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1 Introduction

Many problems in potential theory lead to integral equation of the first kind
posed on the boundary of a domain in the tree-space. The foremost example is
the single layer equation

/SG(:c,y)o(y) dSy = f(z), z€S. (1)

Here f is a given function on the surface S, the function o is the the unknown
and G(z,y) = 1/4x|z — y| is the Green’s function for the Laplacian.

A standard approach to discretize this integral equation is to use a colloca-
tion scheme. For that, partition the surface into a number of pieces (panels)
S = S; U...USy. The numerical solution is the function which is piecewise
constant of this subdivision and which satisfies (1) in the centroids z; of the
panels. This leads to the linear system Agq = f, where the entries of the matrix
A are given by

A,',j -——“/ G(:c,-,y) dSy
5

The matrix is non-symmetric, dense and very large for fine discretizations or
complex geometries of S. Moreover, since (1) is an integral equation of the first
kind, the condition number of A increases with the refinement of the grid.

With the recent development of fast summation techniques it has become
possible to reduce the complexity of a matrix-vector product from O(N?) to
O(N log N) or even nearly O(N). Thus the solution of the discretized equations
by an iterative scheme like Krylov subspace methods is now feasible.

Among the algorithms which are available for boundary integral equations in
complex geometries are wavelet compression [1], particle-mesh techniques 8, 4]
the fast multipole method (FMM) [2, 6], and panel clustering [3]. The latter
two techniques obtain their efficiency from a hierarchical decomposition of the
problem domain. We found this idea also useful for the construction of efficient
preconditioners.



2 Preconditioners for Boundary Elements

The basic idea of preconditioning is to approximate the inverse of the system
matrix, ideally one would like to have Ap; = e; for the columns p; of the
preconditioner P. The principle behind most approaches to construct P has
been described by Vavasis [7]: For an index 7 one selects a small list L of indices
which have the largest influence on the i-th component of the unknown vector
g. Since the off-diagonal entries of A decay like 1/r, where r is the distance
of two panels, a palpable choice of the list L consists of the mesh neighbors of
panel S;. Then a small system Ap; = &; is solved for every index i. Here the
bars stand for deleting all rows and columns except for those in L. Finally the
Di’s are expanded back into the i-th row of P by setting entries to zero which
correspond to indices in the complement of L .

Several variations of the above approach are possible. For instance, the local
inversion preconditioner [5] places the surface into a cube which is subdivided
into a number of sub-cubes. Then the preconditioner is constructed block-wise
rather than index-wise: Let ¢ denote the list of indices belonging to panels in a
sub-cube. Then the list L is chosen to be the indices of panels,in the cube and
its nearest neighbors. To obtain the #-th block-row of the preconditioner, the
matrix A is inverted and the columns of the inverse belonging to the list i are
expanded into the i-rows of P.

The problem with the overlapping preconditioner is the trade-off between its
quality and the size of the lowest-level cubes. To ensure a bounded condition
number of the preconditioned system as the discretization is refined, the size of
the cubes must be kept constant. However, this is prohibitive because the cost
to construct the preconditioner would be @(N3). On the other hand, if the size
of the cubes is chosen to contain a fixed number of panels as the grid is refined,
the efficiency of the preconditioner will deteriorate.

3 Hierarchical Approach

The idea behind the overlapping preconditioner is to neglect interactions of far
away panels. This may not be appropriate for the operator in (1), because the
1/r decay of the kernel cancels with the O(r) increase of panels at distance r.

To account for this effect we take the following approach: First, partition
the cube containing S into a hierarchy of sub-cubes. That is, the top level cube
is the cube itself, and the cubes in level | are uniform refinements the level I —1
cubes into eight sub-cubes.

Instead of neglecting the far field in the generation of the preconditioner,
assume that distant interactions may be approximated by charge distributions
which are constant within cubes at certain levels. The more distant the inter-
action, the higher the level. This results in a linear system for each non-empty
bottom level cube. The matrices are then inverted and the columns correspond-
ing to the cube expanded into the appropriate rows of the preconditioner.

If the bottom level cubes are chosen to contain at most a fixed number of



panels, then the size of one linear system can be shown to be O(log N). Since
there are O(N) systems to solve, the total complexity for the construction is
O(N log N).

The preconditioner is not sparse, but its entries are constant for rows and
columns belonging to certain pairs of cubes in the hierarchy. This property
makes fast matrix-vector multiplication algorithms possible.

In the talk will present results which demonstrate the improvements obtained
by using hierarchical preconditioners rather than local inversion preconditioners
for complex geometries which arise in a variety of engineering domains.
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