
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 2, FEBRUARY 2003 155

A Trajectory Piecewise-Linear Approach to Model
Order Reduction and Fast Simulation of Nonlinear

Circuits and Micromachined Devices
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Abstract—In this paper, we present an approach to nonlinear
model reduction based on representing a nonlinear system with
a piecewise-linear system and then reducing each of the pieces
with a Krylov projection. However, rather than approximating
the individual components as piecewise linear and then composing
hundreds of components to make a system with exponentially
many different linear regions, we instead generate a small set of
linearizations about the state trajectory which is the response
to a “training input.” Computational results and performance
data are presented for an example of a micromachined switch
and selected nonlinear circuits. These examples demonstrate
that the macromodels obtained with the proposed reduction
algorithm are significantly more accurate than models obtained
with linear or recently developed quadratic reduction techniques.
Also, we propose a procedure fora posteriori estimation of the
simulation error, which may be used to determine the accuracy of
the extracted trajectory piecewise-linear reduced-order models.
Finally, it is shown that the proposed model order reduction
technique is computationally inexpensive, and that the models can
be constructed “on the fly,” to accelerate simulation of the system
response.

Index Terms—Microelectromechanical systems (MEMS), model
order reduction, nonlinear analog circuits, nonlinear dynamical
systems, piecewise-linear models.

I. INTRODUCTION

I NTEGRATED circuit fabrication facilities are now offering
digital system designers the ability to integrate analog

circuitry and micromachined devices, but such mixed-tech-
nology microsystems are extremely difficult to design because
of the limited verification and optimization tools available.
In particular, there are no generally effective techniques for
automatically generating reduced-order system-level models
from detailed simulation of the analog and micromachined
blocks. Research over the past decade on automatic model
reduction has led to enormous progress in strategies for linear
problems, such as the electrical problems associated with
interconnect and packaging, but these techniques have been
difficult to extend to the nonlinear problems associated with
analog circuits and micromachined devices.
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In this paper, we present an approach to nonlinear model re-
duction based on representing a nonlinear system with a piece-
wise-linear system and then reducing each of the pieces with
Krylov subspace projection methods. However, rather than ap-
proximating the individual components as piecewise-linear and
then composing hundreds of components to make a system with
exponentially many different linear regions, we instead generate
a small set of linearizations about the state trajectory which is
the response to a “training input.” At first glance, such an ap-
proach would seem to work only when all the inputs are very
close to the training input, but as examples will show, this is not
the case. In fact, the method easily outperforms recently devel-
oped techniques based on quadratic reduction.

We start in the next section by describing examples of non-
linear circuits and a micromachined switch, to make clear the
nonlinear model reduction problem, and then in Section III, we
describe the existing nonlinear reduction techniques in a more
abstract setting. In Section IV, we present the trajectory-based
piecewise-linear model order reduction (MOR) strategy, an ap-
proach for accelerating the needed simulation, and a procedure
for a posteriorierror estimation. Section V discusses a fast sim-
ulation technique emerging from the proposed MOR strategy.
Computational results are examined in Section VI, and in Sec-
tion VII, we present our conclusions.

II. EXAMPLES OF NONLINEAR DYNAMICAL SYSTEMS

A large class of nonlinear dynamical systems may be de-
scribed using the following state-space approach:

(1)

where is a vector of states at time,
and are nonlinear vector-valued functions,is
a state-dependent input matrix, is an input
signal, is an output matrix and is the
output signal.

In this paper, we will focus on three distinct examples of non-
linear systems which may be described by (1) and, due to their
highly nonlinear dynamical behavior, illustrate well the chal-
lenges associated with nonlinear MOR.

The first example, considered by Chenet al.[1], is a nonlinear
transmission line circuit model shown in Fig. 1. The circuit
consists of resistors, capacitors, and diodes with a constitutive
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Fig. 1. Example of a nonlinear transmission line circuit model.

Fig. 2. Micromachined switch (following Hunget al. [10]).

equation .1 For simplicity, we assume
that all the resistors and capacitors have unit resistance and
capacitance, respectively, ( , ). In this case, the
input is the current source entering node 1: and
the (single) output is chosen to be the voltage at node 1:

.
The second example is a micromachined switch (fixed–fixed

beam) shown in Fig. 2. Following Hunget al. [10], the dynam-
ical behavior of this coupled electromechanical-fluid system can
be modeled with the one–dimensional Euler’s beam equation
and two–dimensional Reynolds’ squeeze film damping equa-
tion given below:

(2)

(3)

where , , and are as shown in Fig. 2, is Young’s mod-
ulus, is the moment of inertia of the beam,is the stress co-
efficient, is the density, is the ambient pressure, is the
air viscosity, is the Knudsen number, is the width of the
beam in direction, is the height of the beam
above the substrate, and is the pressure dis-
tribution in the air below the beam. The electrostatic force is
approximated assuming nearly parallel plates and is given by

, where is the applied voltage.
Spatial discretization of (2) and (3) using a standard finite-dif-

ference scheme (cf. [23]) leads to a large nonlinear dynamical
system in form (1). For this system, the state vector () consists
of heights of the beam above the substrate () computed at the
discrete grid points, values of , and the values of pres-
sure below the beam. This vector of states is clearly only one
of the possible choices. Still, it has an advantage that it allows

1In the linear model, considered later on, we assume thati (v) = 40v
and in the quadratic model:i (v) = 40v + 800v .

one to obtain a system in form (1) with state-independent input
matrix . For the considered example, we select our output
as the deflection of the center of the beam from the equilibrium
point ( —cf. Fig. 2).

The last of the examples we consider in this paper is
an operational amplifier with differential input and output,
and consisting of 70 MOSFETs, 13 resistors, and nine linear
capacitors connected to 51 circuit nodes. Nodal analysis yields
a nonlinear model of the device in form (1), with voltages at
the circuit nodes defining a state vector. In order to simulate
the amplifier, existing circuit simulators use separate nonlinear
models for every transistor in the circuit, leading to complicated
schemes of solving the resulting system of nonlinear equations.
As we will show in the following sections, the proposed
trajectory piecewise-linear (TPWL) approach allows one to
model this complicated nonlinear dynamical system with a
compact, easy-to-use macromodel, consisting of a small number
of linearized models.

III. M ODEL ORDERREDUCTION FORNONLINEAR SYSTEMS

Suppose the original dynamical system (1) is of order, i.e.,
is described by states. The main goal of MOR techniques
is to generate a model of this system withstates (where

), while preserving accurately the input/output behavior of the
original system. Consequently, many MOR strategies are based
on the concept of projecting the states of the original system
onto a suitably selected reduced-order state space. This may also
be viewed as performing a change of variables

(4)

where is a th order projection of state (of order ) in the
reduced-order space and is an orthonormal matrix
( ) representing a transformation from the original to
the reduced-state space. In other words, columns ofdefine an
orthonormal basis which spans the reduced state space.

Substituting (4) in (1) and multiplying the first of the resulting
equations by yields

(5)
There are two key issues concerning representation (5) of

the original dynamical system (1). The first one is selecting
a reduced basis , such that system (5) provides good ap-
proximation of the original system (1). For the linear case
[i.e., if and are linear transformations, and is
state independent], there are a number of methods for deter-
mining . They include: selecting vectors from orthogonalized
time–series data [10], [25], computing singular vectors of the
underlying differential equation Hankel operator [6], or exam-
ining Krylov subspaces [1], [2], [4], [7], [14]–[16], [21], [23].
The approach based on using time–series data extends directly
to the nonlinear cases, and the Hankel operator and Krylov
subspace based strategies can be extended to the nonlinear
case using linearization (Taylor’s expansions) of the nonlinear
system functions and [1], [2], [15], [23].
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The other key issue in applying formulation (5) for re-
duced-order modeling is finding representations of
and which allow low-cost storage and fast evaluation.
Suppose, and . If no approximations are
made to the nonlinear function , then computing
requires typically at least operations and is too
costly. The simplest approximation for , which allows less
than storage and evaluation of is based on
Taylor’s expansion about some (initial, equilibrium) state

where is the Kronecker product, and and are,
respectively, the Jacobian and the Hessian of evaluated
at the initial state . Analogously, we may take, e.g., a
linearization of about . Then,

where is the Jacobian of at . Consequently, approxi-
mate evaluation of becomes inexpensive. This
approach leads to the following reduced-order models proposed
in [1], [2], [15], and [23]. For the linear case, the reduced-order
model (5) becomes

(6)

where and are matrices,
, , and . The quadratic

reduced-order model is given by [15]2

(7)
where is a matrix. One should
note that the above quadratic model uses a linear approximation
of . One could also consider a quadratic expansion for
which would lead to a more complicated reduced-order model.

In the above formulations, due to the fact that the reduced
matrices are typically dense and must be represented ex-
plicitly, the cost of approximately computing and

terms and the cost of storing the reduced
matrices , ( and in the quadratic case) are

(in the linear case) and (in the quadratic case).
Therefore, although the method based on Taylor’s expansions
may be extended to higher orders [15], this approach is limited
in practice to cubic expansions, due to exponentially growing
memory and computational costs. For instance, if we consider
quartic expansion of order , then the memory storage
requirement exceeds elements. In addition, the
computational cost of evaluating the quartic approximation to

is .

2An alternative formulation of the quadratic reduced-order model is presented
in [1]. According to our experience, both formulations give almost identical
results.

IV. PIECEWISE-LINEAR MOR

As described in the previous section, reduced-order models
based on Taylor’s series expansion become prohibitively ex-
pensive for high series order. On the other hand, a simple
linearized reduced-order model (6), although computationally
inexpensive, may be applied only to weakly nonlinear systems
and is usually valid for only a very limited range of inputs
[23]. This leads us to proposing an approach for MOR based
on quasipiecewise-linear approximations of nonlinear systems
[18]. The idea is to represent a system as a combination of
linear models, generated at different linearization points in
the state space (i.e., different states of the original nonlinear
system). The key issue in this approach is that we will be con-
sidering multiple linearizations about suitably selected states
of the system, instead on relying on a single expansion about
the initial state.

A. Piecewise-Linear Representation

Let us assume we have generatedlinearized models
of the nonlinear system (1), with expansions about states

where is the initial state of the system, ( ) are the Jaco-
bians of evaluated at states, and . We
now consider a weighted combination of the above models

(8)

where s are state-dependent weights. (We assume that, for
all , .) The choice of weights is discussed
later on in this section. Assuming we have already generated
a th order basis [cf. (4)], we may consider the following
reduced-order representation of system (8):

(9)
where

and is a vector of weights
[ for all ].
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Let us assume that are projections of the
linearization points in the reduced basis, i.e.

Then, weights corresponding to the reduced-models
associated with [ , , ] can be computed using the in-
formation about the distances of the (projected) lin-
earization points from the current state. We require that the
“dominant” model [ , , ] is the one corresponding to
the linearization point which is the closest to the current state
of the system. Also, we need to ensure that solutions of (9) re-
main smooth (e.g., have no discontinuities) as the “dominant”
mode changes from one to another.

The following procedure of computing was found to sat-
isfy the above requirements.

1) For compute .
2) Take .
3) For compute .
4) Normalize at the evaluation point.

a) Compute .
b) For set .

In the above, is a positive constant. In our implementa-
tion of the algorithm, we took . In this way, we ob-
tain a weighting procedure such that the distribution of weights
changes rather rapidly as the current stateevolves in the state
space, i.e., once, e.g., becomes the point closest to, then
weight almost immediately becomes one. This provides a
rationale for referring to model (9) as to apiecewise-linearre-
duced-order model of nonlinear system (1).

One of the reasons for using a procedure with rapidly
changing weights is that “most of the time” the TPWL model
actually reduces to a certain linear model, which may allow one
to predict or control more easily some properties of that model.
For example, if we know that all the Jacobians, , are stable
(Hurwitz) matrices, then in the regions where only a single
weight is nonzero, the “” matrix for the TPWL system is
clearly Hurwitz. On the other hand, in the regions with multiple
nonzero weights, the associated “” matrix may not be stable,
since a convex combination of stable matrices may not be a
stable matrix. Nevertheless, note that the discussed procedure
still does not guarantee stability of the resulting TPWL model.

The weighting algorithm presented above is a simple
heuristic with limited justification. Further investigation is
needed in order to find out whether some extra knowledge on
the system may be used to generate weighting procedures which
would improve accuracy or preserve stability (or passivity) of
the original system.

B. Generation of the Piecewise-Linear Model

One may assume that the linearized model is accurate for a
given state if this state is “close enough” to a linearization
point , i.e., , or lies within an -dimensional
ball of radius and centered at . Then, it is obviously desirable
to cover the entire -dimensional state space with such balls,
thereby assuring that any state is withinof a linearization point,
but the number of balls will grow exponentially with . For

Fig. 3. Generation of the linearized models along a trajectory of a nonlinear
system in a two-dimensional state space.

example, the number of radius 0.1 balls required to fill a 1000-
dimensional unit hypercube is roughly 10 .

Since it is infeasible to cover the entire-dimensional state
space, we propose to generate a collection of models along a
single, fixed trajectory of the system.3 We generate this trajec-
tory by performing a single simulation of the nonlinear system
for a fixed “training” input. (Instead of an exact simulation of the
original nonlinear system we may perform an approximate, fast
simulation—cf. Section IV-C2.) Given a training input signal

, initial state , and a finite number of models to be gen-
erated ( ), the proposed algorithm for generating the lin-
earized models may be summarized in the following steps.

1) Generate a linearized model about the initial state,
.

2) Simulate the nonlinear system while
( ), i.e., while the current state is close enough

to any of the previous linearization points.
3) Generate a new linearized model about ,

.
4) If return to step 2).
This procedure is also depicted in Fig. 3. It should be stressed

at this point that the piecewise-linear approach resulting from
this procedure is different from methods presented, e.g., in [3]
or [11], where piecewise-linear approximations of individual el-
ements of the circuit (e.g., diodes or transistors) are considered
and a very large collection of linear models is used. In our algo-
rithm, piecewise-linear approximation applies to a trajectory of
the entire nonlinear system, and, therefore, the number of lin-
earized models may be kept small.

As illustrated in Fig. 3, the procedure proposed above al-
lows one to “cover with models” only the part of the state-space
located along the “training” trajectory (curve A). Let us as-
sume that the reduced-order model (5) is composed of linear
models generated along this trajectory. If a certain system’s tra-
jectory, corresponding to a given input signal, lies within the
region of the state space covered by these models, we expect
that the constructed piecewise-linear model (5) will suitably ap-
proximate the input/output behavior of the original nonlinear

3The idea of using a collection of linearized models along, e.g., an equilib-
rium manifold or a given trajectory is also used in design of gain-scheduled
controllers for nonlinear systems—cf. [20], [22].



REWIEŃSKI AND WHITE: TPWL APPROACH TO MOR AND FAST SIMULATION OF NONLINEAR CIRCUITS 159

Fig. 4. Comparison of system response (micromachined switch example)
computed with linear, quadratic, and piecewise-linear reduced-order models
(q = 40 andq = 41) to the step input voltageu(t) = 7H(t) [H(t) � 7 for
t > 0 andH(t) � 0 for t < 0]. The piecewise-linear model was generated
for the 8-V step input voltage.

system (cf. curves B and C).4 It should also be stressed at this
point that, although the considered trajectory stays close to the
“training” trajectory in the state space, the corresponding input
signal can be dynamically very different from the “training”
input. In other words, we may apply the piecewise-linear model
for inputs which are significantly different from the “training”
input, provided the corresponding trajectories stay in the region
of the state space covered by the linearized models (cf. curve C
and results in Section V). This case is also illustrated in Fig. 4,
which shows computational results for the example of a mi-
cromachined switch (cf. Section II). This figure presents the
system response to a 7-V step input voltage, computed with a
41st-order piecewise-linear reduced model of the device, gener-
ated for an 8-V step input training voltage. (The model was gen-
erated using the fast algorithm proposed in Section IV-C.) We
should stress that, in fact, the input to the system is the squared
input voltage . One may note that the obtained
output signal approximates very accurately the output signal
computed with the full nonlinear model of the device (the curves
on the graphs overlap almost perfectly). In this case, the piece-
wise-linear model provides significantly more accurate results
than the linear or quadratic models based on single expansions
about the initial state.

A different situation occurs when the input signal causes the
trajectory to leave the region covered by the linearized models
(cf. curves D and E in Fig. 3). Then, the piecewise-linear model
(5) will most likely not provide significantly better approxima-
tion to the nonlinear system than a simple linear reduced model
(6). This situation has been illustrated in Fig. 5. Due to a signif-
icant difference in scales (amplitudes) between the “training”
input and the testing input the piece-
wise-linear model is no longer able to reproduce accurately the

4The additional rationale for this observation is that in typical situations the
dimensions of observable and controllable spaces of a dynamical system are
much lower than the dimension of its state space. (This is expected to be true
for the examples of nonlinear dynamical systems presented in Section II.)

Fig. 5. Comparison of system response (micromachined switch example)
computed with linear, quadratic, and piecewise-linear reduced-order models
(q = 40 and q = 41) to the step input voltageu(t) � 9 (t > 0). The
piecewise-linear model was generated for the 7-V step input voltage.

Fig. 6. Comparison of system response (micromachined switch example)
computed with linear, quadratic, and piecewise-linear reduced-order models
(q = 40 and q = 41) to the step input voltageu(t) � 9 (t > 0). The
piecewise-linear model was generated for the 9-V step input voltage.

response of the nonlinear system. Now, if we generate the piece-
wise-linear model with a 9-V training input (cf. Fig. 6), then this
model is able to reproduce accurately the nonlinear response.
One should note that in this case the piecewise-linear model
is able to accurately model the dynamics of a highly-nonlinear
pull-in effect (the beam is pulled down to the substrate), which
is of particular importance in applications [10]. One may note
from the graph that the linear model is not able to reproduce this
phenomenon, while the quadratic model is unable to reproduce
the correct dynamics. Still, this example shows that if the piece-
wise-linear model is to be used for inputs with very different
scales one should consider more complicated schemes of gen-
erating the linearized models, based, e.g., on multiple training
inputs.
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C. Fast Generation of TPWL Models

The above method for generating piecewise-linear models of
nonlinear dynamical systems requires simulating the original
nonlinear system (1). This simulation can be costly, due to the
original size of the problem. In order to reduce the computa-
tional effort, we note that it is unnecessary to compute theexact
trajectory for the “training” input in order to generate a col-
lection of linearized models. In fact, it suffices to compute an
approximatetrajectory and obtain only approximate lineariza-
tion points. In this section, we present an approach for efficient
generation of piecewise-linear reduced-order models based on
this idea. The proposed numerical algorithm proceeds in the two
stages: 1) generation of the reduced basis, used to represent ap-
proximately the state space vectors () and 2) approximate sim-
ulation of the nonlinear system response to the training input,
using the reduced basis and piecewise-linear approximation of
the nonlinear functions and along a trajectory of the
nonlinear dynamical system (1). This approach shares features
with reduced-basis methods for solving parabolic problems [5].
Below, these two stages are described in more detail.

1) Generation of the Reduced Basis:The reduced-order
basis , where , is obtained in the
following three steps.

1) Generate the linearization of the dynamical system (1) about
the initial state

(10)

where , and ( ) is the Jacobian of
, evaluated at , and construct an orthogonal

basis in the th order Krylov subspace

(11)

using the Arnoldi algorithm [23] (or block Arnoldi algo-
rithm [17] if the number of inputs ). This choice
of basis ensures that moments of the transfer function
of the reduced-orderlinearized model matchmoments of
the transfer function for the original linearized model (10)
[8], [15].

2) Orthonormalize the initial state vector with respect to
the columns of and obtain vector . (To this end,
one may use e.g., the singular value decomposition (SVD)
algorithm.)

3) Take as a union of and : .

So, the final size of the reduced basis equals . The
last two steps ensure that we will be able to represent exactly
the initial state in the reduced basis . [Note that if

, then steps 2) and 3) become unnecessary.] Exact
representation of the initial state ensures that we may correctly

start the fast approximate simulation of the nonlinear system in
the reduced-order space as described in the following section.5

2) Fast Approximate Simulation:The second stage of the
proposed MOR algorithm may be summarized in the following
steps.

1) Take , set to be the initial state.
2) While do

a) Using basis , construct a reduced-order model of dy-
namical system (1), linearized about state

(12)
where is a reduced-order approximation of state vector

( ). This step requires computation of the Ja-
cobians and (at ) in the nonreduced state
space.

b) Simulate reduced-order linear dynamical system (12),
i.e., compute for subsequent time steps ,
while the state is close enough to the initial state

( ), i.e., when

where is an appropriately selected constant (cf. the
comments below).

c) Take the next linearization point ,
.

There is an important issue concerning the TPWL MOR
algorithm proposed above. In order to be able to reproduce
nonlinear effects in the behavior of a dynamical system, the
linearization points should be changed “frequently enough”
during the proposed piecewise-linear simulation. This is deter-
mined by the constant parameterin the algorithm presented
above. The proper choice of was found to depend signifi-
cantly on the amplitude of the input signal .

A simple procedure for determining an appropriate value of
automatically is as follows. First, for a given input signal, we

perform a reduced-order simulation of the linearized dynamical
system, with linearization about the initial state, to find the final
(steady–state) vector . Although in most cases will not
be the correct steady state of our nonlinear dynamical system, it
will give us information about the scale of changes between the
initial and final state

(If , we may take .) It is clear that in order
to capture any nonlinear effects one has to select the value of
such that . In practical situations, it is usually enough to
select or .

3) Generation of the Reduced Basis—An Extended Algo-
rithm: The simple algorithm for generating the reduced-order
basis, which constructed a Krylov subspace only at the initial

5In this section, we presented only the simplest (and the least computationally
expensive) algorithm for generating the reduced basisV . One may easily extend
this scheme to construct a basis which includes e.g., states used as subsequent
linearization points and Krylov subspaces corresponding to these states. Such
an approach is presented in Section IV-C3.
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state of the system, can be extended in order to include in
the reduced-order basis Krylov subspaces corresponding to
other linearization points located along the training trajectory
[19]. This extension of the reduced basis is motivated by the
following fact. As already mentioned in the previous section,
if we use basis spanning Krylov subspace (11) to construct
a linear reduced-order model, then the firstmoments of
the transfer function for this reduced-order linear model
match first moments of the transfer function for the original
linearized model (10). Consequently, important dynamical
features of the nonreduced linearized model are preserved by
the reduced-order linear model [8], [15]. Since in the TPWL
model we use a collection of reduced-order linear models,
taking a union of bases in Krylov subspaces corresponding to
subsequent linearized models as a reduced-order basiswill
ensure that, for every resulting reduced-order linear model,
the first few moments of its transfer function will match the
first few moments of the transfer function of the corresponding
nonreduced-linearized model. Consequently, we may expect
that important dynamical properties for each of the linearized
models will be preserved after the projection process.

Two important technical details arise during the construction
of the union of bases at different linearization points. Firstly, if
we linearize about a nonequilibrium point two input terms ap-
pear (instead of one, if we linearize about an equilibrium)—one
associated with term , and the other—associated with
term , where is a given linearization
point [cf. (12)]. Consequently, bases corresponding to
two different Krylov subspaces and

[cf. (11)] need to be con-
structed. Secondly, we need to eliminate redundant (e.g., almost
parallel) vectors (which may appear after we take a union of a
collection of bases) from the reduced basis. To this end, we may
apply, e.g., SVD algorithm and discard vectors corresponding
to the smallest singular values.

Using the above motivation, we developed an extended
algorithm for generating the projection basis, which may be
summarized in the following steps.

1) Let , .
2) Repeat until the “training” simulation is completed.

a) Consider linearization of dynamical system (1) about
state

(13)

where is the Jacobian of , evaluated at ,
is the Jacobian of evaluated at , and

and construct two orthogonal basesand
in the following th order Krylov subspaces

using the Arnoldi algorithm [23] (or block Arnoldi al-
gorithm [17] if there are multiple inputs).

b) Take as .
c) Orthogonalize the columns of using the SVD al-

gorithm and construct a new basis which contains
orthogonalized columns of corresponding to singular
values larger than a given .

d) Take .
e) Using , construct a linearized reduced-order system at

and simulate this system until you reach the next lin-
earization point , set .

3) Orthogonalize the columns of the aggregate basisusing
the SVD algorithm and construct the final reduced-order
basis which includes orthogonalized columns of cor-
responding to singular values larger than some .

Step 2c) from the above algorithm may be omitted if we
simulate a full order nonlinear system (instead of a linearized
reduced-order system) in order to find subsequent linearization
points. Then, one should take .

One may note that the above method is more expensive than
the simple algorithm presented earlier, since we need to gen-
erate two orthogonal bases at every linearization point. To this
end, we need to perform LU factorization of Jacobiansat
every linearization point . In the simple approach, presented
in Section IV-C1, this had to be done only once. The extended
algorithm also requires additional SVD steps.

Nevertheless, since we generate a “richer” basis we expect
that it will more adequately approximate the initial state space.
One may argue though that the above method may generate
models of significantly larger order than the simple algorithm.
In fact, the situation is often the opposite. As shown in Sec-
tion IV-C, the extended algorithm has potential to generate suit-
able, accurate reduced bases with a lower order than the simple
algorithm using a single linearization about the initial state.

D. A Posteriori Error Estimation

In this section, we will present a method fora posteriori
estimating the error of solving (1) with a TPWL model (9).
The following derivation of the error estimator is based on
the assumption that the original nonlinear function[cf. (1)]
is negative monotone, i.e., [24]:

(14)

The above assumption is satisfied by a number of nonlinear
systems, including, e.g., a certain class of nonlinear analog
circuits. Also, one may easily note that ifis negative monotone,
then system (1) is stable for any admissible, provided

, where is a symmetric positive definite matrix.
For simplicity, we will also assume in this section that

from (1) is an identity transformation and that . Still,
the following derivation may be easily extended for the case
of an arbitrary invertible transformation (with appropri-
ately modified assumptions) and a state-dependent input matrix

.
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We will look for an estimate of , where
, and and are solutions at

time of (1) and (9), respectively (for the same initial condition
6 and the same input signal). From (1) and (9) we have

where , and . From the above we
obtain

(15)

where

Since , for every , we may write

where and is the Hessian of .
Then becomes

(16)

Left multiplying (15) by , and applying property (14) and
Schwartz inequality gives

(17)
Let us now consider time interval . Suppose we know

. Then, applying Comparison Lemma [9] to differen-
tial inequality (17) yields

(18)

for all . The above inequality leads us to proposing
the following scheme of computing error estimates of

at time steps .

6If x cannot be represented exactly in basisV , the initial condition for the
reduced system is taken asz = V x .

1) At we have
, where is a known initial

condition.
2) For we iteratively compute

(19)

Clearly, it follows from (18) that for every
. In practice, we replace the supremum in the above formula by

a maximum over a discrete set of time steps betweenand ,
corresponding to a certain numerical time integration scheme.
(If are the same as subsequent integration steps, then we take
a maximum of the two values at the ends of the considered time
interval.) Clearly, this method of evaluating the supremum im-
plicitly assumes that neither nor behave patholog-
ically between subsequent integration time steps.

The main challenges associated with using the above scheme
are related to: 1) finding [compare (14)] which would be
as precise as possible. (Quality of the error estimates heavily
depends on this parameter, therefore, one could consider using
different s in different regions of the state space, if at all
possible and computationally feasible.) and 2) finding estimates
of , given by (16), which typically requires estimating

—the norm of the Hessian of .
If we apply the aggregate reduced-order basis, described

in Section IV-C3, then one may easily note that , for
every . Furthermore, if we include ( ) in the
reduced basis , then
[cf. (16)] and the following estimate of may be given:

Then, we may replace (19) with

(20)

One should note that since the values of norms
(for every ) and can be

computed during construction of the reduced model, the cost of
evaluating (20) is only. This means that error estimation
may be performed “on the fly,” along with the reduced-order
simulation, without increasing the complexity of the fast solver.
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Fig. 7. Example of a circuit with quadratic nonlinearity.

In order to verify the proposed method of estimating the sim-
ulation error for the TPWL reduced-order model, we consid-
ered a simple test example of anRC ladder shown in Fig. 7.
A quadratic nonlinearity is introduced to the circuit by adding
nonlinear resistors to the ground at each node

where if and if . If we
take , then the nonlinear operator[cf. (1)]
takes the following form:

where

...
...

.. .

and is the vector of states ( in
our test). It may easily be proved thatis negative monotone,
provided all are nonnegative at all times (which is satisfied
if the input current for all ). The value of [cf. (14)]
may then be taken as , where
is the spectrum of matrix . For , .
We also have that for all . Knowing and

we are ready to use formula (20) to compute error
estimates.

In a numerical test, we generated a reduced-order TPWL
model of order (with linearization points)
and simulated both original nonlinear system and TPWL
reduced-order model, with the input current equal to unit
step. (It should be stressed thatis relatively large, as compared
to for this example, and, therefore, it may be inefficient to
use the extracted TPWL model in practice. Still, this reduced
model provides useful insight while considering the problem of
error estimation.) The actual error and its estimate were
computed at every time step. Fig. 8 shows a comparison of the
actual error and its estimate for the considered case. One may
note that formula (20) gives reasonable estimates of the error
of approximating the original nonlinear system with a TPWL
reduced-order model.

One should note that the error estimation procedure described
above may be used not only to assess errors of simulation with
an existing TPWL reduced-order model, but also to improve the
algorithm for generating the TPWL models (or, more precisely,
the algorithm for selecting subsequent linearization points).
Currently, during the “training simulation,” the subsequent
linearization points are selected using a simple geometric
criterion: if the current state is “far enough” from all previous
linearization points, then it becomes the next linearization

Fig. 8. A posteriori error estimates for a TPWL reduced-order model of a
nonlinearRC ladder.

Fig. 9. Comparison of system response (nonlinear transmission line circuit
model) computed with linear, quadratic, full nonlinear, and TPWL models to
the step input currenti(t) = H(t � 3) [H(t) � 1 for t > 3 andH(t) � 0
for t < 3]. N = 1500.

point. Instead of this geometric criterion, perhaps one might
use a measure based on error estimates (which use information
on the nonlinear system at hand) to select a collection of
linearization points. Clearly, the subject of where to place
linearization points needs further investigation.

V. FAST PIECEWISE-LINEAR SIMULATOR

One should note that the MOR algorithm presented in
Section IV-C may be used as a fast simulator for nonlinear
dynamical systems. The simulator has been implemented for
the example of a nonlinear transmission line circuit model
described in Section II. Selected results of numerical tests are
presented below.

Fig. 9 shows the output voltage for a step input current,
computed using full order linear and quadratic models as well as
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TABLE I
QUALITY OF APPROXIMATION FOR LINEAR, QUADRATIC AND

TPWL SIMULATORS FOR THE STEP INPUT CURRENT.
v = [v(0); v(�T ); . . . ; v(T )] IS THE COMPUTED

OUTPUT VOLTAGE AT NODE 1, v IS THE

REFERENCE OUTPUT VOLTAGE COMPUTED

WITH FULL NONLINEAR MODEL

TABLE II
COMPARISON OFSIMULATION TIMES FOR THEFULL ORDER NONLINEAR

SIMULATOR AND THE PROPOSEDTPWL REDUCEDORDERSIMULATOR

the proposed TPWL simulator. The reference result is computed
with a simulator using a full order nonlinear model. In the simu-
lation the number of time steps was 1000 ( , ),
the TPWL simulator used the reduced basis of order (the
original problem size was ) and the linearization point
changed 20 times (i.e., it used 21 different linear models during
the simulation). As Fig. 9 clearly shows, the output voltage ob-
tained by the TPWL method matches very well the reference re-
sult (the curves overlap almost perfectly). Table I shows the rel-
ative error between the voltage
computed with linear, quadratic, and TPWL simulators and the
reference voltage obtained with the full nonlinear model of
the circuit. It is apparent that the proposed piecewise-linear al-
gorithm gives significantly more accurate results than the linear
or quadratic simulations, producing results which accurately
match the steady state of the system.

Table II compares performance of the full nonlinear simulator
for the considered nonlinear transmission line circuit model
and the proposed TPWL solver, which performs reduced-basis
computations, for three different inputs. In order to assure
appropriate accuracy, for the circuit with nodes, the
order of the reduced basis equaled , and for the circuit
with , . The simulators were implemented
in Matlab, therefore, the presented execution times should be
used for comparison only. High-performance implementations
will most likely give significantly lower absolute execution
times and may change the relative performance of the two
algorithms. The tests were performed on a Linux workstation
with a Pentium III Xeon processor. It is apparent that for either
small or large original problem sizes, the piecewise-linear
simulator is significantly faster than the full nonlinear solver.
For , a hundredfold acceleration in computation time
was achieved.

Fig. 10. Comparison of system response (nonlinear transmission line circuit
model) computed with linear, quadratic, and TPWL reduced-order models (of
orderq = 10) for the step input currenti(t) = H(t� 3) [H(t) � 1 for t > 3
andH(t) � 0 for t < 3]. The TPWL model was generated using a unit step
input current.

VI. COMPUTATIONAL RESULTS

A. Model Verification—Transient Simulations

This section presents results of computations using TPWL
reduced-order models, obtained with the MOR technique pro-
posed in Section IV-C. Our main goal is to find out whether this
technique does really generatea modelof our system. Let us
recall that, in the proposed MOR algorithm, the model [which
basically consists of a collection of reduced-order matrices

] is obtained by performing a fast
simulation for agiventraining input signal. In order to show that
we have indeed generated a model we should verify that it gives
correct outputs not only for the input it was generated with, but
also for other inputs.

This verification was done experimentally. We considered
our nonlinear transmission line circuit model (cf. Section II)
with nodes and generated a reduced-order TPWL
model of order using a step input .
For this example, the linearization point changed four times,
therefore, our model consisted of five reduced-order matrices

. The reduced-order model was tested for different
inputs, including the step input used to generate it. Fig. 10 shows
the result for the step input (the same input we used for model
extraction). Figs. 11 and 12 show the reduced-order simulation
results for a cosinusoidal input and an exponentially decaying
input, respectively. In all the cases, the output voltages obtained
with the TPWL reduced-order model accurately approximate
the reference voltages (the curves overlap almost perfectly).
This indicates that our reduced-order system provides a sensible
model for the original nonlinear circuit.

Fig. 13 provides an analogous test for the example of a mi-
cromachined beam described in Section II. In this case, the re-
duced-order model was generated for the step 8-V training input
voltage ( , the model used nine linearization points. Then
it was tested for a cosinusoidal input with a 7-V amplitude. Once
again, the transient obtained with the TPWL model matches
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Fig. 11. Comparison of system response (nonlinear transmission line circuit
model) computed with linear, quadratic, and TPWL reduced-order models (of
orderq = 10) for the input currenti(t) = (cos(2�t=10) + 1)=2. The TPWL
model was generated using a unit step input current.

Fig. 12. Comparison of system response (nonlinear transmission line circuit
model) computed with linear, quadratic, and TPWL reduced-order models (of
orderq = 10) for the input currenti(t) = exp(�t). The TPWL model was
generated using a unit step input current.

very accurately the reference result obtained with the full non-
linear model of order .

Figs. 10–13 also provide a comparison of the proposed
TPWL reduced-order model with linear and quadratic re-
duced models, generated using methods described in [1],
[15], and [23]. It is apparent from the graphs that the TPWL
reduced-order model gives significantly more accurate results
than the linear and quadratic reduced-order models using
Taylor expansions about the initial state. It should be stressed
at this point that all models (linear, quadratic, and TPWL) were
of the same order and, moreover, applied the same basis
(obtained with the procedure described in Section IV-C1).

Next, we considered the operational amplifier example, de-
scribed in Section II. The examined circuit had nodes
and eight inputs: 1) the differential input with input signals

Fig. 13. Comparison of system response (micromachined switch example)
computed with linear, quadratic, and piecewise-linear reduced-order models (of
orderq = 40 andq = 41) for the input voltageu(t) = 7 cos(4�t). The
piecewise-linear model was generated for the 8-V step input voltage.

and , and 2) the auxiliary inputs , , , ,
, and used in common-mode rejection testing. We

considered two full-order models of the op-amp: 1) simplified:
employing linearized capacitance models for MOSFETs [then,

—cf. equation (1)] and 2) regular: employing non-
linear capacitance models (i.e., with a state-dependent capaci-
tance matrix). In both cases, the full nonlinear simulations were
performed using NITSWIT circuit simulator, described in [12]
and [13]. In order to generate the reduced-order TPWL models,
we applied the following set of training inputs:

.

(cf. Fig. 14) and auxiliary input signals shown in
Fig. 15.

For the case with a linearized capacitance matrix, we obtained
a TPWL model of order (with 35 linearization points
and eight inputs), and for the case with the nonlinear capaci-
tance we obtained a model of order 34 (with 29 linearization
points). As one may note, due to an increased complexity of the
applied MOSFET device models, the order of the resulting re-
duced-order model is higher in the second case.

The obtained reduced-order TPWL models were then tested
for the following input (cf. Fig. 14):

.

( ). Figs. 16 and 17 show a comparison of the
transients computed with NITSWIT and with the reduced-order
TPWL models for one (of the two) output nodes of the ampli-
fier. One may note excellent agreement of the output signals for
both cases, which indicates that suitable reduced-order TPWL
models of the original systems have been constructed. The re-
sults also indicate that the proposed MOR method may be suc-
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Fig. 14. Op-amp input signalsv andv .

Fig. 15. Auxiliary inputs for the op-amp circuit.

Fig. 16. Comparison of the output voltage (op-amp example, simplified
linearized capacitance models), computed with a reduced-order TPWL model
and NITSWIT circuit simulator.

Fig. 17. Comparison of the output voltage (op-amp example, regular
nonlinear capacitance models), computed with a reduced-order TPWL model
and NITSWIT circuit simulator.

TABLE III
COMPARISON OF THETIMES OF MODEL EXTRACTION AND REDUCED

ORDER SIMULATION FOR THE LINEAR, QUADRATIC AND TPWL
MOR TECHNIQUES. THE ORIGINAL PROBLEM HAD SIZE

N = 1500. THE REDUCED MODEL HAD SIZE

q = 30. THE TESTS WERE RUN FOR THE

NONLINEAR TRANSMISSIONLINE EXAMPLE

cessfully used for multiple input systems. It is important to point
out that not only do the TPWL models have a lower order than
the original system, but also they are much easier to use. Since
a TPWL model consists of a weighted combination of linear
models, the time stepping is very straightforward. In a simplified
backward Euler time stepping scheme we compute the weights

[cf. (9)] e.g., using the previous state of the system or a pre-
dictor of the next state and then, assuming that these weights are
fixed, we find the state at the next time step by performing only a
single Newton update (i.e., solving a low-order linear system of
equations). In a more sophisticated time stepping scheme, one
can account for derivatives of , which is also straightfor-
ward, since the weights are simple scalar functions. In a regular
simulator, if using backward Euler scheme, finding the next state
requires computation of a number of Newton updates for the full
order nonlinear system, which is considerably more complex.

B. Performance and Complexity of the MOR Algorithm

Table III shows a comparison of the performance of the dis-
cussed MOR techniques and the reduced-order solvers. All the
algorithms were implemented in Matlab. The tests were per-
formed on a Linux workstation with a Pentium III Xeon pro-
cessor. One may note that performance for linear and TPWL
models is comparable. The generation of the quadratic model
is significantly more expensive, due to the costly reduction of
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Fig. 18. Comparison of system response (micromachined switch example)
computed using the TPWL models extracted with the simple and the extended
algorithm for generating the reduced-order basis. In both cases, the models were
generated for the 5.5-V step input voltage.

the Hessian matrix, which requires computations of the ma-
trix-vector product , where is a full order
Hessian matrix (usually represented implicitly—cf. [1]).

The memory complexity of the TPWL reduced-order solver
is , where is the number of linearization points. Conse-
quently, the memory cost is roughlytimes larger than the cost
for the linear reduced-order simulator [which is ]. The
memory cost of the quadratic reduced-order solver is (the
reduced-order Hessian must be stored explicitly as a matrix), so
if , then the memory requirements for the piecewise-linear
solver are approximately the same as for the quadratic solver.
For the examples of the nonlinear transmission line and the mi-
cromachined switch (cf. Figs. 10–13, or

), so in those cases the memory used by the piece-
wise-linear algorithm equaled roughly only half (or a quarter) of
the memory used by the quadratic solver. In the case of the op-
erational amplifier (linearized capacitance case), which
translates to doubled storage requirements as compared to the
quadratic model.

C. Performance of the Extended Algorithm for Generating the
Reduced-Order Basis

This section presents computational results comparing two
algorithms for generating the reduced-order basis: a simple one,
presented in Section IV-C1, and the extended one, introduced in
Section IV-C3. Fig. 18 shows the deflection of the center of the
micromachined fixed–fixed beam computed using the two con-
sidered methods. In both MOR methods, the 5.5-V step input
voltage was used as a “training” input and the number of lin-
earization points equaled six. For the simple algorithm, the order
of the reduced-model equaled . In the extended algo-
rithm, a basis of order seven [ , —cf. Step
2)a) in the algorithm from Section IV-C3] was generated at each
of the linearization points. Then the size of the aggregate basis

has been reduced from to 28 using the SVD al-
gorithm. One may note that the TPWL model of order ,

Fig. 19. Comparison of system response (micromachined switch example)
computed using the full nonlinear simulator and the TPWL reduced-order model
extracted with the simple algorithm for generating the reduced-order basis. The
model of orderq = 41 was generated for the 5.5-V step input voltage.

Fig. 20. Comparison of system response (micromachined switch example)
computed with different MOR algorithms. TPWL models were generated for
the 9-V step input voltage.

generated with the extended reduced-order basis, gives signif-
icantly more accurate results than the TPWL model generated
with a simple basis. (On the graph, the dashed line overlaps per-
fectly with the solid line.) In order to obtain the desired accuracy
with the model extracted with the simple basis generation algo-
rithm, the order of the basis needs to be increased to in
the considered case (cf. Fig. 19).

Fig. 20 shows the simulated pull-in effect for the microma-
chined switch example. Again, in this case, the MOR method
employing the extended algorithm to generate the reduced basis
provides the best accuracy among the considered MOR tech-
niques. It also generates a model with the lowest order.

One should note that in the extended algorithm, we generate
a collection of very-low-order bases at different linearization
points rather than a larger basis at a single linearization point, as
in the initial approach. As shown by the presented results, this
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TABLE IV
COMPARISON OF THETIMES OF MODEL EXTRACTION AND REDUCED ORDER

SIMULATION FOR THE TPWL MOR ALGORITHMS USING TWO DIFFERENT

METHODS OFGENERATING THE REDUCED ORDER BASIS. THE TESTS

WERE RUN FOR THE MICROMACHINED SWITCH EXAMPLE. THE

ORIGINAL PROBLEM SIZE EQUALED N = 880

Fig. 21. Comparison of sinusoidal steady state (nonlinear transmission line
circuit model) computed using full nonlinear and TPWL models. The input
signal wasi(t) = (cos(2�t) + 1)=2.

may lead to a model with a lower order, which is faster to simu-
late. The tradeoff is that the extended basis generation algorithm
is computationally more expensive. This has been illustrated in
Table IV, which shows performance of the MOR techniques for
the considered micromachined beam example.

D. Sinusoidal Steady–State Simulations

This section compares results of simulation of the sinusoidal
steady state computed with the full-order nonlinear models and
the reduced-order TPWL models. The tests were performed for
the examples of a nonlinear transmission line circuit model (cf.
Fig. 1) and the operational amplifier, described in Section II.

In the first series of tests, we computed the sinusoidal steady
state for the nonlinear transmission line model with
nodes, excited with the input current .
The simulation was performed with a simple, fixed time step
shooting method. Fig. 21 shows the computed sinusoidal
steady–state output of the system in time domain. One may
note that the result obtained with the reduced-order model of
order closely matches the reference result.

The frequency domain analysis has also been performed for
the sinusoidal steady–state output signal shown in Fig. 21.
[ , where is the voltage at node 1 of the cir-
cuit.] We computed a complex discrete Fourier transform (DFT)

TABLE V
COMPARISON OF THESUBSEQUENTHARMONICS OF THESINUSOIDAL

STEADY STATE, COMPUTED USING A FULL ORDER NONLINEAR

MODEL AND THE REDUCED ORDER TPWL MODEL

TABLE VI
COMPARISON OF THEMAIN INTERMODULATION HARMONICS OF THE

SINUSOIDAL STEADY STATE, COMPUTED USING A FULL-ORDER

NONLINEAR MODEL AND THE REDUCED ORDER

TPWL MODEL (q = 39)

of the discrete output signal . The first four
Fourier coefficients (not normalized) are shown in Table V.
One may note that the sinusoidal steady stateobtained with
the discussed reduced-order model matches closely up to the
third harmonic of the reference sinusoidal steady state of the
considered nonlinear transmission line model. This result sug-
gests that the extracted reduced-order models may be used to
analyze second-order effects like harmonic distortion.

In a different series of tests, we applied a TPWL reduced-
order model to compute intermodulation distortion for the con-
sidered op-amp example (using nonlinear capacitance models
for MOSFETs). We generated two TPWL models: the first one
of order (with 39 linearization points), and the second
one of order (with 36 linearization points) for a sinu-
soidal training input (which was the same in both cases)

where MHz. Then, the models were tested for the input
signal being a sum of two sinusoids with different frequencies:

where MHz and MHz, and the spectrum of
the computed sinusoidal steady state was extracted using DFT.
Tables VI and VII show the complex amplitudes of the main in-
termodulation products and the driving harmonics obtained with
the TPWL reduced-order models and the full nonlinear model
of the considered op-amp. The error shown in the tables is the
relative error of the computed amplitude. The results indicate
that the TPWL reduced model is able to effectively reproduce
the intermodulation distortion effects in the considered case. At
the same time, comparison between the two tables shows that
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TABLE VII
COMPARISON OF THEMAIN INTERMODULATION HARMONICS OF THE

SINUSOIDAL STEADY STATE, COMPUTED USING A FULL ORDER

NONLINEAR MODEL AND THE REDUCED ORDER

TPWL MODEL (q = 35)

the computed amplitudes of intermodulation products vary sig-
nificantly depending on the applied TPWL model which sug-
gests that in this case we may not further reduce the order of the
macromodel.

VII. CONCLUSION

In this paper, we have proposed an efficient numerical
approach for MOR and simulation of nonlinear dynamical
systems. The results obtained for the examples of nonlinear
circuits and a micromachined switch indicate that the presented
method provides very good accuracy for different applications
(and both single- and multiple-input systems). The method also
proves to be characterized by low computational and memory
requirements, therefore, providing a cost-efficient alternative
for the nonlinear MOR techniques based on linear and quadratic
models.

Although the algorithm in its current state has proved to be
very effective, its performance still depends on a few param-
eters, which need to be adjusted more or less arbitrarily for a
given application example. The discussed parameters are related
mainly to the weighting procedure, as well as the method of
selecting subsequent linearization points. Consequently, further
developments of the proposed MOR algorithm are necessary in
order to achieve its true robustness. Topics for further investi-
gation include e.g.: 1) developing more sophisticated weighting
procedures which would exploit available information on the
original system in order to obtain more accurate TPWL models
and/or to preserve stability or passivity of the original system;
2) incorporatinga posteriorierror estimation procedures to the
algorithm of selecting the collection of linearization points; and
3) controlling approximation errors in the proposed fast simu-
lation algorithm. A separate problem is to define what is an op-
timal training input for a given nonlinear system.

There are also many possible extensions of the presented
MOR technique, which may include applying different types
of bases in the reduced-order TPWL simulators or devel-
oping schemes for automatic model generation with multiple
“training” inputs, which may allow one to extend the validity of
the quasipiecewise-linear reduced-order model to inputs with
different scales of amplitudes. One should also note that appli-

cation of the discussed TPWL MOR approach is not limited
to single-input single-output or multiple-input multiple-output
dynamical systems given in form (1). For instance, if we extend
the weighting procedure to take into account not only the state
space of the system, but also the space of input signals, we may
be able to construct TPWL macromodels for systems with fully
nonlinear input operators.
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