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ABSTRACT

In this paper we describe a new approach to self-consistent elec-
tromechanical simulation. The approach employs a finite-element
method for mechanical analysis and a precorrected fast-Fourier trans-
form accelerated boundary-element method for electrostatic analysis.
The convergence of the new approach is compared with that of relax-
ation and surface-Newton methods and is shown to exhibit superior
convergence behavior.

1. INTRGDUCTION

In order to investigate design alternatives, designers of novel
MEMS structures need efficient, robust and easily used computer
simulation tools. And since most of the stuctures of interest
are geometrically complicated, electromechanically coupled, and
are inherently three-dimensional, Micro-Electro-Mechanical CAD
(MEMCAD) tool developers have been focussed on improving the
usability, efficiency and robustness of coupled 3-D electromechani-
cal analysis. In particular, finite-clement based elastostatic analysis
and accelerated boundary-element based electrostatic analysis have
been combined using algorithms based on relaxation and a form of
surface-Newton method [1], [2], [3]. Although the relaxation algo-
rithm is easy to program, only requiring that data be passed back
and forth between “black-box” elastostatic (e.g. ABAQUS [4]) and
electrostatic (e.g. FASTCAP [5]) analysis programs, the algorithm
diverges if the structure is too flexible or the electric fields are too
large. Matrix-free surface-Newton methods preserve the “black-
box” nature of the relaxation algorithm and have better convergence
properties, but also have perturbation parameters which must be
tuned for good performance [3]. In this paper, we present a direct-
Newton based approach which is more robust and exhibits superior
convergence behavior compared to relaxation and surface-Newton
methods.

This paper is organized as follows: In the next section a brief
overview is presented on the existing approaches to self-consistent
electromechanical simulation. In Section IT, the direct-Newton tech-
nique is described and numerical results are presented in Section IV,
Finally, conclusions are presented in Section V.

II. PREVIOUS APPROACHES
A. Relaxation Technigue

Relaxation is the simplest approach to electromechanical sim-
ulation: as the coupled physical domains are analyzed separately.
The surface pressures, which depend on the electrostatic charge,
are assumed to be known when computing the structural deforma-
tion, and the structural deformations are assumed to be known when
computing the electrostatic charge. Figure 1 summarizes the relax-
ation algorithm for electromechanical analysis. An advantage of the
relaxation algorithm is that since the domains are analyzed sepa-
rately, the numerical schemes can be different. For example, a very
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Figure 1.  Relaxation algorithm for self-consistent electrome-
chanical analysis. Rar(u,q) and Rz(u,q) denote the elasto-
static(mechanical) and electrostatic equations respectively, u is the
deformation of the structure, and g is the surface charge that produces
the electrostatic force.

efficient relaxation scheme combines Galerkin finite-element elas-
tostatic analysis with multipole/precorrected fast Fourier transform
acceleration techmique for the electrostatic analysis [1], [2]. The
availability of commercial simulators for each physical domain also
makes relaxation algorithms appealing as they can be implemented
very quickly using a black-box approach. The relaxation algorithm,
however, is not robust because it converges very slowly or fails to
converge in tightly coupled cases.

B. Surface-Newton Technigue

The surface-Newton technique was designed to preserve the
black-box nature of the relaxation algorithm but to improve its con-
vergence [3]. The approach presented in [6] is similar to the surface-
Newton technique. The key idea in the surface-Newton approach
is to reduce the dimensionality of the coupled problem from 3-D
to 2-D and to employ a Newton technique to determine the surface
node positions. Once the node positions on the structure sutface are
known, both the surface pressure and the interior node positions ¢an
be determined by decoupled electrostatic and elastostatic analysis.
Therefore, we can write a surface-Newton iteration equation as
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where », is the vector of surface displacements, & is the iteration
index, and

Ro(us®y = u.* — Surf [Raa(tios, Ru(us" + 105, V)| . (2)

Here, o5 is used to denote the surface of the initial structure and the
function Sur f extracts #; from =.

A matrix-free Generalized Conjugate Residual (GCR) iterative
method [5] can then be used to solve (2), in which case each GCR

Ro(us®) + =2 (us" —u 5y =0 (1)



iteration involves forming a matrix-vector product. The matrix-
vector product can be computed using finite-differences i.e.

(;—R*r & —(R(u+0*r) — R(w)) 3)
where
8 = sign(u * r) * min(l, ﬂlmu, éﬂ%ﬁm)
a € (0.01,0.5) be (0.1,

The surface-Newton technique suffers from several drawbacks.
First, the algorithm’s robustness is very sensitive to the precise choice
of §. If @ is too large, the nonlinearities in R will corrupt the
derivative estimate. If 8 is too small, the small numerical errors in
solving the electrostatic and elastostatic problems will corrupt the
derivative estimate. Second, each surface Newton iteration requires
a complete solution of the nonlinear elastostatic and electrostatic
equations. Thus the approach may not be very efficient. Third, the
Jacobian employed in the surface-Newton technique is not exactly
identical to the Jacobian of the fully-coupled method presented in
the next section. Hence, the convergence of the surface-Newton
technique may not be optimal for all cases.

III. NEW APPROACH: DIRECT-NEWTON TECHNIQUE

The key idea in the direct-Newton or coupled approach is to ac-
count for all the coupling terms between electrical and mechanical
systems and to compute the coupling efficiently and exactly. Figure 2
summarizes the coupled algorithm for electromechanical analysis.
A coupled approach has been attempted before [7] by employing
a finite element method for both the electrostatic and elastostatic
equations. This approach may not be computationally very efficient
as a finite-element method, in comparison to a multipole-accelerated
boundary-element method, would require the construction of an ex-
terior mesh for the electrostatic analysis. A computationally efficient
approachof a hybrid finite-element/boundary-element method is em-
ployed in the direct-Newton technigue.

y

Next Newton Iteration

Figure 2. A coupled algorithm for self-consistent electromechanical
analysis.

As shown in Figure 2, the outer Newton iteration solves the
nonlinear coupled system, and the linear system within each New-
ton iteration is solved by employing a generalized-minimal-residual
(GMRES) algorithm [8]. The coupled system Jacobian can be di-
vided into four parts: the entirely elastostatic part, often referred

to as the stiffness or deformation-coefficient matrix, which deter-
mines the change in force due to geometric perturbations; the en-
tirely electrostatic part, which determines the change in potential
due to perturbations in surface charge; the mechanical to electrical
part, which determines the change in force due to perturbation in
surface charge; and the electrical to mechanical part, which deter-
mines the change in potentials due to geometric perturbations. The
deformation-coefficient matrix is computed by employing a Galerkin
finite-element formulation. The formulation accounts for both ma-
terial and geometric nonlinearities and is summarized in Figure 3(a).
A sparse storage scheme [9] is employed to store the deformation—
coefficient matrix. The mechanical to electrical coupling, ——(11\4-,
is computed by calculating the variation of the elastostatic residual
equation with respect to the charge and integrating over the boundary
elements on the mechanical domain.
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Figure 3. (a) Computation of the deformation coefficient matrix (b)
Computation of the matrix-vector product employing precorrected-
FFT technique.

The electrostatic or potential coefficient matrix is not needed
explicitly as the GMRES algorithm, within each Newton iteration,
requires only a matrix-vector productinvolving the matrix, a—gf-, and
the charge increment vector, Ag. In earlier approachesto electrome-
chanical simulations [1], [2], [3], a multipole algorithm is employed
to efficiently compute the matrix-vector product. In [10], a precor-
rected Fast Fourier Transform (FFT) algorithm for computing the
matrix-vector product was presented, and as compared to multipole
algorithm, has been shown to be faster and utilizes less memory.
The precorrected-FFT algorithm is employed in our direct-Newton
technique and the computation of the matrix-vector product with this
approach is summarized in Figure 3(b).

The electrical to mechanical coupling term can be computed by
employing a matrix-free approach. The residual equation for the
electrostatic system is given as

Re=Pqg—p=0 4)

where P is the potential-coefficient matrix, ¢ is the charge vector
and p is the vector of applied potentials. An approach to compute
the electrical to mechanical coupling term is given as

dRg G P(u + eAuD)g — P(u)q

B )
3a Au R . (5)

where ¢ is a small parameter and plays a similar role as § does in
the surface-Newton technique. However, we will show in the results
section that the choice of ¢ is not critical for the robustness of the
method. In order to compute the matrix-vector product, ngAu('),




accurately a small value of ¢ is desired and is determined through
an optimization problem [11]. For well-scaled residuals, an optimal
value of € is 0(6%2), where €., is the machine precision.

According to Equation (5), the electrical to mechanical coupling
can be computed by performing two matrix-vector products. The
first matrix-vector product, P(u)g, is straight forward. The second
matrix-vector product, P(u + eAu(i))q, can be obtained by perturb-
ing the panel/conductor geometry from u to u + eAu(® and applying
the precorrected-FFT algorithm.

IV. RESULTS

The direct-Newton technique is compared with the relaxation
technique for two examples: a beam over a ground plane structure
and two silicon bars with one end of one silicon bar and the other
silicon bar held fixed. To make the comparison accurate, a new
relaxation code is developed that also employs a precorrected-FFT
accelerated boundary-element method for the electrostatic equations,
and the finite-element formulation for the elastostatic equations is
similar in both the direct-Newton/coupled and relaxation codes.

Figure 4 compares the peak deflection obtained from the relax-
ation and coupled Newton algorithms for a 500 zm x 50 gm x 14.35
pm beam positioned 1 pm above a ground plane. The results are
identical verifying the accuracy of the coupled solver. The deflection
of the beam for an applied bias of 17.23 V is shown in Figure 5.
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Figure 4. Comparison of peak deflections from relaxation and
coupled algorithms for a beam over a ground plane structure. Note
that the two curves overlap.

Figures 6 and 7 compare the convergence of the relaxation and
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Figure 5. Deflection of the beam for an applied bias of 17.23 V.

coupled algorithms for the beam and ground plane example. The
pull-in for the structure is 17.24 V and note that closer to pull-in
the relaxation algorithm converges slowly, but the coupled algorithm
converges rapidly. The slow convergence of the relaxation algorithm,
near pull-in, is due to the increased coupling between elastostatic and
electrostatic systems. As the direct-Newton technique accurately
accounts for all the coupling it exhibits rapid convergence behavior.
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Figure 6. Convergence of relaxation and coupled algorithms for a
beam and ground plane structure at 17.20 V.
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Figure 7. Convergence of relaxation and coupled algorithms for a
beam and ground plane structure at 17.23 V.

The direct-Newton technique employs a matrix-free approach to
compute the electrical to mechanical computing. The matrix-free
parameter, ¢, is a concern as the method may not work for all values
of e. Figure 8 compares the convergence of the coupled algorithm
for three different values of €. A value of ¢ = 1.0 requires only
one more iteration for convergence as compared to using an optimal
€. No noticeable convergence rate differences are observed between
employing an optimal € and an ¢ larger than optimal by a factor of
100. Hence, the choice of ¢ is not critical for the robustness of the
method, unlike the surface-Newton technique.

Figure 9 compares the convergence of the relaxation and coupled
algorithms for two silicon bars with a potential difference of 850 V.,
The relaxation algorithm fails to converge for this example because
of the strong coupling between mechanical and electrical domains at
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Figure 8. Comparison of convergence for different values of e.
Eopt= sqrt(em), 100¥Eopt= 100- s¢ri(erm ), and E= 1 corresponds
toe =1.0.

850 V. The coupled algorithm not only converges but converges very
rapidly.
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Figure 9. Convergence of relaxation and coupled algorithms for two
silicon bars with a potential difference of 850 V.

V. CONCLUSION AND ACKNOWLEDGEMENTS

The direct-Newton approach is shown to exhibit superior con-
vergence behavior as compared to relaxation method and does not
have the parameter sensitivity of the surface-Newton method. In
addition, unlike the surface-Newton approach, the direct-Newton
method does not require solving nonlinear elastostatic and a linear
electrostatic problem in each Newton iteration. The approach pre-
sented in this paper to compute the electrical to mechanical coupling
term may not be very efficient. We are presently exploring other
approaches and they will be reported in a future publication. The
efficiency of the direct-Newton technique can be further improved
by employing acceleration techniques, such as preconditioners, and
this is also being studied.
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