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ABSTRACT 

In this paper we present several techniques to improve 
the efficiency and accuracy of the precorrected FFT 
accelerated Fast Stokes solver based on a boundary element 
discretization of the integral form of the incompressible 
Stokes flow equations. It is shown that a factor-of-three 
reduction of grid data storage may be achieved by deriving 
an alternative form of the Stokes kernels using second order 
derivatives of the distance function. We propose two new 
techniques of approximating the second derivative 
operators; using a separate projection operator for each 
derivative and a finite difference discretization. The 
implementation using the finite difference discretization is 
shown to result in an order of magnitude improvement in 
accuracy compared to the other. 
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1 INTRODUCTION 

The efficient computation of fluid drag forces on 
micromachined devices such as comb-drive based 
structures (see figure 1) is a key step in the design and 
analysis of such devices. At the length scales at which these 
devices operate the Reynolds number (Re) of the flow is 
typically quite small (Re<1). Moreover, fluid compression 
may be ignored for devices using lateral actuation. Hence, it 
is justified to neglect the inertia terms in the Navier-Stokes 
equations compared to the pressure and viscous terms and 
solve the corresponding Stokes flow problem (linear) for an 
incompressible fluid [1]. 

Due to the innately 3D nature of the devices and the 
complicated geometries involved, it is computationally 
advantageous to use a boundary integral formulation of the 
Stokes equations [2]. In ref. [1] a Fast Stokes solver was 
presented based on a precorrected FFT [3] acceleration of 
the boundary integral method. The computational 
complexity of the approach is O(nlog(n)), where ‘n’ is the 
number of panels used in the discretization of the surface of 
the device. This allowed the accurate computation of drag 
forces in a matter of minutes for complicated comb-drives 
involving about a hundred thousand degrees of freedom on 
reasonably fast workstations. However, the storage 
requirements for the convolution kernels was still 
substantial.  

In the current paper we report a new technique of 
representing the Stokes kernels so as to obtain a factor of 
three reduction in storage. We present two new schemes of 
projecting the Stokes kernels to the grid. One scheme uses a 
separate projection operator for each derivative. The other 
scheme uses finite difference discretizations of the required 
derivatives.   

In the next section, we summarize the integral form of 
the Stokes flow problem for a viscous incompressible fluid, 
and briefly review the boundary element discretization 
scheme as well as the precorrected FFT acceleration 
technique used. In section 3 we discuss how the panel 
forces can be projected to the grid and present two new 
strategies. Finally, in section 4 we present a numerical 
study comparing the different schemes.  

 

 
 

Figure 1: A comb-drive structure discretized into panels. 
The drag force in the x-direction (Fx) is shown in this 
figure. 

 

2 THE STOKES FLOW PROBLEM 

Let ‘S’ represent the surface of the device (assumed 
rigid) on which the fluid drag force is to be computed. The 
indirect (first kind) formulation of the exterior Dirichlet 
problem corresponding to the incompressible Stokes flow 
equations is given by [2] 
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}3,2,1{, ∈ji . )( 0xiv  is the thi component of the velocity 
vector (assumed known) at the source point x0 located on 
the surface of the device, )(xjf  is the thj  component of 
the traction at the field point x also located on the surface of 
the device and µ  is the fluid viscosity. The Green’s 

functions ijG relating the traction components to the 
velocity components on the boundary of the device is 
traditionally given as (see for e.g. reference [2]) 
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Here iii xxx −= 0ˆ is the relative position vector between 
the source point and the field point; r =|| x0-x||0 and ijδ  is 
the Kronecker delta.  
   The key observation that has allowed us to reduce the 
storage requirements is that the Stokes kernels in equation 
(2) may be expressed in the following equivalent form 
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While the form in equation (2) suggests that at least six 
independent kernels need to be stored for each grid point 
(taking into account the fact that jiij GG = ), the form in 
equation (3) implies that it is sufficient to store only two 
kernels; r and r/1  and the different components of the 
Green’s functions may be computed by differentiation.  

2.1 Boundary element discretization 

A piece-wise constant collocation scheme is used to 
discretize the set of equations (1). In this approach the 
surface of the device is discetized using ‘n’ small panels 
and the traction forces are assumed to be uniformly 
distributed on each panel. A square system of equations is 
obtained by insisting that (1) be satisfied at the centroid of 
each panel. This results in the dense linear system of 
equations 

 
gAf =             (4) 

 
where nRf 3∈  is the vector of panel forces,  nRg 3∈ is the 

vector of nodal velocities (known) and nnRA 33 ×∈ is the 
matrix given by its components 
 

)(),( I xxx dSGA
JS

ijIiJj ∫=                                                 (5) 

 

where 3,2,1, =ji  and n,1,2,JI, K= , SJ is the surface of 

the thJ  panel and xI
 is the position vector of the centroid of 

the thI  panel.  

2.2 Precorrected FFT acceleration 

A direct solution of the dense linear system (4) using 
Gaussian elimination requires O(n3) operations and O(n2) 
storage and is therefore very expensive for n larger than a 
few hundred. An iterative scheme like GMRES [4], on the 
other hand, would require O(n2) operations per iteration. 
The precorrected FFT technique [3], originally developed 
for the solution of 3D potential equations, is a scheme that 
effectively sparsifies the matrix A by approximately 
computing “long-range” interactions through a coarse grid 
whereas computing the interactions between “nearby” 
panels directly. This allows the matrix-vector products in 
the inner loop of iterative schemes like GMRES to be 
computed in O(nlog(n)) operations. The precorrected FFT 
technique was extended to the Stokes flow problem in [1]. 

In the precorrected FFT approach the object which has 
been discretized into ‘n’ panels is tightly enclosed by a 
parallelopiped. The parallelopiped is subdivided into a 

mlk ×× array of small cubes (called “cells”) so that each 
cell contains only a few small panels. Each cell is 
discretized using ppp ×× grid points. An approximation 
to the distant interactions may be achieved by projecting the 
panel forces in each cell onto the grid points of that cell. 
Then the computation of the velocities at the grid points 
due to the grid forces is nothing but a discrete convolution 
which may be effectively computed using the FFT. The 
precorrected FFT scheme is summarized in the following 
four steps [3]:  

1. Projection of the panel forces onto a uniform grid 
of point forces. 

2. Convolution using FFT to obtain the grid 
velocities from the grid forces. 

3. Interpolation of the grid velocities to panel 
velocities. 

4. Precorrection by computing the nearby 
interactions directly. 

 

3 PROJECTION OF PANEL FORCES 

In this section we describe how the panel forces may be 
projected onto the grid for the computation of long range 
interactions. Let us consider a panel P with centroid xP (see 
figure 2) inside a cell which we denote as the “projection 
stencil”. The grid force at grid point },,2,1{ 3pK∈α  due to 

a traction component jf  (j=1,2,3) at xP is jPj fWf )(ˆ xα
α =  

where )( PW xα is a complete tensor product Lagrangian 
polynomial of degree (p-1)3 (having the property that it has 
a value of unity at node α and a value of zero at all the 
other nodes of the cell) evaluated at xP. The grid velocity 



component at a grid point },,2,1{ 3pK∈β  in the 
“interpolation stencil” far removed from the projection 
stencil may be obtained using the following approximation 
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is the operator that acts on the traction component jf  to 

produce the velocity component β
iv̂ . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: The basic idea in the precorrected-FFT technique 
is to compute the long-range interactions approximately. 
This figure shows how the approximation to the Stokes 
kernels can made using projection and interpolation stencils 
in a fictitious 2D example.  
 

The original implementation of the Fast Stokes code 
uses equation (6) with the Green’s function in equation (2). 

3.1 Improved scheme using multiple 
projection operators 

In this paper we use the Stokes kernels given in 
equation (3) which we write as 
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with 
0βααβ xx −=r . β

ijM  in equation (7) now has two 

components. We may write β
ijM  alternatively as 
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are projection operators obtained by differentiating the 
operators αW . Thus, six independent projection operators 
for the six independent spatial derivatives are required at 
each grid point in this scheme. 

3.2 Improved scheme using finite differences  

Another idea is to approximate the derivatives in 
),(~

βα xxijG using finite differencing on the grid, i.e. we  
write symbolically 

 

αββα rDG ijij =),(~ xx         (12) 
 
where ijD is a finite difference operator. Thus 
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Note that a single projection operator is required per grid 
point. Moreover, since ijD is a linear operator, we may 
write 
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to compute these sums very efficiently.  
 

4 NUMERICAL STUDY AND 
CONCLUDING REMARKS 

To compare the different projection schemes (7), (10) 
and (13) we have performed numerical tests using a 
fictitious two-dimensional problem (shown in figure 2). 
The problem is to obtain the x-component of the “velocity” 
at the point Q (xQ,3) due to unit traction applied at P along 
the x-direction and zero traction applied along the y-
direction. Figures 3, 4 and 5 show the percentage relative 
error for different positions of the point Q when the 
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different projection schemes (7), (10) and (13), 
respectively, are used.  It is clear that the scheme in (13) 
results in a more accurate computation of the velocity than 
the scheme in equation (10). The accuracy of the former 
scheme is comparable to that of the original scheme in 
equation (7) and is therefore recommended.  
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Figure 3: This figure shows the percentage relative error 
when the x-component of the velocity at Q (xQ,3) is 
computed corresponding to unit force at P (0.5,0.5) in the x-
direction using the projection scheme in equation (7). The 
interpolation stencil is locked in position relative to Q. 
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Figure 4: The percentage relative error for the same 
problem in Figure 2 when a different projection operator is 
used for computing the second derivative with respect to x 
as in equation (10). 
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Figure 5: A much more accurate approximation is obtained 
when the second derivative operator is discretized using a 
finite difference approximation at every grid point as in 
(13).  
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