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ABSTRACT

An efficient algorithm for self-consistent analysis of 3-D micro-
electro-mechanical-systems (MEMS) is described. The algorithm
employs a hybrid finite-element/boundary-element technique for
coupled mechanical and electrical analysis. The coupled algorithm
is shown to converge rapidly and is much faster than relaxation for
tightly coupled problems.

I INTRODUCTION

In order to investigate design alternatives, designers of novel
MEMS structures need efficient, robust and easily used computer
simulation tools. And since most of the structures of interest are geo-
metrically complicated, electromechanically coupled, and are inher-
ently three-dimensional, Micro-Electro-Mechanical CAD (MEM-
CAD) tool developers have been focussed on improving the us-
ability, efficiency and robustness of coupled 3-D electro-mechanical
analysis. The behavior of micro-electro-mechanical devices can be
predicted by the solution of coupled problems involving mechan-
ical or elastostatic analysis and electrical or electrostatic analysis.
The numerical techniques employed for coupled electro-mechanical
analysis have so far been based on relaxation [5], [6] and a form
of surface-Newton method [2], [19]. In particular, finite-element
based elastostatic analysis and accelerated boundary-element based
electrostatic analysis have been combined using algorithms based on
relaxation and a form of surface-Newton method. The relaxation
algorithm is easy to program, only requiring that data be passed back
and forth between “black-box” elastostatic (¢.g. ABAQUS [10]) and
electrostatic (e.g. FASTCAP [13]) analysis programs. However, the
algorithm diverges if the structure is too flexible or the electric fields
are too large [19]. Matrix-free surface-Newton methods preserve
the “black-box” nature of the relaxation algorithm and have better
convergence properties, but also have perturbation parameters which
must be tuned for good performance. In addition, each surface-
Newton iteration requires several nonlinear elastostatic and linear
electrostatic analyses. Hence, the surface-Newton approach is not
very efficient. In this paper, we present a new technique to improve
the efficiency of coupled 3-D electro-mechanical analysis.

This paper is organized as follows: The elastostatic and electro-
static analysis are described in Sections II and III, respectively. A
coupled approach to 3-D electro-mechanical analysis is presented in
Section I'V. Numerical results are presented in Section V and finally
conclusions are given in Section VI.

II. ELASTOSTATICS

Micro-mechanical structures undergo large deformation when
subjected to electrostatic actuation. The nonlinear structural de-
formation can be determined by considering the equilibrium of the
body in the deformed configuration. Since the deformed structural
configuration is not known, the equilibrium equations can be trans-
formed and expressed with reference to either the original unde-
formed, unstressed configuration or to the last computed deformed
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configuration. The first approach, where the equilibrium equations
are expressed with reference to the original configuration, is defined
as the total Lagrangian (or simply Lagrangian) technique and the sec-
ond approach is defined as the updated Lagrangian technique (see
e.g. [3] for differences between the two approaches). A key issue
with either approach is the appropriate definition of stress and strain
measures. In a Lagrangian approach, the technique employed in this
paper, the appropriate stress and strain measures are, respectively,
the 2nd Piola-Kirchoff stress tensor and the Green-Lagrange strain
tensor [12].

Denoting €2 to be the initial configuration occupied by a material
body and I to be the material boundary, the nonlinear equilibrium
equations for finite deformation of a structure, expressed with refer-
ence to the initial configuration, are summarized as follows [12]:
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where F' = Vo is the deformation gradient matrix, ¢ is the trans-
formation which maps points from the original configuration X to
the deformed configuration  ie z = ¢(X), S is the symmetric
Piola-Kirchoff stress tensor, po is the density of the material, f is
the body force, g are the Dirichlet boundary conditions specified
on the boundary I'y, the tractions h; are the natural boundary con-
ditions specified on the boundary I'y;, Fia = 8¢i/dXa, Sap,
1 <1, A, B < 3 denote the components of the deformation gradient
and stress tensor, respectively, and Np is the unit outward normal.
The transformation ¢(X) can be written as

t=p(X)=X+u (4)

where u is the unknown displacement vector. The stress components,
Sag, are related to the strain components, £ 4 5, by the constitutive
equation
oW (E) '
Sap = 5
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where W(Eap(¢)) is the stored energy function of the material.
The strain components are related to ¢ by the relation
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where 6 4 5 is the Kronecker delta.

Equations (1)-(6) summarize the fundamental nonlinear elas-
tostatic model for finite deformation of a structure. The coupling
to the electrostatic equations appears through the surface tractions.
The surface charges create an electrostatic pressure that acts in the
direction of the structure surface normal. The electrostatic pressure
is given by the expression

h=gFaso )
where o is the surface charge density, determined through a solution

of the electrostatic equations, and F, is the normal electric field at
the surface.



A. Finite Element Formulation

The nonlinear elastostatic equations are discretized by employing
a Galerkin finite element method. Denote 7 to be a test function and
let the variational functional spaces § and V consist of continuous
functions with square integrable first derivatives. The solution space
S is the set of all such functions satisfying the Dirichlet boundary
conditions. The weighting or test function space V' is made up of
functions whose value is zero where Dirichlet boundary conditions
are specifiedi.e.
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The weak-form of elastostatics is then stated as follows: Given

po, f,gand k;, find u € S suchthatforally € V
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Let §* C S and V* C V be finite dimensional approximations to
S and V respectively. The Galerkin form is then stated as follows:
Given po, f, g and ki, find u” € $" such that for all p* € V*

/ V" 1 [Ve"S*(E"("))] dQ~ / pofn"dQ— / 7*hdl =0
Q Q Ty
(11)

To construct a matrix form, the trial and test functions are approxi-
mated by linear basis functions i.e.

nnd

1z

(13)

where nnd is the number of finite element nodes, N, is the shape
function of node a, d. is the unknown displacement vector of node
a, and ¢, is the arbitrary weighting function vector. Substitution of
(12) and (13) into the Galerkin form (11) leads to a nonlinear system
of equations which is linearized and solved incrementally for the
displacement u. The nonlinear residual equation for a finite element
node, a, is given as
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,: denotes differentiation with respect to the ¢th coordinate and .S;;
is the 1, yth component of the stress tensor.
III. ELECTROSTATICS

In electrostatic analysis, the conductor potentials are specified
and the potential must satisfy the Laplace’s equation in the region

between the conductors. The charge on each conductor can be
determined by solving the integral equation [16]

= , 1 ' .
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where 1 () is the known conductor surface potential, o is the surface
charge density, da’ is the incremental conductor surface area, x,
!

g’ € R’, and ||z|| is the usual Euclidean length of = given by
VEd+ 22+l

A standard approach to numerically solving (16) for & is to use
a piece-wise constant collocation scheme. That is, the conductor
surfaces are broken into n small panels, and it is assumed that on
each panel ¢, a charge, ¢;, is uniformly distributed. Then for each
panel, an equation is written which relates the known potential at the
center of that s-th panel, denoted 7;, to the sum of the contributions
to that potential from the n charge distributions on all n panels [15].
The result is a dense linear system,

Pg=7 (17)

where P € R™*", g is the vector of panel charges, € R™ is the
vector of known panel potentials, and
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where z; is the center of the i-th panel and a; is the area of the j-th
panel.

The dense linear system of (17) can be solved to compute panel
charges from a given set of panel potentials. If Gaussian elimination
is used to solve (17), the number of operations is order n>. Clearly,
this approach becomes computationally intractable if the number of
panels exceeds several hundred. Instead, consider solving the linear
system (17) using a conjugate-residual style iterative method like
GMRES [17]. Such methods have the form given below:

Algorithm 1: GMRES algorithm for solving (17)
Make an initial guess to the solution, ¢°.

Setk = 0.

do {

(18)

Compute the residual, r* = 5 — Pg¢*.
if ||7|| < tol, return ¢* as the solution.
else {
Choose o’s and § in
FH =3 jaid + prt
to minimize [jr*+!||.
Setk =k + 1.
}
}

The dominant costs of Algorithm 1 are in calculating the n?
entries of P using (18) before the iterations begin, and performing
n? operations to compute P¢* on eachiteration. A precorrected-FFT
algorithm which, through the use of carefully applied approximations
and transform techniques, avoids forming most of P and reduces the
cost of forming Pg* to order n log n operations.

A. The Precorrected-FFT Approach

The precorrected-FFT approach generates an implicit approxima-
tion to P which can be used to compute the matrix-vector products
Pgq rapidly [14]. In this approach, the interaction between nearby
panels is computed explicitly. These entries in the potential coeffi-
cient matrix, P, are computed by employing Equation (18).

In a subsequent step, the portion of the matrix-vector product Pg
associated with distant interactions is computed by employing an



FFT algorithm. Specifically, a three-dimensional grid is first con-
structed to include all the panels. The charge in each panel is then
projected onto the grid. The potential at the grid points due to grid
charges is a three-dimensional convolution. The convolution can be
computed rapidly by employing the FFT algorithm. The grid poten-
tials are then interpolated onto the panels to obtain the potential on
each panel. The problem, however, with the FFT approach to com-
pute distant interactions is that the computation of the matrix-vector
product for nearby panels is duplicated. In addition, the calcula-
tion of the nearby potential by grid approximation is not accurate.
Hence, the poor approximation generated by the grid approach to
nearby panels is subtracted from the direct interactions. This step is
referred to as the precorrection. The matrix-vector product is then
obtained by adding the precorrected direct interactions and the grid
approximated distant interactions.

IV. COUPLED ALGORITHM

In a coupled approach to 3-D electro-mechanical analysis, the
elastostatic and electrostatic equations are solved as a single sys-
tem. This approach, in comparison to the relaxation algorithm, takes
into account the strong coupling between electrical and mechanical
systems and in comparison to the surface-Newton technique avoids
the several nonlinear elastostatic and linear electrostatic solves dur-
ing each inner iteration. A coupled approach has been attempted
before [18] by employing a finite element method for both the
electrostatic and elastostatic equations. This approach may not be
computationally very efficient as a finite-element method, in compar-
ison to a precorrected-FFT accelerated boundary-element method,
would require the construction of an exterior mesh for the electro-
static analysis. A computationally efficient approach of a hybrid
finite-element/boundary-element method is employed in this paper.
A coupled algorithm for electro-mechanical analysis is shown in
Figure 1. The outer Newton iteration solves the nonlinear coupled
system, and the linear system within each Newton iteration is solved
using the GMRES algorithm.

Next Newton Iteration

Figure 1. A coupled algorithm for self-consistent electro-mechanical
analysis.

A number of issues must be addressed in the coupled approach.
First is the efficient computation of the coupled system Jacobian or
the matrix-vector product involving the Jacobian and the displace-
ment/charge vector when employing iterative solution techniques.
Second is the storage cost for the coupled system Jacobian. Matrix-
free techniques can be used to advantage to minimize storage cost.
However, the robustness of the matrix-free technique is very sen-
sitive to the precise choice of the perturbation parameter. If the

perturbation parameter is too large, the nonlinearities in the residual
will corrupt the derivative estimate. If the perturbation parameter is
too small, the small numerical errors in solving the electrostatic and
elastostatic problems will corrupt the derivative estimate. Third is
the definition of appropriate units for the Jacobian and the residual.
The variables in the elastostatic and electrostatic equations repre-
sent different units and scales and care should be exercised when
computing the Jacobian or the residual. This is easily handled by
nondimensionalizing both the elastostatic and electrostatic systems.
The issues of storage and efficient computation of the Jacobian are
discussed in the following paragraphs.

The coupled system Jacobian can be divided into four parts:
the entirely elastostatic part, often referred to as the stiffness or
the deformation-coefficient matrix, which determines the change in
force due to geometric perturbations; the entirely electrostatic part,
which determines the change in potential due to perturbations in sur-
face charge; the electrical to mechanical part, which determines the
change in force due to perturbation in surface charge; and the me-
chanical to electrical part, which determines the change in potentials
due to geometric perturbations. The deformation-coefficient matrix
is computed by employing a Galerkin finite-element formulation as
discussed in section II. The formulation accounts for both material
and geometric nonlinearities and is summarized in Figure 2(a). A
sparse storage scheme [11] is employed to store the deformation-
coefficient matrix. The electrostatic or the potential coefficient ma-
trix is not needed explicitly as the GMRES algorithm, within each
Newton iteration, requires only a matrix-vector product involving
the matrix, —gf— and the charge increment vector, Ag. This matrix-
vector product can be computed by employing the precorrected-FFT
algorithm discussed in section II. In earlier approaches to electro-
mechanical simulations [5], [6], [19], a multipole algorithm [8] is
employed to efficiently compute the matrix-vector product. The pre-
corrected FFT algorithm, as compared to the multipole algorithm,
has been shown to be faster and more memory efficient [14]. The
computation of the matrix-vector product with the precorrected FFT
technique is summarized in Figure 2(b).
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Figure 2. (a) Computation of the deformation coefficient matrix (b)
Computation of the matrix-vector product employing precorrected-
FFT technique.

A. Electrical to Mechanical Coupling

The electrical to mechanical coupling, —M- , is obtained from
Equation (14) as

2 i / N2k dF (19)

where RS, is the residual equation for the finite element node a, and
noting that o = ¢/A, where A is the panel area, 3k /8q is obtained



trivially from Equation (7).

The computation in Equation (19) can be performed by com-
puting an equivalent pressure (8h/dq) for each boundary face that
belongs to both mechanical and electrical domains. The size of the
mechanical to electrical coupling matrix is 3m x n where m is the
total number of finite element nodes on the mechanical domain and
n is the total number of surface panels on the electrical domain. This
coupling matrix is, however, very sparse as each finite element node
belongs to only a few panels. Hence, only the non-zero entries of
the coupling matrix are stored.

B. Mechanical to Electrical Coupling

The mechanical to electrical coupling term can be computed by
employing a matrix-free approach. The residual equation for the
electrostatic system is given as

Rg = P(u)g—F =0 (20)

where P(u) is the displacement dependent potential-coefficient ma-
trix, ¢ is the charge vector and 7 is the vector of applied potentials.
An approach to compute the mechanical to electrical coupling term
is given as
R ) g —
88 B au®) P(u + eAu'”)g — P(u)g
w €

(21)

where € is a small parameter. In order to compute the matrix-
vector product, %flAu("), accurately a small value of ¢ is desired
and is determined through an optimization problem [7]. For well-
scaled residuals, an optimal value of ¢ is O(e},{z), where ¢, is the
machine precision. Unlike the surface-Newton technique, the choice
of the matrix-free parameter, ¢, is not critical and does not effect the
robustness or the accuracy of the coupled algorithm [1].

According to Equation (21), the mechanical to electrical coupling
can be computed by performing two matrix-vector products. The
first matrix-vector product, P(u)g, is straight forward and is com-
puted in the outer Newton loop. The second matrix-vector product,
P(u+ eAu('))q, can be obtained by perturbing the panel/conductor
geometry from u to u + eAu(® and determining the new poten-
tial coefficient matrix, P(u + eAu(")). The second matrix-vector
product is computed in the inner GMRES loop by employing the
approximations generated by GMRES to Au(®).

The two matrix-vector products required to compute the electri-
cal to mechanical coupling can be obtained by employing either the
precorrected FFT technique or a direct method. In a setup phase,
the precorrected FFT technique computes all the transformation ma-
trices (precorrected direct interactions, projection of panel charges
onto grid, FFT and projection of grid potential onto panels). The
transformation matrices are a function of the geometry and need to
be computed once. In a subsequent evaluation phase, the matrix-
vector product can be computed in order n log n operations. Clearly,
the overhead in the precorrected FFT technique is the setup phase.
In order to compute the matrix-vector product, P(u + eAu(*))q, a
setup is needed during each iteration of the inner GMRES loop. An
additional setup is needed if a preconditioner is to be employed (dis-
cussed in the next section). A computationally efficient approach
is to employ a direct method i.e. for nearby panels the potential
is computed using the exact analytical formulae [9] and the distant
panels are evaluated using quadrature rules. The complexity of the
direct approach is order p® + 2pg, where p is the number of panels
on the mechanical domain and p + ¢ = n. As will be discussed
below, a preconditioner can be applied very efficiently with a direct
calculation. In either approach, only two vectors of size » need to
be stored to compute the mechanical to electrical coupling.

C. Preconditioner

A block diagonal preconditioner of the form

_| Bau O .

Y )
is applied to the coupled linear system to accelerate the convergence
of the GMRES algorithm. In the above equation, IT denotes the
preconditioner, Ras, = 9Rar/0u is the deformation coefficient
matrix, and Rg, = dRp/dq is the potential coefficient matrix. The
preconditioned linear system is written as

1I R3} Rug Au(f) — _ R;\;,IQILRM
Ry Rpu I Ag®) Ry Rz

where Rurq = 9Rpr/0q denotes the electrical to mechanical cou-
pling and Rg, = @Rg/du denotes the mechanical to electrical
coupling.

Consider first the calculation of the right hand side vector in Equa-
tion (23). The mechanical and electrical residuals, the deformation
coefficient matrix and the transformation matrix (setup phase) of
the precorrected FFT algorithm are computed in the outer Newton
loop. The deformation coefficient matrix is stored in sparse ordered
and factored form. A sparse solver is then employed to compute
R;ju R R;};R £ is computed by employing the GMRES algo-
rithm. The matrix-vector product needed in the GMRES algorithm is
computed by employing the evaluation pass of the precorrected FFT
algorithm. Note that no setup phases are needed inside the GMRES
algorithm. Next, consider the computation of R;}u R Mqu(’) and
RE:; R, Au!) required in the inner GMRES loop. Denoting v&’ )
and vg] ) 1o be the jth iteration GMRES approximations to Au(*)
and Aq"), respectively, R Mqvgj ) and Rz, v&’ ) are first computed.
A sparse solve is then employed to compute R;juRMqvgj ) and
a GMRES solver to compute Ry, Rpav\”). The preconditioned
Newton-GMRES algorithm is briefly summarized in Algorithm 2.

Algorithm 2: Preconditioned Newton-GMRES technique

while not converged /* outer Newton loop */
compute R, Re
compute transformation matrices for precorrected FFT
compute and factor Ras.,
sparse solve to obtain Ry}, Ras
use GMRES to compute R5! R
while not converged /* inner GMRES loop */
/* steps to compute matrix-vector product in
Jth gmres iteration */
compute Rasqvs”
sparse solve to obtain R/, R wqvs?
compute R, v\
use GMRES to compute R5: Rpu v’

/* remaining steps of gmres not shown */

end while

update «

update ¢
end while

V. RESULTS

Numerical results are presented for two examples: a beam over
a ground plane structure and a comb drive structure. The perfor-
mance of coupled and relaxation algorithms is examined for both



Figure 3. Deflection of the beam for an applied bias of 2.38 V.

examples on a Dec alpha workstation. In particular, the convergence
characteristics and the simulation times are compared.

The beam structure considered is 80 ym long, 10 pm wide, 0.5
pm thick, and is positioned 0.7 pzm above the ground plane. When
a positive potential with reference to the ground plane is applied on
the beam, the beam deflects towards the ground plane because of the
electrostatic force. As the potential difference increases, the tip of
the beam approaches the ground plane, and touches the ground plane
for a certain bias defined as the pull-in voltage. The pull-in voltage
for the beam considered here is 2.39 V. The deflection (not to scale)
of the beam at 2.38 V is shown in Figure 3.

The comparison of relaxation and coupled algorithms for the en-
tire bias sweep is summarized in Table I. As the bias approaches
the pull-in value, the relaxation algorithm requires more iterations to
converge. This is due to the increased coupling between elastostatic
and electrostatic equations and the relaxation algorithm converges
more slowly or fails to converge in the tightly coupled case. Com-
parison of the simulation times reveals that the coupled algorithm is
competitive with the relaxation algorithm when the relaxation algo-
rithm converges rapidly (see e.g the simulation times for an applied
bias of 1.0 V). For an applied bias larger than 1.0 V, the coupled
algorithm is very efficient and runs much faster compared to the
relaxation algorithm. To predict the pull-in voltage for the beam
structure, the relaxation algorithm takes a total of 91285.9 seconds
while the coupled algorithm takes 42885.8 seconds. So the coupled
algorithm is about 2.13 times faster than the relaxation algorithm for
this example. We have obtained greater speedups for other devices.
A comparison of the convergence behavior of relaxation and coupled
algorithms for an applied bias of 2.38 V is shown in Figure 4.

TABLE1
COMPARISON OF RELAXATION AND COUPLED ALGORITHMS FOR
NUMBER OF ITERATIONS AND CPU(SEC) FOR A BEAM AND GROUND

PLANE EXAMPLE

Bias # Iterations CPU(sec)

Relaxation | Coupled | Relaxation | Coupled
1.0 6 3 35114 3768.4
1.5 8 3 4753.5 4070.6
2.0 13 4 7693.5 5251.7
225 | 20 6 11756.6 9096.9
235 | 36 6 20821.9 8953.8
238 175 7 42749.0 117444

The comb example consists of a deformable comb structure, a
drive structure and a ground plane. When a positive potential is
applied on the drive structure, and zero potential on the comb and
the ground plane, the comb structure deforms out of plane. The
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Figure 4. Comparison of convergence of relaxation and coupled
algorithms just before pull-in for the beam and ground-plane example

Figure 5. Deflection of the comb for an applied bias of 85 V.

deformation (not to scale) of the comb structure for an applied bias
of 85 V is shown in Figure 5. Note that only the deformation of the
comb structure is shown as the drive and the ground plane do not
move.

TABLE II
COMPARISON OF RELAXATION AND COUPLED ALGORITHMS FOR
NUMBER OF ITERATIONS AND CPU(SEC) FOR A COMB DRIVE
EXAMPLE (A * INDICATES THAT THE ALGORITHM FAILS TO

CONVERGE FOR THE BIAS)

Bias # Iterations CPU(sec)

Relaxation | Coupled | Relaxation | Coupled
250 | 7 6 35954 5589.8
50.0 | 16 8 9138.0 11833.5
750 | 70 10 42160.3 18590.7
80.0 | 142 9 81827.0 16670.2
85.0 | * 10 * 18490.9

A comparison of the relaxation and coupled algorithms for the
comb example is summarized in Table II. At low voltages, the
deflection of the comb is small, the coupling between the electrical
and mechanical systems is weak and the relaxation algorithm works
very well. At low voltages, the coupled algorithm takes half as
many iterations as the relaxation algorithm and the simulation time
for the coupled algorithm is a little longer. For higher voltages, the
coupled algorithm converges much faster compared to the relaxation



algorithm. For a bias of 80 volts, the coupled algorithm is about
3.8 times faster. The convergence of the relaxation and coupled
algorithms at 80 V bias is shown in Figure 6. For an application
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Figure 6. Comparison of convergence of relaxation and coupled
algorithms for a comb example at an applied bias of 80 V.

of 85 V on the drive, the relaxation algorithm fails to converge.
The coupled algorithm converges very rapidly and takes only 12
iterations. This is illustrated in Figure 7.
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Figure 7. Comparison of convergence of relaxation and coupled
algorithms for a comb example at an applied bias of 85 V.

VI CONCLUSION AND ACKNOWLEDGEMENTS

In this paper, we presented a coupled algorithm for 3-D electro-
mechanical analysis. The coupled algorithm employs a Galerkin
finite-element method for the elastostatic analysis and a boundary-
element method with precorrected FFT acceleration for the elec-
trostatic analysis. The mechanical to electrical coupling term is
computed by direct integration and a matrix-free technique is em-
ployed to compute the electrical to mechanical coupling term. A
block diagonal preconditioner is applied to accelerate the conver-
gence of the GMRES algorithm. Numerical results presented for
3-D electromechanical structures show that the coupled algorithm
converges rapidly and is much faster as compared to the relaxation
algorithm. Convergence of the coupled algorithm is demonstrated
for a comb drive example for which the relaxation algorithm fails to
converge.
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