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1 Introduction

In analyzing the hydrodynamic interaction of s bedy and free-surface weves, boundary integral equation
methods (BIEM) are currently mcre nopular than volume methods like finite-element (FEM) because: (1)
these are exterior problems, but BIEM with a suizable Green function ofsen allows the computational surface
to be the body surface alone; and (2) the complexity of the body geometry and the time dependence of the
free-surface geometry may make surface grids easier to generate thau volume grids.

Classical BIEM are computationally expensive because they generate dense linear systems, whereas
FEM generate larger sparse systems. Using iterative methods, the computational cost (time expended and
memory allocated) of solving an N x N dense syste:r is at least order N2, but can be as low as order N
for an N x N sparse system. So in three dimensiois, if n unknowns zre required per dimension, the cost of
BIEM will be n* and the cost of a volume method as low as n3. Recently, there have been advances in the
acceleration of BIEM which amount to sparsi§ication techniques for itiie cense systems. The most widely
implemented of these is multipole acceleratior: | M £ ), which hes been shown to reduce thz computational
cost to order (n? = N) [1, 2].

The MA algorithms have been instrumental in a significant shortening of the duration cf the design cycle
for many problems in low fraquency electromagnetizs, where the Green {unction is the Rankine free-space
Green function, there are only piecewise-constant Dirichlet boundary conditions and engineers routinely
contemplate problems with order 10° unknowns. However the MA :lgorithms have been slow to catch on
in the hydrodynamics community where complicaced Green functions. may be used to satisfy free-surface
and periodic boundary conditions, the need for krowing the fluid velocity as well as the potential has mo-
tivated the use of higher-orcer panels. and the Neu: ann/Dirichlet boun-ary intersections have motivated
special treatments for some paneis or nodes. While such problens iney be treated with MA in principle,
the implementation is daunting. Only in hydrod namic problems cast as Gesingularized or vortex-dynamics
formulations, using the fundamental free-space Green functions, are rssearchers benefiting from MA algo-
rithms.

An algorithm which avoids sonte of these shoricomings is the precorrected-FFT method [3, 4]. In this
abstract, the precorrected-FFT niethod will be described and indicatore of os performance for hydrodynamic
problems will be provided.

2 A Linearized Hydrcdynamic Problem

Consider the familiar linearized frequ ncy-donain ~o.diation/diffracticr p::blem for a body with surface Sj,
upon which there is a unit zormal vecter 7, i the semi-infinite fluid dorrair V, under the free surface Sy.
A potential ¢(Z;w) is to be found which satisfies the field equation

Aldiwy =0 Zev, (1)
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Z = (z,y,2z) € R® with z = 0 the plane of ;. ¥'{Z;w) must also satisly the boundary conditions
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(—w“+95‘;)’¢’=0 ZES, n-Ve=f(&) Z € Sp, (2)

and a radiation condition. This bcundary-valve problem may be recast as a boundary-integral equation to
be solved on S; by Green's theorem znd the Green function
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in_‘ which 7 is the Euclidean distance between # and 5: 7' is that dissance between # and the image point
(€ reflected about Sy v= “’—2, R is the horizontal distance between # and 5-: and J, s the zeroth-order
Bessel function. A collocation procedure combined “vith discretization of the body surface into N constant
strength planar panels leads to the dense linear system

Dy =Ff (5)

N 3 00 . .
where p, f € R" are the vectors of uiknown raszi cotentials and krows panel Neumann boundary condi-
. . Y ; .
tions respectively, and D, P € R™*N are given by

1 - F— 1 ~ ot 2
Dij = — | dén; - VGH(#i;6, ), and Pij=— f 4¢ G (€ w) (6)
a; panel, a: porels

where a; and n; are the arza and the unit vector ncrmal fo- the J-th panel, and &; is the i-th collocation
point,.

Typical radiation/diffraction vrozrams soive (€) vsing either direct factorization or an iterative proce-
dure. Direct factorization grows in computations! cost like N 3, and =0 is too expensive for problems with
more than a few hundred panels. Tle compui:' v ul costs of iterai e zrocedures grow .ike N2, so such
methods can be used for prcblems with up 1o « few thousand pancls. However, to analyze a structure
like a platform supported by an array of cylinders, order 10° panels may be needed. It is hopeless to use
a standard iterative procedure to solve such a protlam, siace storing te associated matrix would require
order 10? gigabytes.

3 The Precorrected FFT Algorithm

coly rasrix-vector

v cuessiig a p0) evels

products are required. To see this,
21'ng the resulting residual

When an iterative procedurs is used ‘o solve (7
consider that most iterative procedi :es solve (fi

i
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and then updating the guess by computing pt = (0%, ), where the fuaction F depends on the specifics
of the iterative method. It is possible to use the fuct that iterative methods only require matrix-vector
products to both: avoid the N? cost of explicitly “rming and storing 7 and D, and to reduce the time
of computing Pf — Dp°® to typicedly order NV g V. Tuch an approach, the precorrected-FFT algorithm, is
presented below. Only the computetisn of Dp, vlic . is a potential, wiil be described, as the computation
of Pf can be handled identically. Alsc for sim=!ficeion, et GF - G +%l 'oss of generaiity will be rectified
once the basic concepts of the alzcrilim have !+ ¢ 1tlined.

To develop a faster approach tc computing Dy, after ciscretizing the oroblem into N panels, consider
subdividing the problem domain into an array of s.nall cubic cells so that each cell contains only a few
panels. If the problem were homogereous (whick * s not, in geceral) the e would be order N cells. Several
sparsification techniques for [ are hased on the icea of directly computing orly those portions of Dp
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Figure 1: A 2-D schemati: ci the L. orrected 77 . Figuoe 2o a0 cray ofeylia s, each with 240
algorithm. Interactiors with e sauels (in the paels.
grey area) are computed direc: cractions be-

tween distant parels are “orirvi o ng the e’

associated with interacticns betwee: sapels in neightoring cells, with he -+t of Dp somehow approximated

to accelerate the computation. The 1A algorith mi rmentioned above « o,.- oxample.

Another asproach to Omiputing L Lteat inteie tossis te exploit £'.e % .t i at evaluasi- n points distant
from a cell an element of Dp za. e ocmputed & curately by represe Jhie cail’s singr .arity distribution
using a small number of we ght. -~ ¢ singifz..biee. Figr 1 siar 1 o0 he approxd © _te computation

of Dp consisting of th> fellovie s i+ 1. steps:

L. Project the panel sing=lazi v i :tributions ontc a uniform grid of point singularitizs (the “grid singu-
larities” ;.

2. Compute Dp for evaluation poiats at the grid voints (the “grid note :ial”) due to grid singularities.
3. Interpolate the grid potentia: ¢ ato the pan:ls.

4. Directly compute the neat’sy |1 sracticss.
There are several possible an o« hes to comouting the the grid » 10 ity strengths s0 as to represent
fective approaca is to require thav i potential of the grid singularities

the panel potentials accurately. < i :
representing a panel singularity =~ bution mat h 11e exact potentiui of the panel singilarity distribution

at carefully chosen test points. As tnown in [3], & good choice of test points are Gaussian quadrature points
on a surrounding sphere twice the d.ameter of t1e cibe. Empirical tesults indicate that a 3 x 3 x 3 array
of grid singularities per unit cell v} approx.aiz ¢ 72 potential well e Lo insure that the solution to
(5) is accurate to 0.1%, provided ‘la the grid singularities are used +« - ro’mate the pznel potentials at
least one cell distance away.

Once the grid singularitics ' -« | 2n deteir 1o, the grid nower .1 13t be computz. The potential
at a grid point £ is the sum of t1: ¢ “budous f 5 all of the gric i o cities. Since tic ree-space Green
function G(Z;¢) depends oniy . ¢ ¢ ~¢lative d: e between the L i« & and €, the regular grid allows

£
the computation of the gric pc -+ -zl Lo be caried out by a three-ditnensional space-invariant discrete
S F
vai ant, it can be computed using the FFT in order M log M

convolution. Since this convelut, . -
operations, waere M is the nun b oir.s. Or, from a linear algebra point of view, one can note




that the matrix mapping the gl sogularities to the grid poteitia! ‘s & bie -ck~Toeplitz matrix which can
be embedded in & larger block-c're ot ma i, ad this block-circuliat matrix can be diagonalized by the
discrete Fourier transform.

Once the grid potential has been computed, it imust be i‘iferpolated %o
points. It is easily shown that ar zccirate interpolation operator can =
the test-point based projection or described ebove.

The combination of prOJectxox':, F.T-accelere el convolution, anc 2« >olation can be used to approxi-
mately compute Dp in order N lcs /2 “nerasions, =ovided the densmf SECRRY 91 in space is relatively uniform.
Unfortunately, in *his approxim=: s of Dp asscciated v - neighboring cell interactions is
not accurate. This iraccurate n-a v represeriiiion must be remov:! end replaced with the exact direct
calculation. It is possible to co s ¢ a “precc recied” airect inseraciisa operator for the panels in two
cells a and b, b which consists vi ie direct n—. raction operator 1cr these neighboring ceils, but with the
errors introduced by the grid singuiariiies exacsl s wubtracted out. When used in conjunction with the grid
singularity represcntatxon Lg% resulis 1a the exact caleulation of the 1ate: actions between panels which are
close. D3 is expensive computv witially, but ces.s 10 raore to appiy i the uncorrected Day.

In solvmg potential integral ecuwtions, it “cuce the size of she problem by
formulating a Green function wiuc »ccounts fo wne special geometi: <. - system, thereby removing part
of the problem doraain from cons < - : - -surface Green function GY (&€ )
eliminates the need to explicitly s 5« for unkrow: ortunately, the precorrected-FFT
method described above cannct "o .ad for e valcuiating the grid potential

~d the potential at the collocation
"-f::te:mined using the transpose of
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P hrep functior: 6
from the grid singularities will n. =1 =er be s speooarzriant. However the free-surface Creen function does

have a structure that can be expic:ten by conve.utica with a modified ferm of the FFT. Note that, at any

given frequency, equation (3) mey be written
Gf('f';é,u) ==y -y =+ G~y g2+ {). (8)

cn z+¢, = general difficulty

o the grid .otentials in this
tc the firut serm of (8), and
\_

The Toeplitz-like part of

$....

The difficulty for the precorracta LUE method o les the second ta
in problems with planar intesfacs. o ne mabig oo noing *J e gri d 10
case is then a sum of a ma:rix "‘/i 1omock-ler oz ss;rwmie, correst
a matrix with block-Hanke! IO A

TOorres

the matrix corresponds o d‘s< ooconmve i wonlbh e fres-space O function, ei:¢ can be treated
directly with the FFT as desciilec a'.\ove. Becose o Hankel matiis is o za‘bsd to & Toeplitz matrix via a
permutation matrix which is sin s? cocomipute. v tiplication by a Fexniel matrix may elso be done with
order N log N operations via the F1T. Y‘urtmn“. o, che permutatior .2 ix may be represznted in Fourier
space so that multiplication of : vl oof a Hankel a7 " ¢piitz matrix can be performed

45 wo each iteratics ! t{ype of Greer function may be
« dlagenal matny v e perrnutation tsatrix, requiring

using a single forward and inver o v 7 pair,
incorporated by multiplication i: '+
negligible additional computatic . | »,

4 Algorithm Perfc.

A preliminary indication of the piiosance of f: vracorrected-FF D a!ourichm for free-surface problems
may be found by solving a sancric- wobrmiation (with oo shysical s iO‘niﬁ:"mce}. For this

problem only the body surfice i ¢ the Dinchlet beu. zondition j(.r,, == 1, & € Sy set,
and the source strengih whizh @ - e folds fouad by s len e first-kinc i 'egral equation.

e gecmietry considered is an
h and problems

The kernel of this equation i3 Sreen uncuon
array of cylinders as shown i 7 = T
with increasing numbers of “otal i s sre d . tutions for three
cylinder arrays are compuied ar< ' comp .; ril cost is reportes 15 Lab) ocated memory
increases with /V as exvecied. i ane exnen inf ner 'n::ration apreas fo increase al :z slightly slower
rate (and clearly a slower rate tian 7 .og N) becanss overhead is beir + an.ortized over a greater number of
iterations as NV increases.

s are d iscretizey v ¢
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Number of Panels | Number cf ¢
38490 1
15360 1e
61440 ‘

+7 ons { WMemory /. {scanion | CPU Time
TE 42
41 182

) 1r. 788

e O

1
|
i
i
i
H
i

Table 1: Performance of the precorrecied-FF'D cia using the free-spice irzen function G{7;€) on an IBM
990 workstation. Memory alloca ica is reportec .o megabytes and TP« me is reported in seconds.
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Discussion
e W. Schultz: This method lco¥= like the ¢ teo-in-cell nethod. 2wl at way is it sirailar and different?

o T. Korsmeyer: There are quite a few 1.0 hods for Sae solution 57 <he Foisson, Lap:ace, or Helmholtz
equations which use the FF' {0 accours for ong range particle ¢ Loundary element interactions
(see [1]). The distinction betvieen methods s oiten in how the shor: range interactions are accounted
for. For the method preseusied here, w: beieve the projection, interpolation, and pre-correction
operations are unique.
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