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Abstract

A boundary integral formulation for Laplace’s equation with piecewise constant co-
efficients is discussed. When the dynamic range of the coefficients is large, the solution
of the integral equation can have different scales, which results in large discretization
errors on components where the solution is small. We introduce a perturbation tech-
nique to avoid different scaling. The analysis of this approach shows that the Galerkin
discretization error of the method can be bounded independently of the coefficients.
Numerical experiments support the analysis.

1 Introduction

Potential problems involving composite materials arise frequently in applications ranging
from electrostatics and magnetostatics to thermal conductivity. The governing equation
common to many of these problems is Laplace’s equation with piecewise constant coefficients
reflecting different material properties. It is known from finite element calculations that large
Jjumps of the coeflicient function lead to inaccurate results and ill-conditioned linear systems.
This is one of the concerns that lead to the development of the mixed finite element method
and to the first-order least squares method [4], [7].

Surprinsingly, there is not much work available on boundary integral formulations for
this kind of problem and the existing literature does not address the numerical difficulties
that arise if the dynamical range of the coefficients is large, see e.g., [1] and the literature
cited therein.

In this paper we investigate the cause of large numerical errors for a model problem that
arises when calculating capacitances of conductor systems in multiple dielectric materials.
We will demonstrate that the poor approximation properties of a straight-forward application
of the boundary element method is due to different scales of the solution on the Dirichlet
surface and the interfaces of different media.
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To avoid having to solve for unknowns which may vary by many orders of magnitude, we
will introduce a perturbation technique of the original boundary integral formulation. The
first problem corresponds to letting the large coefficient approach infinity and involves only
large-scale unknowns on the interface. To account for the finite coefficient a perturbation
equation on both surfaces is solved which only involves small-scale unknowns. We conclude
with some preliminary numerical experiments comparing the original integral formulation
with the perturbation method.

2 Boundary Integral Formulation

We consider here the model problem

V-(aVu) = 0 in R3\ S,
u = f. on S. (1)
u = C’)(ﬁ) as |z| — oo,

where S, denotes the boundary of a bounded domain C' C R®. The scalar coefficient function
a 1s positive and for simplicity we require that a(z) assumes only two distinct values, namely

)_ ag .’13€D0, .
G/(il,' - aq $€D1

Furthermore, we assume that the domain D; contains the larger coefficient, is simply con-
nected and bounded, and that C C D;. In applications the component D, corresponds to
free space, where the coefficient is fixed. The interface of D; and Dy is denoted by Sq = dD,.
A typical geometry is depicted in Figure 1.
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Figure 1: Problem Geometry

To avail ourselves of the standard theory of elliptic boundary value problems, we assume
that § = S. U Sy is a smooth surface. Under these assumptions it is known that for the
function f. € H'/?(S.) there exists a unique solution u € HL (R?).

To cast the partial differential equation (1) as a boundary integral equation we note that
the potential « is harmonic in each connected component of R® \ §. This suggests that u
may be written as the super-position of surface potentials

u(z) = Vo(z) := Voo(z) + Vaou(z), T € Rz, | (2)
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where V, and V; are the single-layer operators on the boundary surface S, and the interface
Saq, respectively, defined by

Vioo(z) = / G(z,y)oe(y)dS,, @ €R®,

c

and

V:lo'd(m) = L G(:I},y) ad(y) dS&H S R®.
d
The kernel G(z,y) is the Green’s function for the Laplace operator in three dimensions

1 1
G = — .

.The unknown densities o, and o, are determined by the boundary conditions. On S, we
can stipulate that

Vo(z) = f(z), z€S8,.

On the interface the potential defined by (2) must satisfy the followirig continuity condition

of the flux aVu - Bt
G = dga on Sy. 3)

on on

Here n denotes the normal of the interface which is oriented into Dy, and u* = u(z £ On).
The normal derivative of the single layer potential satisfies the jump relation

du* 1
o (0) = (Fy +K')ole), z€S, (4)
were K' is the adjoint of the double-layer operator and is given by

, 0
K'o(z) = /S £ G(z,y)o(y)dSy, z€S.

The operators K/, K are defined similarly for potentials due densities on S, and S,. Com-
bining (2), (3), and (4), the following system of integral equations for ¢, and o4 can be
derived ]

Veoo(z) + Vaoa(z) = fo(z), z €S,

Kloo(z) + (& + K}) oa(z) = 0, z€S8y. (5)

The parameter A is given by

A= "% (6)

a1+ ag

The orientation of the normals ensures that 0 < A < 1.
Subtracting the jump relations (4) for both sides of the surface yields the important
relation between the density and the jump in the normal derivative of the potential

_8u___8_z_t+
= On on

Formulation (5) has appeared previously in the engineering literature [6], where it is
usually referred to as the equivalent charge formulation.

(7)

g
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3 Highly Varying Coefficients

In this section we will analyze the solution behavior of the equivalent charge formulation.
With our assumptions on the surface the mapping properties of the boundary integral oper-
ators of potential theory are well-known. In particular, for @ € R,

Vi H™Y%e( g, HY?2(S,)  is elliptic,
K!: H=1/%* (g, H=%e(8,) is compact,
Vy: H Ve (g, HY™%(8.) is compact,
Kj: H'Y%(g H=Y/%*+(8,) is compact.

)
)
)
@)

I A

As usual, the Sobolev S];aces H?(S) are defined for p > 0 by

= {1l sy = [ 1D25P

ol <lr]
|D*f(z) — D*f(y)[*
jol=lp] // |z — y [+ 4545, < oo} ®)

and for p < 0 by duality with respect to the Ly-scalar product.

For the subsequent analysis it will be useful to rewrite the equivalent charge formulation
(5) as the sum of the elliptic operator Sy: H—1/2+(§) — H/2+(g, ) X H=Y/2+2(8,) and the
compact operator K: H=/2*(8) — HY2a(S ) x H~1/2e(g)

(S +K)o = 1, ()
where v v f
- 0 0 O¢ ¢
s=|v g le=le ] o= [ ]mes- 1]

In equation (5) we have f; = 0, but sometimes it will be important to consider a more
general f; € H~Y/ +2(S;). The main purpose of this article is to discuss coefficients of large
ratios. For that, set ao = 1 and assume a; > 1, which is equivalent to A > g for a positive
Ao. In the limit A — 1 integral equation (5) assumes the form

(Si+K)p=1. (10)
In view of Green’s Theorem we see that the potential generated by a solution of (10)
v(z) := Vepe(z) + Vapa(z), =z € RP

solves the boundary value problem

Av = 0 in R*\ S
v = f. on S,
vt = o~ on Sy (11)
g—:i_ = 0 on Sy
v o= (’)(I—i—l) as |z| — oco.



Boundary value problems (1) and (11) are well-posed problems. Since the density is the
Jump of the normal derivative across the boundary, integral equations (5) and (10) are also
well posed. This is made more precise in the next Theorem. Note that throughout this
article v,41,72, . . . denote constants independent of A, whose actual values may change from
line to line.

Theorem 1 For Ao < A < 1 and f € HY/?*(S,) x H"l/2+°‘(5'd) the solution of (9) exists
uniquely in H™Y/**%(S) and depends continuously on the data. That is, there are constants
Y1,7Y2 > 0, independent of X such that

Nl fllmetasyxg-12vaisy < Nollm-12esy < Vel fllaetais)xa-1/ta(sy - (12)

Proof. Injectivity follows immediately from the unique existence of the solution of (1)
and (11). Namely, if ¢ is a solution for f = 0, then the resulting potential v = V.o, + V04
solves (1) and must therefore vanish. Because of the jump relation (4) the density o vanishes
as well and injectivity of the operator Sy + K follows.
For the existence and continuous dependence of the data, note that the operator Sx: H*/2+%(S5) —
HY2+e(8) x H-Y/?+%(§;) has a continuous inverse. Thus (9) may be rewritten in the form

(I+S85'K)o =S5 f, (13)

Since the operator Sy1K: H™1/%+%(S) — H~1/2+2(§) is compact the existence of the solution
o € H™Y/2+2(3) follows from Riesz-Fredholm theory.

It remains to show that 41,72 in (12) are independent of A. For that, note that Sy — &;
uniformly and ||8s|| < 7, furthermore §7' — Sy uniformly with ||S7Y|| < 72 and hence
11 + S;'K|| < 4s. Since taking the inverse is continuous it follows (I + S;*K)™! — (I +
S7K)tin HY2(S) and ||(I + S;1K)7Y| < 4. Thus we may estimate

lollg-1r2+aisy = (I + STE) TS Flla-1/esagsy < yavall Fllmaseva s yxm-1/2+a(sy)
and
”fI|H1/2+°‘(Sc)xH-1/2+°‘(Sd) = “8)‘(] + S/\_IK:)O'”H1/2+°‘(SC)XH—1/2+°(Sd) < ’)’1’)’3'|0‘“H_1/2+a(s) .

This asserts (12). O
Subtracting equations (9) and (10) gives

A—1
ox P

(Sx+K)(p—o0)=

Thus we see from the last theorem that the solutions for the same right hand side converge
to each other as A — 1, i.e.,for \g< A <1

2
llp — ‘7“H—1/2+a(5) < a_lllp”H—l/”"(S)' (14)

In many physical situations one is interested in the quantities ao (free charge) and aVu-
(flux). Estimates for ac will depend on the constant part and its orthogonal complement

- 1
Jo = m[gcha (15)
o= fo—F (16)
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of the right hand side fc. In the following we will denote the solutions of equations (9) and
(10) for right hand sides f = [f,,0] and f = [f1,0] by &, p, p* and o*, respectively.

Lemma 1 There are constants 1,772 > 0 such that
N mrvaisy S pella-resas,y < vl ffllmeras,) (17)
hold for the solution of (10) with right hand side f = [f.,0].

Proof. If the right hand side of boundary value problem (11) is constant, then the solution
v is constant in R\ Dy and the density p. vanishes because of the jump relations (4). For
a non-constant right hand side the solution of (11) has a nonzero gradient. From Green’s

theorem
/ IVU|2 :/ pefc
D; Se

it then follows that p. # 0. Thus the the map T : f, — p, is an isomorphism of the spaces
HY/?#2(S)/R and H-Y/?+*(S,). In other words, there are constants ;,7, > 0 such that

g ftfellﬁl | fe = trirztaisy < lpellg-1r24a(s) < 72 Itrellﬁl | fe = thgrrosags,) -
This is the assertion, because the definition of Sobolev norms implies that
||chHH1/2+a(sc) = Itfélﬁl I fe = t||H1/2+°(Sc) .
a
Theorem 2 There are constants v1,7v, > 0 such that

’71||a5||H—1/2+a(s) < “f”Hl/z"“’(Sc) (18)
’)’22“610'“21/2+a(5) Z a%“-ch”iIl/z""’(Sc) + ch”ip/%a(sc) (19)

hold for the solution of (9) with right hand side f = [f.,0].

Proof. The estimates are consequences of Theorem 1, Lemma 1 and the convergence of
o to p. From (17) it follows that p. = 0 and combining this with estimate (14) implies
||5-C||H—1/2+°‘(Sc) S 7/a1”ﬁ“H—1/2+"(S)‘ Using (12) we estimate

a5 1[%-1/24a(s) = @1|GellFr-1/240 sy + 10allr-rr2easy < MllAllE-1720a(s) < Yall fellErrrvas,y

which implies the first assertion. For the second inequality we estimate

ol iagey = (0 = Dllocamaisy +lolBrmineacs
Naillpellz-1i24a(s,y + Vel follFrrmrags,)
naill f lzrrags,y + Yol Felli ava s,

V(BN s2segsyy + 1 Fellipneas,)

v v IV



4 Analysis of the Galerkin Method

In this section we describe how the mapping properties of the equivalent charge formulation
affect the discretization error of the Galerkin method. The analysis is standard for equations
of the type “elliptic plus compact”, see, e.g. [3]. However, special care must be taken to
demonstrate independence of the parameter . To keep the exposition simple we consider
only piecewise constant elements on a quasi-uniform mesh. The results can be easily extended
to higher order elements.

Denoting by X, C H~'/?(S) the space of piecewise constants on a mesh of width % and
by P, the corresponding Lj-orthogonal projectors, the Galerkin discretization of integral
equation (9) can be written in the form

(Phs,\ + PhIC)O'h =DPf. (20)

Theorem 3 For the Galerkin method the error e, = o — oy, can be bounded by

v

leallz-1r2(s) < YRllo N m1r2(s)-

Proof. Since S, is elliptic, the operator S), = P,S) is invertible in X,. Setting K = P,K,
equation (20) can be rewritten in the equivalent form

(I + Sh_lKh)O'h = S;lphf
Subtracting this from (13) gives for the error
(]_-I— S;‘Kh)eh:a—5h, (21)

where &, = S;'P,Syo is the Galerkin solution of S35, = P,S\o. Thus the right hand side
can be estimated by using standard arguments for elliptic equations

lo = Gullg-12(s) < m xig};h llo = xullm-12(s) < Vehllo |l girzs) -

It remains to verify the stability of 14 S;*Kj. For this, consider the elliptic equation Sy¢ = g
and its Galerkin approximation Siép = Png for an arbitrary ¢ € HY?(S.) x H~/?(8,).
Subtracting the last two equations gives the following expression for the error

$—¢n=(5"Pn—8")g,
on the other hand, the standard convergence analysis for elliptic equations yields

6 — Bullzr-172(s) = I1(Si P — 851 gll-1r2(5 < m Xig};h 6 — xnllg-112(s) = O

for g € H-Y/2(S). Thus S;'P, — S;! pointwise and because of the compactness of K we
have S; 1pK — Sy 1X uniformly as A — 0. Then stability follows from the fact that the
operator I + S7'K is invertible and its norm can be bounded independently of A. O
Estimate (12) also implies that the condition number of the discretized linear system
depends only on the discretization and not on the coefficients. Thus large coefficients cause
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no problems for the numerical approximation of the density. However, numerical difficulties
may arise for aoc when the density is calculated via the equivalent charge formulation (20)
and then subsequently multiplied with the coefficient a.

To illustrate this consider solving (5) with a constant right hand side. In this case we
see from Theorem 2 that ||o || = O(1/a1) and |log|| = O(1). When integral equation (5)
is solved numerically and the solution is subsequently multiplied by the factor a, then the
discretization error on S, grows like a; while the solution ao converges to a finite value.

On the other hand, no scaling errors arise for a right hand side orthogonal to the constant
functions. From Theorem 2 the solution ac grows like a; and hence the relative error will
be independent of a. More precisely, from estimates (12) and (19) we have

llao*lg1r2(s) = Maall f sy 2 rallo™ )
and hence

laei|g-12(5) < arller |a-1/2(s) < Mhasllot |z < v2hllac™ || grzgs) - (22)

5 The Perturbation Approach

The analysis of the Galerkin method shows that large discretization errors of ao come from
different scales in the equivalent charge formulation for constant right hand sides. For a right
hand side orthogonal to a constant, the density o, does not vanish in the limit as a; — oo
allowing discretization errors independent of a; as in (22).

In the following we will solve integral equation (5) for f and f* separately. The density
ol for f1 can be determined directly with Galerkin discretization of (5). For the density o
for f we will introduce a perturbation technique which avoids having to solve problems with
different scales. The analysis of the method will demonstrate that the discretization error of
ac can be bounded independently of the parameter A.

To obtain this formulation we set up the density & for A < 1 as a combination of the
solution p for A = 1 and a perturbation &, i.e.,

G=p4+¢5.

The density p vanishes on S, and one could consider solving integral equation (10) only on
the interface. However, this results in an integral equation with a non-trivial null space. To
avoid this difficulty reconsider boundary value problem (11). Obviously, the potential v is
constant throughout D; and hence solves the boundary value problem

Av = 0 in R\ S
v = f, on Sy
v = 0(%) as |z] — oo.

Thus the density on the interface can be determined from the integral equation

Vapa(z) = fe, = € Sa. (23)



To obtain an integral equation for the perturbation & note that its potential u = V.¢.+ V5,
vanishes on S;. The condition for & on the interfaces can be derived from the jump relation
(4) (recall that we have set ag = 1)

ou _out _ovt Qv
“Bn “on " on  “on

The right hand side of the above equation simplifies to pg. Thus the perturbation density
solves the following integral equation

cha'c(m) + ‘/da'd(x) = 07 T c SC) (24)
K5.(2) + (& + K)) Ga(e) = 22pa(a), z €S
The discussion above leads to the following description of the perturbation approach
1. Decompose the right hand side f, = f. + f.
2. Solve (20) with right hand side f! by Galerkin discretization
Py (Sx+ K)oy = Paf? . (25)
3. Solve integral equation (23) B
PiVapap = fe, (26)
and set py = [0, pd,h]-
4. Solve the perturbation equation (24)
| L A-1_
Py (Sx+K)&h = oy P (27)

5. The approximate solution of (5) is given by
On = O + pp + o

Theorem 4 For the perturbation method with piecewise constant elements and Galerkin
discretization the following error estimates hold for Ag < A < 1

la( —on)lla-12sy < mbllGlgirgs), (28)
la(o —on)llg-125) < v2hlldo|igirs) - (29)

Proof. The discretization error of 5 can be bounded using the standard error analysis of
elliptic equations
16 — Prlla-12(s,) < YhlIBallErires, - ' - (30)
To account for the approximate right hand side in the perturbation equation (27) we also
consider the Galerkin solution &4 for the exact right hand side

A—1
Pip 31
oy ThP (31)

P, (Sx+ K)o, =



and estimate, using the triangle inequality
16 = Gallz-112(5) <& = Gallg-1r2¢s) + 5n — Gnllr-112¢s) - (32)
A bound for the first term in (32) follows from Theorem 3
16 = nllg-112(5) < VRl 1r2(s) - (33)
The second term in (32) satisfies

A—1
2\

(Sh + Kn) (Gn — 63) = (/7h—Phﬁ)-~

Since the right hand side vanishes on S,, the above equation assumes the equivalent form
(7 + SiKx) (Bh — 64) = (A = 1)(p4 — Pup).

The stability of I + S;' K}, was shown in the proof of Theorem 3, hence we may estimate

— e _ b
llon — ‘Th”H—xlz(S) Syl = A)||pn - PhP”H—l/ﬁ(sd) < :—IHPHHI/Z‘(sd) . (34)
Furthermore, from (12) and (24) it follows that
~ I—=AX, _ Y3,
15125y < 72 ) Pl 1r2gs) < a_?“p“Hlﬂ(S)- (35)

Combining estimates (14), (30), (33), (34) and (35) the first assertion of the theorem follows
from :

la(@ — ar)lla-125) < N6 = Brll-rr2s) + 16(F = Gn)lmr-1r2s)
N1h|pll sz (s, + arlle — Onllg-1r2(s)
V2h|Bl 1725

V3h||G || 12 (s) -

IA N IA A

The second assertion follows from the previous estimate and Theorems 2 and 3

IA

2 (la(5 = an)[3r-112s) + lla(o™ = o) [Z-sr2(s))
2 (k253 gs) + a2l — o miags))
12b2 ([1812725) + 2o s s, )

73h2”a0-“2{1/2(5)

la(o — 0h)“§1—1/2(5)

VAN VAN VAN
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6 Numerical Examples

In this section we report some preliminary numerical results obtained by the equivalent
charge formulation and the perturbation method. All integral equations are discretized with
piecewise constant elements. To simplify the quadrature of matrix entries of the arising
linear systems, the surfaces have been replaced by linear triangulations. The additional
error introduced by the surface approximation has not been discussed in this article, but can
be analyzed using the techniques developed by Nedelec [5]. »

Two geometries were used for our examples. In the first one the Dirichlet surface and -
the interface are the ellipsoids

2 2 2
3, Ty [ T3 I3
. = = —= 4+ =2 =1
S, {:BER 4+1+9 }?
2 2 2
— 3. %, %, T3

respectively. The right hand side is the constant function f. = 1. For this geometry the
density can be expressed in closed form in terms of ellipsoidal coordinates [2].

Table 1 compares the relative discretization errors ||aec||/||ac|| of the equivalent charge
formulation and the perturbation approach for a wide range of coefficients. For all calcula-
tions the same discretization into 768 panels on each surface was used. As it is obvious from
the table, the error of the equivalent charge formulation grows linearly with a; whereas the
error of the perturbation method approaches a finite value as a; — oo.

a; 2 3 5 10 50 102 103 104
PM  0.0156 0.0167 0.0177 0.0185 0.0193 0.0194 0.0194 0.0194
ECF 0.0131 0.0128 0.0176 0.0434 0.2842 0.5883 6.0668 60.854
L, 3.9420 4.0319 4.1069 4.1650 4.2127 4.2187 4.2241 4.2246

Table 1: Relative Lj-errors of the equivalent charge formulation (ECF) and the perturbation
method (PM) and Ly-norms of the density a;o,. Two ellipsoids example.

The second example consists of the two concentric spheres
S. = {zeR®: o] =1},
Sq¢ = {wGRS : |w|:2}.
We examine the solution behavior for two different right hand sides

£ = 1YY Yy,
O = 1+ W+ +Y9) /ar,

where Y denote the spherical harmonics of degree n and order m. The choice of the
geometry and the right hand side allow closed-form expressions of the solution. Since Fo
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is non-constant, the density ao is large for large a; thus hiding the errors of the equivalent
charge formulation due to the constant part of f(). As a result, the absolute discretization
errors of both formulations scale like a;, however, the relative discretization errors remain

bounded.

ay 2 3 5 10 50 102 108 104
0

PM 0.0216 0.0221 0.0225 0.0229 0.0233 0.0234 0.0234 0.0234

ECF 0.0217 0.0221 0.0225 0.0229 0.0234 0.0235 0.0235 0.0235

Loy 27.277 40.270 66.133 130.64 646.32 1.29-10% 1.29-10* 1.29.10°
i

PM 0.0209 0.0209 0.0209 0.0210 0.0211 0.0211 0.0211 0.0211

ECF 0.0210 0.0211 0.0217 0.0253 0.0912 0.1841 1.8795 18.846

Lo 14.233 14.321 14.427 14.540 14.661 14.678 14.694 14.696

Table 2: Relative Ly-errors of the equivalent charge formulation (ECF) and the perturbation
method (PM) and Ly-norms of the density a;o, . Concentric spheres example.

To demonstrate that the perturbation approach gives more accurateresults even for non-constant
right hand sides we scale the non-constant part in fc(z) by the factor 1/a;. In this case the norm of
ao remains bounded and the errors in the equivalent charge formulation due to the constant part of
fc(2) dominate. This effect does not show up in the perturbation method. The results for the second
example are summarized in Table 2.

The accurate determination of densities due to constant right hand sides is important for many
applications. For instance, the small eigenvalues of capacitance matrices are determined by these
densities. We will report on results pertaining multiconductor systems in multiple dielectric materials
elsewhere [8].
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