatj)' (12)

Note that if 9(t;) is computed by solving the nonlinear equation Fj in (4) or (5) at each timestep, or equivalently
if 9(¢;) is computed by evaluating ¢(6(¢0), %0, ¢;), then (4) and (5) will always be satisfied, regardless of the choice
of 9(to). If 9(to) equals 9(¢ar), then (2) is also satisfied and a periodic steady-state solution has been computed.

This statement is mathematically equivalent to the condition
Fsh(f)(to)) = ¢(ﬁ(t0),t0,tM) - ﬁ(to) = 0. (13)

The shooting-Newton method then computes #(¢g) for the periodic steady-state by applying Newton’s method

to solving (13), resulting in the iteration equation
[75(% (t0), 0, T) — I)[8"+* (20) — 8" (t0)] = —Fun(9* (t0)), (14)
where k is the Newton iteration index, I is the identity matrix, and
d
Jy(v,0,T) = %qi(v, 0,7) (15)

is referred to as the sensitivity matrix.

To complete the description of the shooting-Newton method, and to see why we refer to it as a multilevel-
Newton method, it is necessary to present the procedure for computing ¢(v,0,T) and J4(v,0,7). As mentioned
above, computing the state transition function is equivalent to solving the backward-Euler equations in (4) and
(5) one timestep at a time. Solving the backward-Euler equations is usually accomplished using an inner Newton

iteration, as in
C; . .
G2+ G| P00 - #1() =
j

—hij (¢(8%7(#5)) — ¢(&*(¢5))) — 4(8™' (%)) — u(t;) (16)

where j is the timestep index, %k is the shooting-Newton iteration index, [is the inner Newton iteration index,
Cim= M%LLD and Gz = gﬁﬁ—;;ﬁﬁl. Sometimes, there are just too many indices.

To see how to compute Jy4(v,0,T) as a by-product of the Newton iteration in (16), let { = % denote the inner
Newton iteration which achieves sufficent convergence, and let 9¥*(¢;) denote the associated converged solution.

Using this notation,

) _hj(@k,*(tj_l)) n i(,ﬁk,*(tj)) +u(t;))=0 (17)

to within the Newton iteration convergence tolerence. Implicitly differentiating (17) with respect to 9% (¢o) results

n

i ko dAk:(*'I'l) t.: C s * d"k,* i
[Cie + G 6 - (t;) _ CG-1pe d9 Ak(] 1) a8

h; di*(to) h; di* (to)

By recursively applying the above equation, one can derive that
M -1
C; Cii-
ik Jhx (G—-1)kx*
to),toytum) = e ’)

J¢(U (0); 0 M) ng [h] +G]k] hJ (9)

where the notation H]M=1 indicates a product rather than a sum.
2.3 Direct Matrix Solution

In comparing the shooting-Newton iteration, (14), to the finite-difference-Newton iteration, (8), there appears
to be an advantage for the shooting-Newton method. The shooting-Newton method is being used to solve a system
of N nonlinear equations, whereas the finite-difference-Newton method is being used to solve an N M system of
nonlinear equations. This advantage is not as significant as it seems, primarily because computing the sensitivity
matrix according to (19) is more expensive than computing the finite-difference Jacobian. In this section we will
show that using direct factorization to solve either (14) or (8) leads to nearly equivalent computations.

To start, consider that L defined in (6) is block lower bidiagonal, where the diagonal blocks have the same
structure as the single timestep Jacobian in (16). It then follows that the cost of applying L' is no more
than computing one Newton iteration at each of M timesteps. One simply factors the diagonal blocks of L and

backsolves. Formally, the result can be written as

(Inye +172B) (#*¥1—3*) = —L7'F ("), (20)

though L~! would never be explicitly computed. Here, we have denoted the identity matrix in RVM*XNM py
Inag.

Examining (20) reveals an important feature, that L='B € RYM*NM hag nongero entries only in the last N
columns. Specifically,

Iy ... O Py

(Inm + L7'B) = I (21)

0 IN+Pum

where P; € RV*N is the ((i — 1) * N)+ 1 through i* N rows of the last N columns of L~!B. This bordered-block

! % in (20) can be computed in three steps. The first step is to compute Ppy.

diagonal form implies that #*+
This can be accomplished by forming the N products Be;, where the e}s are the first N unit vectors in RV# and
then backsolving N times with L. The second step is to use the computed Ppr to determine the last N entries

k+1

in ® — %*. This second task can be performed by directly factoring I + Py, and using it to solve solving the

k+1 _ %* by backsolving again

last N equations in (20). The last step in solving (20) is to compute the rest of @
with L.

The close relation between solving (20) and (14) can now be easily established. If L and B are formed using
Cjkx and Gy« as defined in (18), then by explicitly computing L~! B it can be shown that J4(8* (o), 0, tar) = Pu.
The importance of this observation is that solving the shooting-Newton update equation is nearly computationally
equivalent to solving the finite-difference-Newton update equation. Specifically, (14) can be solved by following
the first two steps of the above procedure, except the factorization of Py — Iy replaces the factorization of
Iy + Py

The strong connection between the computational steps in solving the shooting-Newton and finite-difference-
Newton update equations implies their computational costs are very similar. For both methods, the dominant
costs are the more than order M N? operations required to form Pjs and the N3 operations required to factor
the dense Iy + Pur or Py — Ix matrix. The reason forming Py is so expensive is that it requires N backsolves

with L, and each backsolve with L requires at least order NM operations. We say at least because the cost of

backsolving with L depends critically on the amount of fill-in produced by factoring the N x N sparse diagonal

blocks %J’- + G;. Since these blocks are generated by the linearization of a circuit, their structure is problem
dependent. For example, if the circuit happens to be a tree structure, then %JL + G5 will have order N elements,
the factorization will produce no fill, and backsolving with a factored L will require only order N M operations.
However, if the circuit is a three-dimensional mesh, then factoring %i + G5 will produce substantial fill-in, and

backsolving with a factored L will cost order N4/3M operations.
2.4 Matrix-Implicit Iterative Methods

As described above, applying direct factorization to solving (14) or (20) results in an algorithm whose compu-
tational complexity grows faster than order M N? 4+ N3. This rapid growth of computation time with problem
size severely limits the size of circuit which can be analyzed, and in this section we examine how to reduce matrix
solution cost using matrix-implicit iterative methods. To begin, consider solving the linear system in (8) using an
iterative method like the Krylov-subspace based GMRES algorithm [7]. A simplified version of GMRES is given

below.

GMRES algorithm for solving Az = b

Guess at a solution, z°.

Initialize the search direction p® = b — AzP.
Set k= 1.
do {

Compute the new search direction, p* = ApF—1.
Orthogonalize, p* = p* — Zf;é Brip’.
Choose oy in

oF = =1 4 apph

to minimize ||r¥|| = ||b — Az*||.

If ||r*¥|| < tolerancegmres, return v¥ as the solution.

elseSet k =k + 1.

When the GMRES algorithm is applied to solving (8), if the number of iterations required to achieve con-
vergence is bounded by a constant independent of problem size, then the resulting solution algorithm is much
faster than direct factorization. The cost is reduced from order MN? + N3 to order NM operations. To see
this, consider that forming (L + B)p* costs order N M operations because of the circuit matrix sparsity, and we
have assumed a constant number of iterations. Unfortunately, for typical circuit problems, (L + B) in (8) is much
too ill-conditioned for GMRES to converge rapidly. Instead, the iterative method should be preconditioned, or
premultiplied, with L1, and this preconditioner insures rapid convergence [8].

Preconditioning using L~! corresponds to applying the GMRES algorithm to solving (20) instead of (8). It is
crucial to observe that Inar + L~ 1B is not explicitly required in the GMRES algorithm, it is only necessary to be
able to compute the matrix-vector products (Inar + L~!B)p*. This observation implies that each preconditioned
GMRES iteration can be performed in nearly order N M operations by multiplying p* by B, then backsolving with
a factored L, and finally adding p*. Therefore, the cost per iteration is somewhat more than order N M operations.
Also, since the L~! preconditioning has insured rapid convergence independent of problem size, the entire solution
algorithm is nearly order NM operations. Finally, an almost identical algorithm can be used to solve (14).
Consider that computing the matrix-vector product (Jy — I ~) p*, formed when GMRES is applied to solving
(14), is equivalent to padding the N-length p* with zeros to make it an N M-length vector, and then computing
(L='B — Inp)p®. 1f such an approach is used, Py — Iy is represented “quite” implicitly and the so derived
shooting-Newton-GMRES method has the same nearly order N M operation cost as finite-difference methods [9].
Be reminded, however, that shooting-Newton methods still have superior global convergence properties for stable

problermns.
2.5 Results

In this section we experimentally examine the performance of three shooting-Newton schemes: direct factor-
ization or Gaussian elimination, forming GMRES, and matrix-implicit GMRES.

Table 1 compares the performance of the various Newton-Raphson shooting method approaches implemented

experimentally into the Spectre circuit simulator. The test suite includes ztal, a crystal filter; mizer is a small

GaAs mixer; dbmizeris a double balanced mixer; Imizeris a large bipolar mixer; cheby is an active filter; and scf

is a relatively large switched capacitor filter. The second column in Table 1 lists the number of equations in each

circuit. The third column represents the number of one-period transient analyses that were necessary to achieve

steady-state using the shooting-Newton method. The fourth, fifth, and sixth columns represent, respectively,

the time in seconds to achieve steady-state using Gaussian elimination, explicit GMRES, and the matrix-implicit

form. All the results were obtained on a HP712/80 workstation. The sixth column demonstrates the effectiveness

of the matrix-implicit approach, listing the speedup obtained in respect to the Gaussian-elimination method.

Note that the speed-up over the explicit GMRES algorithm would be similar for the size examples examined.

[circuit [eqns[it[GE[GMRES| MI|GE/MI]

xtal 291 3| 0.50 0.50 | 0.39 1.28
mixer 24| 4| 1.85 1.74| 1.20 1.54
dbmixer | 100| 4| 4.15 4.07(1.34 3.09
Imixer 126134 3.72 3.63| 1.03 3.61
cheby 237 4123.39 21.97| 3.01 7.96
scf 377 | 6| 2962 2954 | 281.4(10.52

Table 1: Comparison of different shooting method schemes

3 Frequency-Domain Methods

Any square integrable T-periodic waveform, z(¢), can be represented as a Fourier series,
. k=00
z(t)= D X[k]e!*"
k=—o0

where fr = -'% and

T/2 .
X[k] = % / T/Zx(t)e-ﬂ"fktdt.

(22)

(23)

If in addition to being periodic, () is sufficiently smooth, formally infinitely continuously differentiable, then

the X[k]’s vanish exponentially fast with increasing k. This implies z(t) can be accurately represented with a

truncated Fourier series, that is #(t) ~ (t) where &(t) is given by the truncated Fourier series,

k=K

)= 3. X[keS2

k=—K

(24)

where the number of harmonics, K, is typically fewer than 15. Note that the time derivative of &(t) is given by

k=K

Eld;i‘(t) = Y X[klj2m frel2Ix, (25)
k=—K

Representing a periodic waveform as a truncated Fourier series can be used to approximately solve (1) and (2), in
which case the resulting methods are referred to as harmonic balance methods [3], or Fourier spectral methods [13].
Of particularly wide use in circuit simulation are the spectral-collocation-on-charge variants of these methods [3].
To derive the collocation method requires a little notation. If ¢(v) in (1) is globally invertible, then we can denote
§(t) = g(v(t)) and %(§(t)) = i(v(t)). Using this notation, (1) can be rewritten as a differential equation in normal
form in terms of ¢,

£ 50 + 1) + u(t) = 0. (26)

As an aside, standard integration methods are typically applied to the above form of (1) to insure charge conser-

vation.

Introducing the truncated Fourier series approximation for §(t),

k=K
qty= > Q[kle*™ I, (27)
=-K
into (26) results in
k=K
Qk)527 frel 27 I%t 4 (28)
k=—K
k=K
[(Q[k]ejz"f"t> +u)=0
k=—K

Of course, it would be best if (28) holds for all ¢, but there are only M = 2K + 1 degrees of freedom, the Qlk]'s.
Note, each Q[k] is an IN—length vector, so we are using “degrees of freedom” in a very loose sense. In order to
derive M systems of equations from which to determine the Q[k] ’s, (28) is enforced only at selected collocation

points t1,%s,...,tp = T, as in

k=K
> QIklj2m el > 4 4 (29)
k=—K

~ sz /_ .
() Q[k]e”"f”") T u(ty) = 0.
k=—K

Convergence analysis of spectral-collocation methods can be found in [13, 14].

Note that (29) represents N M equations in N M unknowns, but its form is not so readily identified with the

original functions g(v) and i(v). The relation is easily unraveled, however. Let I~! € CNMXNM denote the

discrete Fourier transform matrix which represents the relationship between the Q[k]'s and §(t;)'s, as in

Q

o) |

[(K = 1)]

QK]

J L

Using the definitions of § and 7, (29) can be simplified as

q(t1)

q(t2)

(ta) |

Fiime(®) = T7IQTq(D) + i(8) + u =0

where -~ -
¢(9(t1))
q(5(t2)) ,
a@)=| |,)=
| q(9(trm))]
u(tl)
u(tz)
u=
| ultm)) |
and Q is the diagonal matrix given by
i2nfkIn
J2nfrx-1In

2
fi

i(9(t1))
i(9(t2))

i(o(ta)) |

2nf_xliIn

Using a change of variables, V = I'd, (31) can be written in the form

Ffreg(V) = QLg(T™'V) 4+ T4(I"V) + Tu = 0.

(30)

(31)

(32)

(33)

(34)

(33)

Figure 1: The harmonic balance discretization weights for {g where 7' = 17 and M = 17.

The form in (35) is often referred to as the harmonic balance form because the unknowns are the Fourier coefficients
and the equations are in the frequency domain.

From the formulation in (31), it is clear that I~1QT is an approximate differentiation operator. The weights
for this spectral differentiation operator for the case of T'= 17, M = 17, and at timepoint {3 = 9 are plotted in
Figure (1). Note that the weights at tg and ¢, are approximately —1 and 1 respectively, so spectral differentiation

is somewhat similar to a central-difference scheme in which

m(tlo) — m(tg)

36
tio— s (36)

d
Zﬁl‘(tg) ~

The connection between spectral differentiation and standard differencing schemes can be exploited when devel-

oping preconditioners, a point we will return to subsequently.
3.1 Applying Newton’s Method

Newton’s method applied to (31) or (35) yield the iteration equations
(r-‘Qrc + G) (f;’““ - f;’“) = —Fiime () (37)

or

(erer=t 4161 (VY - 95 = —Fpreg(9) (38)

where k is the Newton iteration index, Fyime and FY,.4 are given in (31) and (35), and C,G € RNMXNM op6 block

diagonal matrices given by

(&)

Cs

Q
Il

(39)

Cu

G

Ga

Q
Il

(40)

where C; denotes dg(v(t;))/dv and G; denotes di(v(t;))/dv.
The Jacobian in (37) has a structure that is similar, but much denser, than the Jacobian associated with

the backward-Euler based finite-difference-Newton Method. This is clear from the explicit representation of

(r-tarc + G),
Gl 0!101 azCl yeeey 04_101
a_lCz Gz 0[102 yoeey a_zcz
(41)
afch CVQCM g eeeny Ol_ch GM

where the a;’s are the weights for the spectral differentiation. Note that the block diagonal terms depend only
on the G’s (incremental conductances). Also, for linear time-invariant problems, where C; = C' and G; = G for
all j, the matrix density is basically unchanged.

The explicit representation for QI CT~1+T'GT ! is, in general, similarly dense. However, one of the advantages

of the harmonic balance form of the equations is that if the problem is linear and time-invariant the matrix is

block diagonal and is given by

j2n K
]TC + G

j27l'!’1{{—1!C+G ()
42

2~ K
i 2 Bot G]

where C = Cj and G = Gj for all j. In this case, of course, the matrix just represents phasor analysis at a

collection of isolated frequencies.
3.2 TIterative Matrix Solution

As mentioned in Section 2.4, if GMRES is applied to solving a linear system of equations, then the matrix
representing the system is not needed explicitly. It is only necessary to be able to compute matrix-vector products.
This implies that if GMRES is applied to solving (37) or (38), then the iterations can be performed in order

NMlogM operations by employing the fast Fourier transform [12]. This is easily shown, consider computing
(r-orc + G)p* = r-'arcy* + Gyt (43)

Forming Gp* and y = Cp* require only order N M operations, due to the sparsity of C; and G;. Forming w = 'y
can be accomplished in N MlogM operations using N fast Fourier Transforms. Multiplying w by € is order
N M operations because is diagonal. And finally, forming I'"!Qw requires order N MlogM operations using N

inverse fast Fourier transforms. A similar argument demonstrates that
(Qrer—! +ITGT 1) p* (44)

can be computed in order M NlogM operations.

GMRES applied directly to solving (37) or (38) converges too slowly to be practical. And, since the matrices
in (37) or (38) are related by an orthonormal similarity transform, GMRES will converge identically slowly in
either case. However, when one considers preconditioners, there is a reason for choosing between the formulations.
For the harmonic-balance form, a block-diagonal, sometimes called a block Gauss-Jacobi, preconditioner can be

extremely effective when the problem is nearly linear and time-invariant. This is because the off-diagonal blocks

of the matrix in (38) are produced by frequency translations which are minimal for the nearly linear and time-
invariant case. Variations on this idea include adding in some of the off-diagonal blocks, using bands of blocks
and incomplete factorization, or using the block lower triangular matrix [2, 5, 3, 15].

For rapidly time-varying or nonlinear problems, frequency coupling is more severe, and preconditioners based
on discarding off-diagonal blocks of the matrix in (38) become ineffective. A different approach, which involves
preconditioning (37), uses matrices associated with finite-difference methods as preconditioners, like the L matrix
defined in (6) [14]. The key concept is that both matrices have an approximate differentiation operator, but,
for example, the backward-Euler or a central-difference discretization use much sparser operators than spectral
discretization. It is worth noting that backward-difference methods have a computational advantage over central-
differencing schemes in that they are more lower triangular. Finally, the L matrix given in (6) is not a very
effective preconditioner because the backward-Euler operator is not sufficiently accurate to properly precondition
the very high order spectral differentiation operator. Matrices associated with higher order differencing schemes

are much more effective.

4 Future Work and Acknowledgements

Although in this tutorial paper we have focussed on periodic steady-state analysis, most RF communication
circuit problems require multitone analysis. For example, mixers used for down conversion generate sum and
difference frequencies that can be seperated by several orders of magnitude. For this reason, the newest work
in this area is applying matrix-implicit iterative techniques to accelerating multitone problems using multitone
harmonic balance [5], linear time-varying noise analysis [8], and mixed frequency-time techniques [3]. The authors
would like to thank Robert Melville, Peter Feldmann, Jaijeet Roychowdhury, Michael Steer, and David Sharrit

for many valuable discussions over the years.

References

[1] A. Ushida, L. Chua, and T. Sugawara, “A Substitution Algorithm for solving nonlinear circuits with multi-

frequency components. International Journal on Circuit Theory and Applications, vol. 15, 1987.

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

P. Heikkila. Object-Oriented Approach to Numerical Circuil Analysis. Ph. D. dissertation, Helsinki University

of Technology, January 1992.

K. Kundert, J. White and A. Sangiovanni-Vincentelli. Steady-State Methods for Simulating Analog And Mi-

crowave Circuits. Kluwer Academic Publishers, Boston 1990.

R. Gilmore and M. Steer, “Nonlinear circuit analysis using the method of harmonic balance - a review of the
art. Part I - Introductory Concepts.” Int. J. on Microwave and Millimeter Wave Computer Aided Engineering,

Vol. 1, No. 1, 1991.

R. Melville, P. Feldmann, and J. Roychowdhury. “Efficient multi-tone distortion analysis of analog integrated

circuits.” Proceedings of the 1995 IEEE Custom Integrated Circuits Conference, May 1995.

M. Okumura, H. Tanimoto, T. Itakura, and T. Sugawara. “Numerical Noise Analysis for Nonlinear Circuits
with a Periodic Large Signal Excitation Including Cyclostationary Noise Sources.” IEEE Transactions On

Circuits and Systems - I Fundamental Theory and Applications., vol. 40, no. 9, pp. 581-590, September 1993.

Y. Saad and M. H. Schultz. “GMRES: A generalized minimal residual algorithm for solving nonsymmetric

linear systems.” SIAM Journal on Scientific and Statistical Computing, vol. 7, pp. 856-869, July 1986.

R. Telichevesky, K. Kundert, and J. White. “Matrix-Implicit Iterative Techniques For RF Circuit Analysis,”

in preparation.

R. Telichevesky, Kenneth S. Kundert, Jacob K. White. “Efficient Steady-State Analysis based on Matrix-Free

Krylov-Subspace Methods.” Proc. Design Automation Conference, Santa Clara, California, June 1995.

[10] H. Keller. Numerical Solution of Two Point Boundary-Value Problems, SIAM, 1976.

[11] Thomas J. Aprille and Timothy N. Trick. “Steady-state analysis of nonlinear circuits with periodic inputs.”

Proceedings of the IEEE, vol. 60, no. 1, pp. 108-114, January 1972.

[12] J. P. Boyd, Chebyshev and Fourier Spectral Methods, Springer-Verlag, New York, 1989.

[13] D. Gottlieb and S. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications, SIAM, 1977.

[14] C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, Speciral Methods in Fluid Mechanics, Springer-

Verlag, New York, 1987.

[15] B. Troyanovsky, Z. Yu, L. So. and R. Dutton, “Relaxation-Based Harmonic Balance Technique for Semicon-
ductor Device Simulation,” Proc. International Conference on Computer-Aided Design, Santa Clara, Califor-

nia, November 1995.

