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Abstract— We investigate mesh generation for ca-
pacitance calculations. The refinement scheme is
controlled by an error estimator based on the re-
sidual of the solution calculated on a coarse grid.
Numerical experiments are presented.

I. INTRODUCTION

Engineering programs which compute electrostatic
capacitances for complicated arrangements of conduct-
ors commonly set up the electrostatic potential u as a
superposition of surface charges o

u(z) = Vo(z) := /S G(z,9)o(y)dS; =z €R3,
(1)
where G(z,y) = 1/4x|z — y| is the Green’s function for
the Laplacian in the three-space. For a specified po-
tential f on the conductor surface(s) S, this approach
leads to the integral equation of the first kind

Vo(z) = f(z), (2)

The charge density is singular in regions where the
conductor surface has edges and corners and is almost
singular in regions of sharp curvatures. This calls for
a finer discretization in these regions. The aim of this
study is devise an adaptive algorithm that refines the
grid based on the feedback of the solution calculated
on a coarser grid.

Similar to most approaches taken in finite element
calculations [1], [2], we base our estimator of the local
error on the residual of the solution o} obtained on

the coarse mesh. In the context of (1), the residual is
defined by

z€S.

Th:VO'h—f,

This can be motivated by the following relation
between the residual and the discretization error ¢; =
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In the proper Sobolev space setting, the operator V
in (2) has a continuous inverse [3]. This leads to an
estimate of e; in the mean-square norm in terms of the
residual in the Sobolev-1 norm

2 2 2 2
llealls < clirall? = ¢ (lirallE + IV small2) -

We further estimate the norms on the right hand side
by applying the mid-point quadrature rule. The resid-
ual of the collocation solution vanishes at the midpoints
and we are left with
llealls < ¢ as?,
J

(3)

where a; is the panel area, s; = [Vsryp(z;)|, Vs is the
surface gradient, and ¢ a constant independent of the
grid.

The underlying idea of the refinement algorithm is to
break up the panels that have the largest contribution
to the error estimator (3). To control the number of
panels in the refined grid, we specify the parameter
0<y«1

Algorithm

1. solve (2) on a given grid
2. calculate the error indicators s;
3. refine every panel k that satisfies

szak > mja.xs?aj

uniformly into four panels.
4. repeat steps 1. — 3.
II. NUMERICAL EXPERIMENTS

Here we present some [;relimina.ry results of the
mesh refinement strategy discussed above. We have



tested the algorithm for the unit cube, an L-shaped
domain and a structure consisting of two cubes. The
tables compare the capacitances calculated with uni-
form refinement (setting v = 0 in the algorithm above)
with adaptive meshing (y = 0.5).

III. CoNCLUSIONS

1. The surface gradient of the residual provides a
mean to estimate the discretization error.

2. The grids produced by our algorithm allow accur-
ate estimates of the capacitance with significantly
fewer panels than uniform discretizations.

3. Adaptive procedures that minimize the discretiz-
ation in other norms, like the energy norm, could

result in even better grids and will be investigated
in the future.
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CAPACITANCES FOR THE L-BLOCK
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uniform adaptive uniform adaptive
Panels Cap | Panels Cap Panels self Cap Pa;;ls seg gzalp
192 13.871 1 13.
égg Z;g; §2§ ﬁjﬁgj 768  14.161 | 324  14.033
2400 8.986| 924 8282 3,072  14.203 | 1,008  14.217
9,600 8.295| 2310 8.293 12,288  14.349 2,520 14.301
49,152 14.371 5,952 14.341
TABLE I
TABLE III

CAPACITANCES FOR THE CUBE '
CAPACITANCES FOR THE TWO CUBE STRUCTURE



