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Improved Integral Formulations for Fast 3-D
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Abstract—This paper introduces a new integral formulation to
calculate charge densities of conductor systems that may include
multiple dielectric materials. We show that the conditioning of our
formulation is much better than that of the standard equivalent
charge formulation. When combined with a nonstandard dis-
cretization scheme, results can be obtained with higher accuracy
at reduced numerical cost. We present a multipole accelerated
implementation of our formulation. The results demonstrate
that the new approach can cut the iteration count by a factor
between two and four. Moreover, we will demonstrate that in the
presence of sparsification errors and multiple dielectric materials
second-kind formulations are much more accurate than the
standard first-kind formulations.

Index Terms—Boundary-element methods, capacitance, dielec-
tric materials.

1. INTRODUCTION

OR THE design of high-performance very large scale in-

tegration (VLSI) circuits and integrated circuit packaging,
it is important to obtain accurate estimates of the capacitances
of complicated three-dimensional conductor systems that often
include multiple dielectric materials with high permittivity ra-
tios. The commonly used algorithms in electrostatics are based
on boundary integral reformulations of Lapiace’s equation and
are collocation, i.e., method of moments [4] or Galerkin [17]
discretizations of the single-layer potential.

These methods generate dense and ill-conditioned matrix
problems which severely limit the complexity of the structures
that can be analyzed, even with today’s computing hardware.
Since iterative methods, such as generalized minimal residual
algorithms (GMRES), are usually employed, the problem is
that a large vector must be applied to a large matrix a large
number of times. :

The main thrust of research in the past decade has been to de-
velop techniques to accelerate the matrix-vector product. These
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methods are based on the fast multipole method [3], [10], the
fast Fourier transform [13], singular value decomposition [6],
multiscale [21], and dimension-reduction ideas [5].

All the above papers describe algorithms for the single-layer
equation, which is an integral equation of the first kind and,
therefore, ill-conditioned. The conditioning effects the perfor-
mance of the algorithms in two negative ways. First, iterative
methods converge slowly. Second, small errors introduced by
accelerated matrix-vector products can be magnified. While the
preconditioners described in [10], [21], and [22] can accelerate
the speed of iterative solvers, the sensitivity of the error is in-
herent to the integral formulation.

The presence of multiple dielectric materials complicates
matters further. In this case, the first-kind equation on the
conductor surfaces must be supplemented with a second-kind
equation on the dielectric interfaces. The resulting formulation
is also known as the equivalent charge formulation (ECF) [14].
A typical conductor system with dielectrics requires more
iterations to converge than a comparable structure without
dielectrics. When the ratio of the permittivities is large, e.g.,
on the order of ten, then the accuracy of the approximation
becomes poor and perturbation techniques must be employed
[20]. '

It is known that second-kind integral equations result in well-
conditioned linear systems, but the standard second-kind formu-
lation in potential theory is based on the dipole potential, which
is of limited use for circuit parameter extraction and cannot be
generalized to multiple dielectric materials. In [19], we have in-
troduced a new second-kind formulation for the charge density
for the single dielectric case and proved that it is well posed.
The purpose of this paper is to discuss issues associated with
the discretization and multipole acceleration. Moreover, we will
present a new extension to multiple dielectric materials, which
is purely second-kind as opposed to the mixed first-second-kind
ECF. We will conclude with comparisons of accuracy and effi-
ciency of this approach and existing approaches.

II. STANDARD FORMULATIONS

In this section, we briefly review the standard integral formu-
lations that have been used extensively to calculate capacitances
of complex multiconductor systems. However, since they are of
the first kind on the conductor surfaces, they lead to ill-condi-
tioned linear systems.

Under the electrostatic assumption, the electric field has a po-
tential ¢, which satisfies Laplace’s equation. In an M-conductor
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system, where the kth conductor has potential p, the potential
satisfies a Dirichlet boundary condition of the form

M
¢(x) = f(@) = pexa(z), € Se 6]
k=1
where S, = S; U --- U Sy denotes the collection of all con-
ductor surfaces Sy and x is the characteristic function of the
kth conductor given by

() = 1, z€8;
Xk\L) = 0, elsewhere.

@

If, in addition to the conductors, dielectric media with different
permittivities are present, then the flux condition

+ —_
+0 = e (),

an on

must be imposed on the interface Sg of two dielectrics. Here, e
is the permittivity in the direction of the surface normal n and
€~ is the permittivity in the opposite direction. Note that we
have normalized the problem by letting the vacuum permittivity
Ep = 1.

The conductor charge can be calculated by the ECF [11], [14],
[16]. In this formulation, surface charge layers with densities o
and o4 are placed on the conductor surfaces as well as dielectric
interfaces. This results in the electrostatic potential

¢(z) = Veoo(z) + Viou(z),

S Sd 3)

&

z € RS 4)

Here, V. and V; denote the single-layer potentials due to charges
on S, and Sy, respectively, which are given by

V,o(z) = / G(x,2")o4(2") dSw, z€R3
where a € {c, d}. The kernel G(z, z’) is the free-space Green’s
function for the Laplace operator in three dimensions

11
T dn|z—a'|

G(z,z') %)
The single-layer potential must satisfy the Dirichlet condition
on the conductor surfaces as well as the flux condition on the
dielectric interfaces. These conditions will lead to a system of
integral equations for the unknown densities o, and o.

To better understand the derivation of this system, we recall
the limiting values of the single-layer potential for z — S;
the details can be found in most texts on potential theory, e.g.,
[7]. The single-layer potential is continuous as the field point
approaches the surfaces. On the other hand, its normal derivative
has different values on either side of the surface and satisfies the
jump relation

dp*

1
3 (z) = $§od(x) + KlLoz) + Khoa(z), =€ Sa.

(6)

Here, K/, denotes the adjoint of the double-layer operator, which
is given by

m%m=La

6 4 '
pr. G(z,2")o,(z")dSy

1399

for a € {¢, d}. Combining (4) and (6) with the boundary condi-
tions (1) and (3), the following system of integral equations for
the densities o, and o4 can be derived:

VeeOe + Veaoqg = f

1
4cOe + (ﬁ + /c;d) 0a=0 N
where the subscript ab denotes a potential due to a charge on
surface b evaluated at surface a. The parameter A depends on
the permittivities on both sides of the dielectric interface via the
relation

e” —¢t
A= ——, 8
e~ +et ®)
If there is only one dielectric material present, the potential
is generated only by conductor charges. In this case, integral
equation (7) reduces to

VeeOe = f 9

which is usually referred to as the single-layer equation.

III. SECOND-KIND FORMULATIONS

Many difficulties associated with the first-kind formulation
can be avoided by using a second-kind integral formulation for
Laplace’s equation. Typically, the arising integral equations and
their discretizations are well conditioned. Hence, they do not
magnify sparsification errors and iterative solvers require fewer
iterations to converge.

The capacitance problem is an exterior Dirichlet problem
for the Laplace equation. Using double-layer potentials, this
problem can be cast into a second-kind integral equation. The
resulting operator has an M-dimensional nullspace, which
can be removed by augmenting the integral equation with M
Lagrange multipliers (see [1] and [8]). The multipliers turn out
to be the capacitances.

However, double-layer potentials do not directly yield the
charge density as a function on the conductors. In multiple
dielectric case, this approach is much harder to implement
because hypersingular integral operators arise, which require
higher order discretizations. In [19], we have already intro-
duced a well-conditioned second-kind formulation in which the
charge density is soived directly for the single-dielectric case.
In Section III-A, we will briefly review this formulation and
describe the novel modifications to handle multiple dielectric
materials.

A. Single Dielectric Case

Since the potential ¢ is constant on each conductor surface,
it follows that ¢ is also constant in the interior of each con-
ductor and, hence, the gradient vanishes on the conductor sur-
faces when approached from the inside. From the jump reiation
of the normal derivative of the single-layer potential (6), it then
follows that

(1/2 + K)o, = 0. (10)
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Integral equation (10) is singular because any charge distribu-
tion that generates a constant potential on the conductor sur-
faces will solve it. To determine o uniquely, the potential must
be fixed for each conductor. This can be achieved by imposing
that the potential satisfies
Vooolzg)=pe, k=1,....M (1n
where 1, is a point in the interior of conductor k.
Integral equation (10) combined with condition (11) is a
system with more equations than unknowns. Without changing
the solution, (10) and (11) can be combined to the well-posed

integral equation

1
(5 + IC:;.: + Acgé) Oc = -Acp 12)
where the operators A, and G/, are defined by
Xk (z z €S, (13)
Z r =
(Glodli = / G(wr,y)oe(y) dS, (14)
Sc

where | S| is the surface area of conductor k. Note that the op-
erator A, maps an M vector onto a function that is constant on
each conductor surface, whereas G/, maps a function on the con-
ductors on an M vector.

The key to understand why the solution of (12) is also the
solution of (9) is the observation that the range of the operator
1/2 + K is orthogonal to the functions which are constant on
each conductor. This is a simple consequence of Gauss’ Law
(see, e.g., [8]). Thus, for the solution of (12)

(-;- + zc'cc) 0o+ Au(Gloe—p) = 0

it follows from the orthogonality of the ranges of (1/2 + K..)
and A, that both vectors in the above sum must vanish and,
therefore, (10) and (11) must hold.

By the same token, for any nonsingular M x M matrix B,
the solution of integral equation

(% + K., + ACBQ'é) . = A.Bp (15)

is well posed and provides the solution of the capacitance
problem. The matrix B plays the role of a preconditioner.

B. Extension to Multiple Dielectrics

The ECF (7) can be converted into a purely second-kind
system in a similar fashion as the single-layer equation. As
in the single-dielectric case, the potential must be constant
inside the conductors and hence the normal derivative on the
conductor surfaces approached from the inside must vanish.
Thus, on the conductor surfaces we have

(1/2+ K)o + KlLyoq = 0. (16)
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Equation (16) must be supplemented with the flux condition on
the dielectric interfaces, which is the same as in the ECF

&cﬂc (2)\ + lCdd> oq = 0.

The latter two equations constitute a system for the unknown
charges o, and o4, which is singular because any charge that
generates constant potentials on each conductor will solve it. In
order to determine the charge uniquely, the potentials must be
specified at points z, which are interior to conductor k.

a7

Veoo(zr) + Vaoa(zr) =pr, k=1,...,M. (18)

Equations (16)—(18) are an overdetermined system. To obtain
a well-posed problem, we combine (16) and (18) in a similar
manner as for the single dielectric case. The resulting system
has the form

1
(5 + IC'CC> o+ Kly04+ A:BG.o. + A:BGhoq = A.Bp

1
&CO'C‘I‘ (2/\ +’Cdd> 04 = 0 (19)

where B is any nonsingular M x M matrix. We will also write
the integral equation more compactly as
(A+K' + A.BG')o = Ac:Bp (20)
where A = diag(1/2,1/(2))) and 0,K’, G’ are quantities de-
fined on both surfaces. The operator A, is defined for the con-
ductor surfaces in (13) and vanishes on the dielectric interface.

IV. DISCRETIZATION OF THE ADJOINT OPERATOR

The single-layer potential in the first-kind formulation repre-
sents the potential due to a surface charge distribution, which
always remains finite. On the other hand, the adjoint operator in
the second-kind integral formulations is the normal derivative of
the potential, which can become infinite near possible edges of
the surface. Thus, integral equations (15) and (20) require spe-
cial care for their discretization.

Furthermore, the second-kind integral formulations rely on
the orthogonality of the range of (1/2) + K’ to the constant
functions. To obtain accurate results, this property must be pre-
served when this operator is discretized.

The Galerkin method can handle both difficulties. However,
in its pure form, this scheme cannot be realized because the
coefficients of the discretization matrix involve integrals that
cannot be computed exactly, except in special cases [16]. On the
other hand, the collocation method has closed-form integrals,
but has problems with singularities and orthogonality.

In the following two paragraphs, we will discuss these is-
sues in more detail and propose a qualocation scheme that has
closed-form integrals and the same stability properties as the
Galerkin method.

1) Collocation Versus Qualocation: Consider a discretiza-
tion of the conductor surfaces and dielectric interfaces into N
triangular or quadrilateral panels F;. The Galerkin method seeks
a solution as a piecewise constant function on this subdivision
and enforces the integral equation by integration over the panels.
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This leads to a linear system whose coefficients contain entries
of the form

.. a
Koulid) = [ [ 50-Gla4)dS, ds.
P-,' Pj n’32

2D

For panels in general position, there are no closed-form expres-
sion for the double integrals and, therefore, numerical quadra-
ture schemes must be applied. For efficiency reasons, simple
quadrature schemes are desirable. The most commonly used
scheme is the collocation discretization, which in this context
can be regarded as replacing the integration over panel P; in
(21) by the midpoint quadrature rule. Thus, a matrix entry is of
the form

0
Keat(iy ) = o / G(&:,y) dS, 22)

P; on;

where £; denotes the centroid of panel P; and ¢ is the area of
P;. The integral in (22) is the normal derivative of the source
potential due to panel P; evaluated at the point &;. This scheme
is popular because the integral over P; has a closed-form ex-
pression, see, e.g., Newman [12]. Note, that in the collocation
method the factor o; cancels.

An alternative scheme that can be derived from the Galerkin
method is is the qualocation scheme, which replaces the integra-
tion over panel P; in (21) by midpoint quadrature. The resulting
matrix entries are of the form

.. d
Kaai(t,5) = /Pi aniG(x:Ej)dSm o

(23)

and may be regarded (up to the factor ;) as the dipole potential
due to panel P; evaluated at ;.

The choice of the panel where integration is replaced by
quadrature has a significant effect on the accuracy. It is known
(see, e.g., Michlin [9]) that the dipole potential due to P; is a
solid angle that remains bounded over P; even if the panels

Dipole potential due to Panel 2 evaluated at the x axis (top curve) and normal derivative of source potential due to Panel 1 evaluated at the = axis (bottom

are equal or adjacent. On the other hand, the gradient of the
source potential due to P; becomes infinite at common edges of
adjacent panels. This effect is illustrated in Fig. 1. Qualocation
has superior accuracy over collocation because the singular
integral is evaluated analytically and the smooth integral is
evaluated with midpoint quadrature.

2) Qualocation Preserves the Correct Range: The funda-
mental principle behind the second-kind formulations in the
single- and the multiple-dielectrics case is the orthogonality of
the ranges of (A + K’) and A.G’. The latter range consists of
functions that are constant on each conductor. It is important
that the discretized system also preserves this orthogonality re-
lation and we will demonstrate below that qualocation has this
property whereas collocation does not.

To better understand the conservation of orthogonality, let us
consider the dipole operator on S = S, U Sy

7]
Ku(zx) =/S%G(:L',y)p,(y) dSy, z€S (24)

which is the adjoint of K'. Because the nullspace is always the
orthogonal complement of the range of the adjoint, we see that

NA+K)=R(A+K)L =span[x1,...,xn).  (25)
Let K q;p be the matrix obtained from collocation discretization
of K using the same partition into panels as for the adjoint op-
erator. The matrix entries are given by

G(&i,y) dSy. (26)

. 7]
Kdip(zaj):/ a

P, On;

It is follows that the qualocation matrix of the adjoint operator
in (23) is the transpose of the collocation matrix of the dipole
operator except for a factor of area ’

Kqa = K3, D 7
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whtre D = diag(asq,...,an). Furthermore, if x; x denotes
the vector that is unity on the nodes corresponding to conductor
k and zero elsewhere, then we see from (25) and (26) that

NA + Kgip) = R(A + Kqa1)™ = span[xin, - - -, Xa1.8]-
(28)

For the collocation discretization of the adjoint operator K,
there is no relationship to Kgip, similar to (27) and, in general,
the nullspace of A 4+ K., does not consist of the xx n’s.

“The importance of a discretization that preserves orthog-
onality of the ranges becomes apparent when looking at the
qualocation discretization of the second-kind formulations.
For both the single and the multiple dielectrics case, the
discretization assumes the form

(A + anl + A]\BG,IJ\}) Don = AnBp 29)
where Ay and Gy are discretizations of 4, and G, respectively.
Since

R(An) = span[x1,n,. .- XM,N]

it follows again from orthogonality that for the solution o of
(29)

(A -+ anl)DO'N =0
and
GnDoy = p.

Thus, o satisfies the discretizations of the Neumann boundary
condition (10) as well as the condition on the potential (11)
[(16)and (18) in the multiple dielectrics case]. Furthermore, the
qualocation solution is independent of the matrix B and, hence,
B can be chosen solely based on improving iterative method
convergence.

V. NUMERICAL RESULTS

To demonstrate the differences between the integral formula-
tions described in this article, we compute the charge densities
and capacitances of some structures in homogeneous and mul-
tiple dielectric materials. The formulations tested are:

1) collocation discretization of the single-layer equation (9)
and the ECF (7);

2) collocation discretization of the second-kind formula-
tions (15) and (19);

3) qualocation discretization of formulations (15) and (19);

4) Galerkin discretization of the ECF;

5) perturbation approach for the ECF [20].

The discretized linear systems are solved using the iterative
solver GMRES [18]. For all examples, the iteration was con-
tinued until the residual was reduced by the factor 10~2. No
preconditioner in the usual sense was used for any calculation.
However, the iteration counts of the second-kind formulations
are somewhat dependent on the choice of the matrix B in (15)
and (19) and B can be regarded as an inexpensive method to
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TABLE 1
MAXIMUM ERRORS OF THE CHARGE DENSITY WHEN REFINING THE MESH
Panels 1st 2nd 2nd
colloc colloc qualoc
196 | 0.2446 0.3828 0.3104
768 | 0.1336 0.2510 0.1591
3,072 | 0.0765 0.1595 (0.0908
12,288 [ 0.0405 0.0884 0.0441
49,152 | 0.0289 0.0550 0.0214

Ellipsoid in homogeneous medium with multipole accel-
eration. The maximum of the exact solution is 0.98 . . ..

improve the performance of iterative solver for second-kind for-
mulations. In our experiments, we set B = (QQ.AC)‘l, where
A, and G, are defined in (13) and (14). With this choice of B,
the eigenvalues of A.BG! are all unity or zero, which implies
that the eigenvalues of A + K’ are not changed much by adding
A.BG..

To accelerate the matrix-vector products, the fast multipole
algorithm (FMM) was applied [3], [15]. Our code is based on the
package FASTCAP [10] with some modifications to calculate
matrix-vector products with the adjoint operator.

The convergence behavior of the discretization error is inves-
tigated using a single conductor with ellipsoidal geometry

IL'2 $2 $2
S. = 3.2 43
¢ {zER 4-I—1+9

where, for examples with dielectrics, the interface

N R
Sd-——{:EER - + 5 +—1—6——1}
is added. For both geometries with and without dielectrics, the
charge density can be expressed in closed form in terms of el-
lipsoidal coordinates {7].

Table I compares the maximum error max |Gexact — Gcomput|
of the numerical solution for a conductor in free space when the
discretization is uniformly refined. The convergence rate with
respect to refining the meshsize appears to be of order one for all
discretization methods, but the constant factor of the first-kind
formulation and the qualocation discretization is smaller than
that of collocation for the second-kind formulation.

Matrix sparsification techniques, such as the FMM, con-
tribute an additional error to the discretization error because
far-field interactions are approximated by truncated multipole
expansions. Because of better conditioning, the second-kind
formulations are much less sensitive to the sparsification error
than the first-kind formulation. This is demonstrated in Table I1.
In this example, second-kind qualocation is five times more
accurate than first-kind collocation when order-two multipole
expansions are used. Thus, the second-kind formulation permits
lower expansion orders and, therefore, produces results of the
same accuracy at reduced computational cost.

When multiple dielectric materials are present, the accu-
racy of standard methods deteriorates. On the other hand,
second-kind qualocation maintains order one convergence
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TABLE 1I
MULTIPOLE SPARSIFICATION ERRORS OF THE CHARGE DENSITY
order 1st 2nd 2nd

colloc  colloc qualoc
0 11.7226 0.7880 0.7842
1 1.2039 0.1937 0.1796
2 0.1976 0.0698 0.0373
3 0.0503 0.0565 0.0229
4 0.0278 0.0550 0.0214
5 0.0292 0.0550 0.0216
6 0.0289 0.0550 0.0214

Ellipsoid without dielectric interface. 49 152 panels. The
maximum of the exact solution is 0.98 . . ..

TABLE Il
MAXIMUM ERRORS OF THE CHARGE DENSITY FOR THE TWO-ELLIPSOID
EXAMPLE WHEN REFINING THE DISCRETIZATION MESH -

Panels st 2nd 2nd
colloc colloc qualoc
96 | 0.5945 0.3299 0.1833
384 | 0.4813 0.3040 0.3577
1536 | 0.4094 0.2078 0.1531
6144 | 0.2649 0.1684 0.0865
24576 | 0.2100 0.1097 0.0498

€1 /g0 = 10 and using multipole acceleration. The max-
imum of the exact solutionis 1.11. ...

when refining the mesh, as evidenced in Table III for permit-
tivity ratio ten.

It is well known that the the accuracy of the numerical so-
lution deteriorates if the ratio of the permittivities is increased.
Several approaches have been proposed to remedy this effect,
for instance, using Galerkin discretization of the ECF [2] or the
perturbation approach. For the two-ellipsoid structure, Table IV
compares the accuracy of these approaches with the formula-
tions described in this paper.

For the perturbation approach, the error of the charge den-
sity can be shown to be independent of €, whereas the error of
all other formulations increase with ¢. Thus, for materials with
large permiitivity contrasts, the perturbation is the most accu-
rate way to calculate the charge density. However, perturbation
involves solving two probiems consecutively, where the input
of the second problem depends on the output of the first. This
is why for low &, the error of the perturbation method is larger
than for the first-kind and the second-kind qualocation formu-
lation. For the two-ellipsoid structure, the crossover occurs near
e = 10.

Since the capacitance is an integrated quantity, errors of the
charge density can be cancelled under certain circumstances
and, thus, a somewhat different picture emerges. As expected,
the error of the capacitance calculated by the perturbation ap-
proach is independent of ¢. However, if the matrix coefficients
are integrated exactly and if the discretized linear system is
solved exactly, Galerkin discretization of the ECF and qualo-
cation of the second-kind formulation are also ¢ independent.

1403

TABLE 1V
RESULTS FOR THE TWO-ELLIPSOID EXAMPLE WHEN INCREASING THE
PERMITTIVITY OF THE DIELECTRIC

e1/¢eo 2 5 10 50 100 1000
Maximum error on conductor surface
1st colloc 0.0427 0.1363 0.4083 2.6608 5.4866 56.370
1st Galerkin | 0.0313 0.0488 0.1395 0.8346 1.8188 18.639
2nd colloc 0.1560 0.0633 0.2140 2.0076 4.2542 44.944
2nd qualoc | 0.0762 0.0943 0.1493 0.6956 1.4941 15.868
perturbation | 0.0964 0.1255 0.1365 0.1459 0.1471 0.1483
Error of capacitance

1st colloc 0.1045 2.1010 5.8906 37.125 76.288 781.45
1st Galerkin | 0.1173 0.1593 0.6887 5.0607 10.544 109.27
2nd colloc 0.1162 1.9714 5.7867 36.978 76.055 779.60
2nd qualoc | 0.1913 0.1784 0.1733 0.1690 0.1684 0.1672
perturbation | 0.6652 0.9972 1.1178 1.2180 1.2308 1.2424

1536 panels. No multipole acceleration. The maxima of the exact values for the
charge density are between 1.04 and 1.12, the exact capacitances are between
26.95 and 28.24.

TABLE V
GMRES ITERATION COUNT FOR THE ELLIPSOID
constant ¢ e1/e0 =10
Panels | 1st 2nd 2nd | Panels | 1st 2nd 2nd
colloc colloc qualoc colloc colloc qualoc
48 6 6 6 96 | 12 12 12
196 21 11 12 384 37 18 17
768 27 11 12 1,536 46 18 15
3072 35 11 11 6,144 | 59 18 16
12,288 46 11 11 24,576 77 19 17

In a real calculation, the matrix coefficients of the Galerkin
method must be approximated, whereas for qualocation, exact
formulas exist. Thus, in Table IV, the errors of the capacitance
increase for the Galerkin method and remain bounded for qualo-
cation. Note that no multipole acceleration has been used for this
table. In the presence of sparsification errors only the perturba-
tion method gives accurate results for very large ¢.

Due to the fact that second-kind integral formulations lead
to well-conditioned linear systems, the number of GMRES it-
erations remains bounded when refining the discretization. On
the other hand, for the first-kind formulation, the iteration count
goes up with refining the mesh, as can be seen in Table V.

To demonstrate that the second-kind formulations are also
useful for realistic complex multiconductor systems, we cal-
culate the capacitance matrix associated with the bus-crossing
structure and the backplane connector shown in Fig. 2. The ca-
pacitances obtained from the formulations as well as the itera-
tion counts are displayed in Tables VI and VIL

For the bus crossing, the capacitances of the second-kind
qualocation discretization are within very close agreement to
the first-kind formulation at half the cost of solving the linear
system. The second-kind collocation results appear to have a
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Fig. 2. (a) Backplane connector and (b) bus crossing. Discretization used in
the calculations is finer than shown.

TABLE VI
COUPLING CAPACITANCES FOR ONE PIN AND ITERATION COUNTS FOR THE
2 X 2 BUS CROSSING STRUCTURE

Panels 1st colloc 2nd colloc 2nd qualoc
its | 62 80 29 31 31 32
Cu | 28.01 28.04 | 26.54 27.19 | 27.85 27.99
Cz | -961 -9.62 | -8.89 -9.19 | -9.52 -9.59
Ci3 | -548 -549 | -5.24 -5.36 | -5.45 -5.48
Cu | -548 -549 | -5.24 -5.35 ] -545 -5.48

Coarse grid (left), fine grid (right).

larger error, making clear that the adjoint operator requires the
nonstandard qualocation discretization.

The discretization of the connector shown in Fig. 2 has been
refined uniformly three times. The capacitances using these four
grids are presented in Table VIL. The exact value of the net-
charge on each pin apears to be between 31 and 32. Collocation
of the ECF largely overestimates charge densities when high-¢
dielectrics are present, especially for coarse discretizations. We
have seen in the ellipsoid example that the discretization error
of the capacitance in the second-kind qualocation formulation
does notshow this behavior. However, in the connector example,
matrix sparsification schemes are used and the additional error
from the fast method also depends on €, though much less than
the first-kind formulations. For comparison the table includes
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TABLE VII
NET CHARGES ON THE PINS WHEN THE POTENTIAL AT EACH PINIS 1 V
1st colloc 2nd colloc
its | 32 42 56 74 27 33 41 50
C; | 35.78 34.36 33.42 32.93 | 3323 31.68 31.36 31.34
Cy | 35.81 34.37 33.44 3291 3326 31.66 31.25 31.25
Cs | 35.81 34.39 33.45 3292|3323 31.74 31.27 31.28
Cy | 35.85 34.40 33.46 3291 | 3326 31.78 31.33 31.30
2nd qualoc perturbation

its [ 25 27 28 28 34 47 64 74
C; | 31.39 31.76 31.89 32.03 |27.54 28.96 29.98 30.61
C2 | 31.39 31.70 31.85 31.95|27.56 28.95 29.96 30.61
C3 | 31.39 31.72 31.90 31.95 2752 28.97 29.99 30.61
Cy | 3141 31.73 31.92 31.98 | 27.54 28.96 29.96 30.61

Connector example. Three uniform refinements , /e = 10.

the capacitances of the perturbation method. Note that the num-
bers are slightly different from the previously published results
in [20] because here a uniform discretization has been used.

VI. CONCLUSION

We have discussed a new second-kind integral formulation
for the calculation of conductor systems that may involve mul-
tiple dielectric materials. Combined with qualocation discretiza-
tion, this formulation results in better approximations of charge
density and capacitance at reduced cost. The gain of accuracy is
most dramatic when the permittivity ratio is in the order of ten.
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