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Order Reduction and Fast Simulation of Nonlinear
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Abstract—in this paper, we present an approach to nonlinear In this paper, we present an approach to nonlinear model re-
model reduction based on representing a nonlinear system with duction based on representing a nonlinear system with a piece-
a piecewise-linear system and then reducing each of the piecesise linear system and then reducing each of the pieces with

with a Krylov projection. However, rather than approximating L
the individual components as piecewise linear and then composing Krylov subspace projection methods. However, rather than ap-

hundreds of components to make a system with exponentially Proximating the individual components as piecewise-linear and
many different linear regions, we instead generate a small set of then composing hundreds of components to make a system with
linearizations about the state trajectory which is the response exponentially many different linear regions, we instead generate
to a “training input.” Computational results and performance 5 gmga]| set of linearizations about the state trajectory which is

data are presented for an example of a micromachined switch th ¢ “training | t” At first al h
and selected nonlinear circuits. These examples demonstrate € response 1o a "training input. Irst glance, such an ap-

that the macromodels obtained with the proposed reduction Proach would seem to work only when all the inputs are very
algorithm are significantly more accurate than models obtained close to the training input, but as examples will show, this is not
with linear or recently developed quadratic reduction techniques.  the case. In fact, the method easily outperforms recently devel-
Also, we propose a procedure fora posteriori estimation of the oped techniques based on quadratic reduction.

simulation error, vyhich may be u.sed.to determine the accuracy of We start in the next section by describing examples of non-
the extracted trajectory piecewise-linear reduced-order models. ] : ) .
Finally, it is shown that the proposed model order reduction linear circuits and a micromachined switch, to make clear the
technique is computationally inexpensive, and that the models can nonlinear model reduction problem, and then in Section Ill, we
be constructed “on the fly,” to accelerate simulation of the system describe the existing nonlinear reduction techniques in a more
response. abstract setting. In Section 1V, we present the trajectory-based
Index Terms—Microelectromechanical systems (MEMS), model piecewise-linear model order reduction (MOR) strategy, an ap-
order redut_:tion, _non!inear analog circuits, nonlinear dynamical proach for accelerating the needed simulation, and a procedure
systems, piecewise-linear models. for a posteriorierror estimation. Section V discusses a fast sim-
ulation technique emerging from the proposed MOR strategy.
|. INTRODUCTION Computational results are examined in Section VI, and in Sec-

NTEGRATED circuit fabrication facilities are now 01‘feringt'0n Vi, we present our conclusions,

digital system designers the ability to integrate analog
circuitry and micromachined devices, but such mixed-tech- !l EXAMPLES OF NONLINEAR DYNAMICAL SYSTEMS
I’l0|Ogy microsyStemS are extremely d|ff|Cu|t to deSign becauseA |arge class of nonlinear dynamica' Systems may be de-
of the limited verification and optimization tools availablescriped using the following state-space approach:
In particular, there are no generally effective techniques for

automatically generating reduced-order system-level models dg(z(t)) )
from detailed simulation of the analog and micromachined i Fla(®)) + Ba(t))u(t) (1)
blocks. Research over the past decade on automatic model y(t) = CTx(t)

reduction has led to enormous progress in strategies for linear

problems, such as the electrical problems associated Wi{Reres(t) € RY is a vector of states at time f: RN — RV
interconnect and packaging, but these techniques have bggR,: rR¥N — RN are nonlinear vector-valued function, is
difficult to extend to the nonlinear problems associated Withstate-dependent x M input matrix,u: R — RM is an input
analog circuits and micromachined devices. signal,C is anN x K output matrix and: B — RK is the
output signal.
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falv) dav) lalv)  iaf¥) one to obtain a system in form (1) with state-independent input
matrix B. For the considered example, we select our ougpijt

as the deflection of the center of the beam from the equilibrium
point (y(t) = r(t)—cf. Fig. 2).

The last of the examples we consider in this paper is
an operational amplifier with differential input and output,
and consisting of 70 MOSFETS, 13 resistors, and nine linear
capacitors connected to 51 circuit nodes. Nodal analysis yields
a nonlinear model of the device in form (1), with voltages at
Fig. 1. Example of a nonlinear transmission line circuit model. the circuit nodes defining a state vector. In order to simulate

the amplifier, existing circuit simulators use separate nonlinear

2 um of poly Si - i o _ ; .
Z “y i 10 S 0 A models for every transistor in the circuit, leading to complicated
: / schemes of solving the resulting system of nonlinear equations.
b X
50‘) [ _

As we will show in the following sections, the proposed

7 i _ e . . . .
6 — - trajectory piecewise-linear (TPWL) approach allows one to
- model this complicated nonlinear dynamical system with a
Si substrate compact, easy-to-use macromodel, consisting of a small number
of linearized models.
0.5 um SiN 2.3 um gap
filled with air

I1l. M ODEL ORDER REDUCTION FORNONLINEAR SYSTEMS

Fig. 2. Micromachined switch (following Hunet al. [10]). L . . .
Suppose the original dynamical system (1) is of oler.e.,

L L is described byN states. The main goal of MOR techniques
equationiy(v) = exp(40v) — 1.2 For simplicity, we assume ;, generate a model of this system wjtistates (where <
tcgaptai:Itatrt]serersézg)eritisgg/rcip? C'tc?ri T‘;an utr;:itsrizf;arlcr:; % , yvhile preserving accurately the input/output behavior ofthe
input is the ,current source ent,ering nodewult) = i(¢) :':md original system. CO”S?‘q“?”"y’ many MOR strategies are based
the (single) output is chosen to be the voltage at node P the C(_)ncept of projecting the states of the 0r|g|na_1l system
onto a suitably selected reduced-order state space. This may also

y(t) = vi(t). . . .
The second example is a micromachined switch (fixed—fixebc? viewed as performing a change of variables
beam) shown in Fig. 2. Following Hureg al.[10], the dynam- v = Vs @)

ical behavior of this coupled electromechanical-fluid system can

be modele_d Wlth. the one—dlmeflsmnal Eul_er’s beam equatigRere., is agth order projection of state (of orderN) in the
and two-dimensional Reynolds’ squeeze film damping €qugsyced-order space andis an N x g orthonormal matrix

tion given below: (VTV = I) representing a transformation from the original to
Lo94 92 rw 2 the reduced-state space. In other words, columisaéfine an
J*u 0% 0“u \ :
EI o5 =855 =Faect | (p=pa)dy—p 55 (2)  orthonormal basis which spans the reduced state space.
70 Substituting (4) in (1) and multiplying the first of the resulting

V-(14+6K)upVp) =12 d(gfu) ©) equations by 7' yields
/ . d
wherez, y, andz are as shown in Fig. 2 is Young’s mod- o [VIg(Vz()] = VT f(Va(t) + VI B(Vz(t))ul(t)
ulus, I is the moment of inertia of the beai$i,is the stress co- (t) = CTV (1)
efficient, p is the densityp, is the ambient pressurg, is the v = ) (5)

air viscosity, K is the Knudsen number, is the width of the  There are two key issues concerning representation (5) of
beam iny direction,u = u(z, ¢) is the height of the beam the original dynamical system (1). The first one is selecting
above the substrate, apd = p(z, y, t) is the pressure dis- 5 reduced basi¥’, such that system (5) provides good ap-
tribution in the air below the beam. The electrostatic force i§oximation of the original system (1). For the linear case
approximated assuming nearly parallel plates and is given py i f(-) andg(-) are linear transformations, and(-) is
Feec = —(cowv?/2u?), wherev is the applied voltage. state independent], there are a number of methods for deter-
Spatial discretization of (2) and (3) using a standard finite-difnining 1. They include: selecting vectors from orthogonalized
ference.scheme (cf. [23])' leads to a large nonlinear dy_”amiffﬁﬁe—series data [10], [25], computing singular vectors of the
system in form (1). For this system, the state vect9rcpnsists nderlying differential equation Hankel operator [6], or exam-
of heights pf thg beam above the substrafecomputed at the ining Krylov subspaces [1], [2], [4], [7], [14]-[16], [21], [23].
discrete grid points, values 6{u")/0t, and the values of pres- The approach based on using time—series data extends directly
sure below the beam. This vector of states is clearly only 0g§ the nonlinear cases, and the Hankel operator and Krylov
of the possible choices. Still, it has an advantage that it a”o‘é’ﬁbspace based strategies can be extended to the nonlinear
Un the linear model, considered later on, we assume that) = 40v  CAS€ using linearization (Taylor's expansions) of the nonlinear
and in the quadratic model,(v) = 40v + 800v2. system functionsf(-) and g(-) [1], [2], [15], [23].
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The other key issue in applying formulation (5) for re- IV. PIECEWISELINEAR MOR
duced-order modeling is finding representations/df (V") As described in the previous section, reduced-order models

andV'*g(V"-) which allow low-cost storage and fast evaluationy, ,seq o Taylor's series expansion become prohibitively ex-
SupposeN = 100000 andg = 10. If no appro?qmaTtlons ar® nensive for high series order. On the other hand, a simple
made to the nonlinear functiof(-), then computing’™ f(V'2)  inearized reduced-order model (6), although computationally
requires typically at leas®(100000) operations and is t00 jeynensive, may be applied only to weakly nonlinear systems
costly. The simplest approximation fgX-), which allows less 5.4 'is ysually valid for only a very limited range of inputs
than O(N) storage and evaluation df f(V-) is based on 23] This leads us to proposing an approach for MOR based
Taylor's expansion about some (initial, equilibrium) state o, quasipiecewise-linear approximations of nonlinear systems
[18]. The idea is to represent a system as a combination of
(@) = f(wo) + Ao(z — o) + 3 Wo(z —20) ® (= —70)  |inear models, generated at different linearization points in
the state space (i.e., different states of the original nonlinear
where ®@ is the Kronecker product, and, and W, are, system). The key issue in this approach is that we will be con-
respectively, the Jacobian and the Hessiarf@f evaluated sjdering multiple linearizations about suitably selected states

at the initial statexo. Analogously, we may take, e.g., aof the system, instead on relying on a single expansion about
linearization ofg(x) aboutz,. Then, the initial state.

dg(z d dz A. Piecewise-Linear Representation
990 o 2 (ga0) + Colw — 20)) = G P

dt dt dt Let us assume we have generatedinearized models
where (i, is the Jacobian of at z:,. Consequently, approxi- of the nonlinear system (1), with expansions about states
mate evaluation of (V7 g(V-))/dt becomes inexpensive. This?0s - --» Ts—1
approach leads to the following reduced-order models proposedi( (1) + Gl — 1))
in [1], [2], [15], and [23]. For the linear case, the reduced-order dt ! ! !

= f(z:) + Ai(z — ;) + Biu

model (5) becomes wherez, is the initial state of the system,; (G;) are the Jaco-
_ bians off(-) (¢(-)) evaluated at states, andB; = B(z;). We
Gor % = V7 (o) + AorZ + Boyu © now consider a weighted combination of the above models
- d s—1
y=0Crz =z n s A — s
dt ;wl(x)(g(xb) + Gi(z — 7))
whereAdq, = VT AV andGy, = VTG,V areq x ¢ matrices, s—1
By, = VT B(x¢),C,. = VTC,andVz = z—x,. The quadratic — Z@i(x)(f(xi) + Ai(z — x;) + Bju) (8)
reduced-order model is given by [25] i=0
. 1 whereu”;i(x?s are state-dependent weights. (We assume that, for
Gor i VT f(xo) + Aoz + 3 Wor(Z ® Z) + Boru all z, >2'_, w;(z) = 1.) The choice of weights is discussed
tT_ later on in this section. Assuming we have already generated
y=0C.z a qth order basis/ [cf. (4)], we may consider the following

)
whereW,,. = VIWy(V ® V) is aq x ¢? matrix. One should )
note that the above quadratic model uses a linear approximatiop d ((q wi(2)Gh ) s w(z)>
of g(x). One could also consider a quadratic expansion foy dt \ \ = ! "
which would lead to a more complicated reduced-order model :1 -

In the above formulations, due to the fact that the reduce .
matrices are typically dense and must be represented e}- (Zwi(z)Air> 2t y-w(z) + <Zw""('z)B”> Y
plicitly, the cost of approximately computing® f(Vz) and =0 =0
d(VTg(Vz))/dt terms and the cost of storing the reduced y=0Crz 9)
matricesGo,, Aor (Ao, and Wy, in the quadratic case) are\yhere
O(q?) (in the linear case) an®(¢*) (in the quadratic case). r
Therefore, although the method based on Taylor's expansior@ir =V GV
may be extended to higher orders [15], this approach is Iimiteglir —VTAV
in practice to cubic expansions, due to exponentially growing
memory and computational costs. For instance, if we considdi- = V" B;
quartic expansion of'orde[ = 10, then the memory storage — TV
requirement exceed® = 100000 elements. In addition, the "
computational cost of evaluating the quartic approximation to v = [V (f(zo)—Aozo), -, VI (f(ws—1)—As_175_1)]

VT (V) is O(¢%).
S 0@ § = V7 (9(w0) = Goao), ..., V7 (g(wect)= Garucs)
2An alternative formulation of the quadratic reduced-order model is presented

_ T ; ;
in [1]. According to our experience, both formulations give almost identicﬁndsf)l(z) = [wo(z)---ws-1(2)]" is a vector of weights
results. [> i o wi(z) = 1 forall 2].

reduced-order representation of system (8):
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Let us assume thdto, 21, ..., zs—1] are projections of the X2
linearization points:y, ..., z,_1 in the reduced basis, i.e.

[2}0, AR Zs—l] = [VT.T}Q, VTZII17 ey VTZL’S_l].

Then, weightsw;(z) corresponding to the reduced-model:
associated with4;,, G;., B;-] can be computed using the in-
formation about the distancdls — z;|| of the (projected) lin-
earization points from the current stateWe require that the
“dominant” model |4, G;,, B;.] is the one corresponding to
the linearization point; which is the closest to the current state
of the system. Also, we need to ensure that solutions of (9)
main smooth (e.g., have no discontinuities) as the “dominar
mode changes from one to another.

The following procedure of computing; was found to sat- Fig. 3. Generation of the linearized models along a trajectory of a nonlinear

isfy the above requirements. system in a two-dimensional state space.
1) Fori=0, ..., (s — 1) computed; = ||z — zi]|2-
2) Takem = min;—, ..., (s—1) di- example, the number of radius 0.1 balls required to fill a 1000-
3) Fori =0, ..., (s — 1) computei; = e~#d:/m, dimensional unit hypercube is roughly 2.
4) Normalizew; at the evaluation point. Since it is infeasible to cover the entifé-dimensional state
a) ComputeS(z) = Zs;é W;(z). space, we propose to generate a collection of m0(_je|s z_along a
b) Fori =0, ..., (s _]1) setw;(z) = 1;(2)/S(2). single, fixed trajectory of the systetr\We generate this trajec-

In the above,3 is a positive constant. In our implementa-tory by performing a single simulation of the nonlinear system
tion of the algorithm, we toold = 25. In this way, we ob- for afixed “training” input. (Instead of an exact simulation of the

tain a weighting procedure such that the distribution of weigh®¢i9ina! nonlinear system we may perform an approximate, fast
changes rather rapidly as the current staggolves in the state Simulation—cf. Section IV-C2.) Given a training input signal
space, i.e., once, e.g.; becomes the point closest o then u(t), initial statex,, and a finite number of models to be gen-
weight w; almost immediately becomes one. This provides gjateds (s > 1), the proposed algorithm for generating the lin-
rationale for referring to model (9) as tapiecewise-lineare- €&rized models may be summarized in the following steps.
duced-order model of nonlinear system (1). 1) Generate a linearized model about the initial stage

One of the reasons for using a procedure with rapidfy™ 0', ) _
changing weights is that “most o?the Eme” the TPWL mgdehll 2) Simulate the nonlinear system whiteino<;; ||lz —
actually reduces to a certain linear model, which may allow oﬁ”é” <6 (6>0), €., wh|le the c_urrent_state|s close enough
to predict or control more easily some properties of that modZ. 2Y of the previous I|.near|-zat|on points. )
For example, if we know that all the Jacobiads, , are stable 3) Generate a new linearized model about; = z, 7 :=
(Hurwitz) matrices, then in the regions where only a singl’eJr '

weight is nonzero, the A” matrix for the TPWL system is ?_)h.lfi < (ZI_ 1). re:urndto .StEde.)'F. 3 Itshould b q
clearly Hurwitz. On the other hand, in the regions with multiple Is procedure is also depicted in Fig. 3. [t should be stresse

nonzero weights, the associated™matrix may not be stable, at this point that the piecewise-linear approach resulting from

since a convex combination of stable matrices may not bet |s procedure i.s diffgrent. from methopls p_resent('ad,.e..g., in [3]
stable matrix. Nevertheless, note that the discussed proceofﬂrr 1], where p|.ece.W|se—I|ne'ar approxmaﬂons ofmdmdugl el-
still does not guarantee stability of the resulting TPWL modefMments of the circuit (e.g., diodes or transistors) are considered
The weighting algorithm presented above is a simpFénd a very large collection of linear models is used. In our algo-
heuristic with limited justification. Further investigation is”thm’ piecewise-linear approximation applies to a trajectory of

needed in order to find out whether some extra knowledge g?_?gntlre nonlinear system, and, therefore, the number of lin-

the system may be used to generate weighting procedures wI‘ﬁéﬁ'ZEd models may be kept small.

would improve accuracy or preserve stability (or passivity) crf As |Ilustr3ted n F'a S,Jh;a’,prolcecrj]ure pro;f)ohsed above al-
the original system. ows one to “cover with models” only the part of the state-space

located along the “training” trajectory (curve A). Let us as-
) _ ) ) sume that the reduced-order model (5) is composed of linear
B. Generation of the Piecewise-Linear Model models generated along this trajectory. If a certain system's tra-

One may assume that the linearized model is accurate fdregt_ory, corresponding to a given input sigmalies within the

given stater if this state is “close enough” to a linearization €9ion of the state space covered by these models, we expect

pointz;, i.e., ||z — z;|| < ¢, or z lies within an/N-dimensional that the (t:orgﬁtrqctedt/ple;:ev;n;ewne_ar mfo%el (5) wil that;_ly ap-
ball of radiusc and centered at;. Then, itis obviously desirable proximate the inputioutput behavior of the original noniinear
to cover the entiréV-dimensional state space with such balls, _ . . o -
h b ina that anv state is withisf a linearization point. 3The |d(_ea of using a collegtlon of _Ilnearlzed quels a_Iong, e.g. an equilib-
thereby assuring y state s wi Inéarization poInt, jym manifold or a given trajectory is also used in design of gain-scheduled
but the number of balls will grow exponentially witN. For controllers for nonlinear systems—cf. [20], [22].
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Fig. 4. Comparison of system response (micromachined switch exampigy. 5. Comparison of system response (micromachined switch example)
computed with linear, quadratic, and piecewise-linear reduced-order modggnputed with linear, quadratic, and piecewise-linear reduced-order models
(¢ = 40 andgq = 41) to the step input voltage(t) = 7TH(t) [H(t) = 7for (4 = 40 andg = 41) to the step input voltage(t) = 9 (¢ > 0). The

t > 0 andH(t) = 0 for t < 0]. The piecewise-linear model was ge”eratecé)iecewise-linear model was generated for the 7-V step input voltage.

for the 8-V step input voltage.

. System response for step input voltage v(t) = 9H(t)
system (cf. curves B and @)It should also be stressed at this 0 ; ; ; ; ;

point that, although the considered trajectory stays close to th
“training” trajectory in the state space, the corresponding inpu
signal can be dynamically very different from the “training” __o5- X'~~~ """~ T T TS e ]
input. In other words, we may apply the piecewise-linear modes
for inputs which are significantly different from the “training” €

input, provided the corresponding trajectories stay in the regios _,| |
of the state space covered by the linearized models (cf. curve & :

Cl

and results in Section V). This case is also illustrated in Fig. 4§ \\\

which shows computational results for the example of a mi-’g_ts’ \\ |
cromachined switch (cf. Section Il). This figure presents theg A\

system response to a 7-V step input voltage, computed with & —— Tull nonlinear model, N=880 ‘\\
41st-order piecewise-linear reduced model of the device, gene | | - - linear reduced model, 4=40 ‘\ |
ated for an 8-V step input training voltage. (The model was gen I il Yo Y \
erated using the fast algorithm proposed in Section IV-C.) We L , . ‘ ,

should stress that, in fact, the input to the system is the square ~ © 0.1 02 Tim%?ms] 0.4 0.5 0.6

input voltageu(t) = v2(t). One may note that the obtained
output signal approximates very accurately the output signad. 6. Comparison of system response (micromachined switch example)
computed with the full nonlinear model of the device (the curvesmputed with linear, quadratic, and piecewise-linear reduced-order models
on the graphs overlap almost perfectly). In this case, the pie¢e-= 40 andg = 41) to the step input voltage(t) = 9 (t > 0). The
. . . o iecewise-linear model was generated for the 9-V step input voltage.
wise-linear model provides significantly more accurate resufts
than the linear or quadratic models based on single expansions
about the initial state. response of the nonlinear system. Now, if we generate the piece-
A different situation occurs when the input signal causes thése-linear model with a 9-V training input (cf. Fig. 6), then this
trajectory to leave the region covered by the linearized modei®del is able to reproduce accurately the nonlinear response.
(cf. curves D and E in Fig. 3). Then, the piecewise-linear modéine should note that in this case the piecewise-linear model
(5) will most likely not provide significantly better approxima-is able to accurately model the dynamics of a highly-nonlinear
tion to the nonlinear system than a simple linear reduced mogelll-in effect (the beam is pulled down to the substrate), which
(6). This situation has been illustrated in Fig. 5. Due to a signiis of particular importance in applications [10]. One may note
icant difference in scales (amplitudes) between the “trainindgfom the graph that the linear model is not able to reproduce this
input (u(¢) = 7?) and the testing inputu(t) = 9?) the piece- phenomenon, while the quadratic model is unable to reproduce
wise-linear model is no longer able to reproduce accurately ttiee correct dynamics. Still, this example shows that if the piece-
wise-linear model is to be used for inputs with very different

4The additional rationale for this observation is that in typical situations tr§ca|es one should consider more complicated schemes of gen-
dimensions of observable and controllable spaces of a dynamical system are

much lower than the dimension of its state space. (This is expected to be fRI&UING the linearized models, based, e.g., on multiple training
for the examples of nonlinear dynamical systems presented in Section 11.) INpUts.
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C. Fast Generation of TPWL Models start the fast approximate simulation of the nonlinear system in
the reduced-order space as described in the following sekction.
The above method for generating piecewise-linear models of2) Fast Approximate SimulationThe second stage of the
nonlinear dynamical systems requires simulating the originaloposed MOR algorithm may be summarized in the following
nonlinear system (1). This simulation can be costly, due to tsteps.
original size of the problem. In order to reduce the computa) Takei = 0, setz to be the initial state.
tional effort, we note that it is unnecessary to computeetteet  2) Whilei < s do

trajectory for the “training” input in order to generate a col- 4y Using basid/, construct a reduced-order model of dy-

lection of linearized models. In fact, it suffices to compute an namical system (1), linearized about state
approximatetrajectory and obtain only approximate lineariza- s
tion points. In this section, we present an approach for efficienf VTG,V — = VT A, V2 + VT (f(x;) — Aiz;) + VI Bu

generation of piecewise-linear reduced-order models based Qn T
this idea. The proposed numerical algorithm proceeds in the twb ¥ = V2
stages: 1) generation of the reduced basis, used to represent ap-
proximately the state space vectary &nd 2) approximate sim-
ulation of the nonlinear system response to the training input,
using the reduced basis and piecewise-linear approximation of
the nonlinear functiong(z) andg(z) along a trajectory of the
nonlinear dynamical system (1). This approach shares features
with reduced-basis methods for solving parabolic problems [5].
Below, these two stages are described in more detail.

1) Generation of the Reduced Basi¥he reduced-order
basisV = [v1, ...v,], Wherev; € R, is obtained in the WV z(t;) — 2l /|lz:]] <
following three steps.

12)
wherez is a reduced-order approximation of state vector
x (z = V2z). This step requires computation of the Ja-
cobiansA; andG; (atz = z;) in the nonreduced state
space.

b) Simulate reduced-order linear dynamical system (12),
i.e., computez(t) for subsequent time stegs = t;,
while the statd’z(¢;) is close enough to the initial state
xz; (z; #0), i.e., when

where« is an appropriately selected constant (cf. the
1) Generate the linearization of the dynamical system (1) about ~ comments below).

the initial stater, c) Take the next linearization point,, = Vz(t;), i :=
1+ 1.
dx(t) There is an important issue concerning the TPWL MOR
Go dt f(wo) + Ao(2 — o) + Bou(t) (10) @lgorithm proposed above. In order to be able to reproduce
y(t) = CTa(t) nonlinear effects in the behavior of a dynamical system, the

linearization points should be changed “frequently enough”

) ) during the proposed piecewise-linear simulation. This is deter-
whereBy = B(xo), and Ag (Go) is the Jacobian of ()  mined by the constant parameteiin the algorithm presented
(9(x)), evaluated a = o, and construct an orthogonalghaye The proper choice of was found to depend signifi-

basisV = {vy, ..., v;.a} in thelth order Krylov subspace cantly on the amplitude of the input signalt).
A simple procedure for determining an appropriate value of
Ki(A7'Go, A7'Bo) « automatically is as follows. First, for a given input signal, we

perform a reduced-order simulation of the linearized dynamical
system, with linearization about the initial state, to find the final
(steady-state) vectarr. Although in most casesr will not
using the Arnoldi algorithm [23] (or block Arnoldi algo- be the correct steady state of our nonlinear dynamical system, it
rithm [17] if the number of inputs\/ > 1). This choice will give us information about the scale of changes between the
of basisV ensures that moments of the transfer functioninitial and final state
of the reduced-ordetinearized model matchmoments of
the transfer function for the original linearized model (10)
(8], [15]. (If o = 0, we may takel = ||z7||.) It is clear that in order
2) Orthonormalize the initial state vectep with respect to to capture any nonlinear effects one has to select the valie of
the columns ofl” and obtain vectop;, 1. (To this end, such thatx < d. In practical situations, it is usually enough to
one may use e.g., the singular value decomposition (SVE8lecta, = d/5ora = d/10.
algorithm.) . N 3) Generation of the Reduced Basis—An Extended Algo-
3) TakeV as aunion ol andviar41: V = [V viar41]. rithm: The simple algorithm for generating the reduced-order
basis, which constructed a Krylov subspace only at the initial

= span{AalBo, e (Aang)l_lAO_lBo}, (11)

d = |lzr = zoll/llzoll-

So, the final size of the reduced basis eqgais/M + 1. The
last two steps ensure that we will be able to represent exactl§in this section, we presented only the simplest (and the least computationally

the initial statex, in the reduced basig. [Note that ifz, € expensive) algorithm for generating the reduced besi®ne may easily extend
& this scheme to construct a basis which includes e.g., states used as subsequent

COISP&H(V)’.then steps 2) and 3) become unnecessary.] EXgglrization points and Krylov subspaces corresponding to these states. Such
representation of the initial state ensures that we may correcityapproach is presented in Section IV-C3.
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state of the system, can be extended in order to include in using the Arnoldi algorithm [23] (or block Arnoldi al-
the reduced-order basis Krylov subspaces corresponding to  gorithm [17] if there are multiple inputs).

other linearization points located along the training trajectory b) TakeV asV = Vi Va ;).

[19]. This extension of the reduced basis is motivated by the c) Orthogonalize the columns df using the SVD al-

following fact. As already mentioned in the previous section, gorithm and construct a new basis which contains
if we use basid/ spanning Krylov subspace (11) to construct orthogonalized columns df corresponding to singular
a linear reduced-order model, then the filsmoments of values larger than a given3 > 0.

the transfer function for this reduced-order linear model d) TakeV,g, := [VagsV].

match firstl moments of the transfer function for the original e) UsingV/, construct a linearized reduced-order system at
linearized model (10). Consequently, important dynamical x; and simulate this system until you reach the next lin-
features of the nonreduced linearized model are preserved by  earization pointz; 1, seti := 7 + 1.

the reduced-order linear model [8], [15]. Since in the TPWI3) Orthogonalize the columns of the aggregate bsisusing

model we use a collection of reduced-order linear models, o gyp algorithm and construct the final reduced-order
taking a union of bases in Krylov subspaces corresponding to 4qisi” which includes orthogonalized columnsiéf,, cor-
subsequent linearized models as a reduced-order basisl responding to singular values larger than seme 0.

ensure that, for every resulting reduced-order linear model,Step 2¢) from the above algorithm may be omitted if we

nonreducedinearized model. Consequently, we may expe§

that important dynamical properties for each of the lineariz é)ints. Then, one should take = V.
P y brop One may note that the above method is more expensive than

models will be preserved after the projection process. . . . .
. . ) . i . the simple algorithm presented earlier, since we need to gen-
Two mportant technlca! details -anse_dur.mg th? cons.tructl%}ate two orthogonal bases at every linearization point. To this
of the union of bases at different linearization points. Firstly, {4 \we need to perform LU factorization of Jacobiahsat
we linearize about a nonequilibrium point two input terms 2Rsvery linearization point;. In the simple approach, presented

pear (instead of one, if we linearize about an equilibrium)—ong getign IV-C1, this had to be done only once. The extended
associated with termB;u, and the other—associated Withalgorithm also requires additional SVD steps.
term (f(z;) — A;x;), where z; is a given linearization

) ; Nevertheless, since we generate a “richer” basis we expect
point _[Cf' (12)]. Consequently, bas_els corielspondlng tAat it will more adequately approximate the initial state space.
wo (jlfferent_lKrylov subspacesi(A; G, A7 Bi) and  gna may argue though that the above method may generate
Ki(A;7 Gy, A7 " (f(zi) — Aizy)) [cf. (11)] need to be con-

1= models of significantly larger order than the simple algorithm.
structed. Secondly, we need to eliminate redundant (e.g., almﬂs]eact, the situation is often the opposite. As shown in Sec-

parallel) vectors (which may appear after we take a union o3, |y/.c, the extended algorithm has potential to generate suit-
collection of bases) from the reduced basis. To this end, we Mgys accurate reduced bases with a lower order than the simple
apply, e.g., SVD algorithm and discard vectors correspondiggy ithm using a single linearization about the initial state.
to the smallest singular values.

Using the above motivation, we developed an extended o o
algorithm for generating the projection basis, which may & A Posteriori Error Estimation

summarized in the following steps. In this section, we will present a method farposteriori

1) LetVag =[], = 0. estimating the error of solving (1) with a TPWL model (9).
2) Repeat until the “training” simulation is completed. The following derivation of the error estimator is based on

) ) L ) the assumption that the original nonlinear functipicf. (1)]
a) Consider linearization of dynamical system (1) abogg negative monotone, i.e., [24]:

statex;
dx(t) A0 Va,y (=) (f(2) = f(y) < —Maz—y)" (z—y). (14)
y(t) = CTx(t) The above assumption is satisfied by a number of nonlinear

systems, including, e.g., a certain class of nonlinear analog
circuits. Also, one may easily note thafifs negative monotone,
where; is the Jacobian of (x), evaluated at = xi, then system (1) if., stable for any admissiblg, provided
G is the Jacobian ofi(x) evaluated at: = x;, and 4(z) = Gz, whereG is a symmetric positive definite matrix.
Bi = B(;) and construct two orthogonal badésand  For simplicity, we will also assume in this section thét)

V3 inthe followingg1th order Krylov subspaces from (1) is an identity transformation and thatz) = B. Still,
the following derivation may be easily extended for the case
span{Vi} = K1 (A7'Gi, A7 B;) of an arbitrary invertible transformatiog(x) (with appropri-

ately modified assumptions) and a state-dependent input matrix
span{Va} = Kq1(A; "Gy, A7 (f(2:) — Aiz)) B(z).
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We will look for an estimate of|6z(t)||2, wheredz(t) = 1) At ¢, we have||6z(to)]ls = ||(I — VV)z,|s <
x(t) — z(t) = z(t) — Vz(t), andz(t) andz(t) are solutions at I — VVT|s||zo]l2 = e(to), wherex, is a known initial
timet of (1) and (9), respectively (for the same initial condition condition.

z,8 and the same input signa). From (1) and (9) we have 2) Fori =1, 2, ... we iteratively compute

& = f(z) + Bu oft:) = % s () + (1 - VVT)Bu(r)|s
s—1 TE[ti—1,t;
i=> wi2)[VVTfx) + VVTAV (2 — 2)] + VVTBu X (1 —exp(=A(t; — ti—1))) + e(ti-1)
1=0 X exp(—)\(ti — ti—l))- (19)

wheres = x(t), » = z(t) andu = u(t). From the above we 00 it follows from (18) that(t;) > ||62(t;)]|2 for every

obtain t;. In practice, we replace the supremum in the above formula by
S = (&) — f(#)+h(z)+ (I =VVT)Bu  (15) amaximum over a discrete set of time steps betweenandt;,
corresponding to a certain numerical time integration scheme.
where (If ¢; are the same as subsequent integration steps, then we take

a maximum of the two values at the ends of the considered time
s—1 interval.) Clearly, this method of evaluating the supremum im-
h(z) = f(Vz) = Y wi(2)[VVT f(2:i) + VVTAV(z = z)]. plicitly assumes that neithéi((¢)) noru(t) behave patholog-
=0 ically between subsequent integration time steps.
The main challenges associated with using the above scheme
are related to: 1) finding\ [compare (14)] which would be
o1 as precise as possible. (Quality of the error estimates heavily
f(Vz) = Z w;(2) {[f(wi) + Ai(Vz — 2;)] depends on this parameter, therefore, one could consider using
i—0 different As in different regions of the state space, if at all

Sincer;& w;(z) = 1, for everyz, we may write

1 possible and computationally feasible.) and 2) finding estimates
+ [/ (L=s)W(0i(s)) ds-(Vz—z;) ® (Vz—a:i)] } of ||h(z(t))]|2, given by (16), which typically requires estimating
70 |W (z)||;—the norm of the Hessian of.
whereb;(s) = z; + s(Vz — z;) andW is the Hessian of. If we apply the aggregate reduced-order basjslescribed
Thenh(z) becomes in Section IV-C3, then one may easily note that; = «;, for
everyi. Furthermore, if we includéf(z;) — A;x;) (V;) in the
s1 reduced basi¥’, thenVV T (f(x;) — Asx;) = (f(w;) — Aswy)
h(z) =Y wi(z) {[(I —VVT)(AVz + f(z:)) [cf. (16)] and the following estimate dif(z)||, may be given:
=0

+ VVTAzVZl — Az.TL]

+[/0 (1—3)W(9,,;(s))ds-(Vz—xJ@(Vz—:v,;)}}.
(16) + [|(I = VVD) AV |a|2l2] -

s—1
1h(2)]l2 <) wi(2) [% sup [|W (2) 2]l — 2ill3
i=0 v

Left multiplying (15) byéz”, and applying property (14) and Then, we may replace (19) with
Schwartz inequality gives

s—1
d 1
= lsl) < ~Asal3 + 6212 14(z) + (T = VVT)Bull. elt) =3 _sw D wilx(r)
(17) =0
Let us now consider time interv@;, ¢;11]. Suppose we know X {% sup ||W(z)||2||z(7) — 2|2
|6« (t;)||2- Then, applying Comparison Lemma [9] to differen- z
tial inequality (17) yields + (I = VVD) AV a]l2(7)]2

- T u\T)|l2
lsll <= sup [Ih(x(r) + (L = VVT)Bu()l + (1= VVE)Bl2flu(r)ll

A ekt . X (1= exp(=A(t; — 1)) + e(ti_1)
x (1= exp(—A(t = ) + [[6(t:) 2 oAt 20
X exp(—A(t — 1)) (18)
_ _ ~ One should note that since the values of norif{g —
forallt € [_ti, ti+1]. The above inequality leads us to proposing v/ 7 4,v||, (for every i) and ||(I — VVT)B||, can be
the following scheme of computing error estimatg$) of computed during construction of the reduced model, the cost of
[6z(t)[|2 at time stepso, t1, t2, .. .. evaluating (20) is)(sq) only. This means that error estimation
§if 1, cannot be represented exactly in basisthe initial condition for the May be performed “on the fly,” along with the reduced-order
reduced system is taken as = V7 x,. simulation, without increasing the complexity of the fast solver.
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! 2 I AN 7x10'3
i ' ' — 1B Xl .-
i) r ~C | |i,(v) ~C ||i,(v) A~C | |i,(v) /~C ||i,(v)S>r 6F Estimats of |18 Xl ,/”’ 1
oo 5t ,” 4
1
/
Fig. 7. Example of a circuit with quadratic nonlinearity. 4r /! 1
’
,
In order to verify the proposed method of estimating the sinat / .
. . 4
ulation error for the TPWL reduced-order model, we consid !
ered a simple test example of &C ladder shown in Fig. 7. 5| L7
A quadratic nonlinearity is introduced to the circuit by adding -
nonlinear resistors to the ground at each node Al /,’ |
. -7
in(v) = g - sgn(v)v? _
, /
wheresgn(v) = 1if v > 0 andsgn(v) = —1if v < 0. Ifwe o0 : ‘ : :
/ 0 2 4 6 8 10
takeC = r = g = 1, then the nonlinear operatgr|[cf. (1)] Time [s]

takes the following form:
Fig. 8. A posteriorierror estimates for a TPWL reduced-order model of a

f(U) = Av - n(’u) nonlinearRC ladder.
where System response for step input current i(t) = H(t-3)
-2 1 sgn(vy)v? 0.025 : , , ,
1 =2 1 B S S I L b f ittt -
A= L n(v) = sgn(vz)v3 e
S o 0.02} / 1
1 -2 sgn(vn v i
b eersassssirsaserirersarrrrasi e arnss
andv = [vq, ..., vy] is the vector of statesN = 100 in s [ —
our test). It may easily be proved thais negative monotone, 7 o.015t if
provided allv; are nonnegative at all times (which is satisfiecg

if the input current(¢) > 0 for all ¢). The value of\ [cf. (14)]
may then be taken as= —1 - max{\; € o(A)}, wheres(A)
is the spectrum of matrid. For N = 100, A = 9.67 - 10~4,
We also have thgtW (z)||. = 29 = 2 for all 2. Knowing A and — fullnoniinear model. N=1500

|W(z)|]> we are ready to use formula (20) to compute erro 9005 == linear full order model, N=1500
“““ quadratic full order model, N=1500

Voltage at
o
4

estimates. . - - piecewise-linear simulator, g=30
In a numerical test, we generated a reduced-order TPW
model of orderg = 25 (with s = 16 linearization points) % 2 4 6 8 10

and simulated both original nonlinear system and TPWL Time [s]

reduced-order model, with the inpUt Curre(ﬁ) equal to unit Fig. 9. Comparison of system response (nonlinear transmission line circuit
step. (It should be stressed thas relatively large, as comparedmodel) computed with linear, quadratic, full nonlinear, and TPWL models to
to IV for this example, and, therefore, it may be inefficient tde step input currentt) = H(t —3) [H(t) = 1 fort > 3 andH(t) = 0

use the extracted TPWL model in practice. Still, this reducé%ft <3 N = 1500.
model provides useful insight while considering the problem of .

error estimation.) The actual errpéiz|» and its estimate were point. Instead of this geometric criterion, perhaps one might
computed at every time step. Fig. 8 shows a comparison of {3 ameasure based on error estimates (which use information
P the nonlinear system at hand) to select a collection of

actual error and its estimate for the considered case. One - . :

note that formula (20) gives reasonable estimates of the er B ar!zat!on pqlnts. Clearly, the_subje_ct Qf where to place
of approximating the original nonlinear system with a TPW inearization points needs further investigation.

reduced-order model.

One should note that the error estimation procedure described
above may be used not only to assess errors of simulation wittOne should note that the MOR algorithm presented in
an existing TPWL reduced-order model, but also to improve tigection 1V-C may be used as a fast simulator for nonlinear
algorithm for generating the TPWL models (or, more preciselglynamical systems. The simulator has been implemented for
the algorithm for selecting subsequent linearization pointdhe example of a nonlinear transmission line circuit model
Currently, during the “training simulation,” the subsequerdescribed in Section Il. Selected results of numerical tests are
linearization points are selected using a simple geometpoesented below.
criterion: if the current state is “far enough” from all previous Fig. 9 shows the output voltage(t) for a step input current,
linearization points, then it becomes the next linearizatiamzomputed using full order linear and quadratic models as well as

V. FAST PIECEWISELINEAR SIMULATOR
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TABLE | System response for step input current i(t) = H(t-3)
QUALITY OF APPROXIMATION FOR LINEAR, QUADRATIC AND 0.025 ' ' ' ' S
TPWL SMULATORS FOR THE STEP INPUT CURRENT. | e mm”
v = [v(0), v(AT), ..., v(T)] IS THE COMPUTED el
OUTPUT VOLTAGE AT NODE 1, v,.f IS THE 0.02- I
REFERENCE OUTPUT VOLTAGE COMPUTED [
WITH FULL NONLINEAR MODEL _ " ............................................................
2 i
MTo—vreslz 5 0.015F
Model Tl -§
linear, N = 1500 0.384 =
quadratic, N = 1500 0.049 S 001l
TPWL, N =1500,g =30  0.003 £ -
>
0.005} — full nonlinear model, N=100
TABLE I ’ == linear reduced model g=10
COMPARISON OFSIMULATION TIMES FOR THEFULL ORDER NONLINEAR | || quadratic reduced model, g=10
SIMULATOR AND THE PROPOSEDTPWL REDUCED ORDER SIMULATOR - - piecewise-linear reduced model, g=10
0 . . . s
Input, Simulation Simulation 0 2 4 Time [s] 6 8 10
problem size time {s], full time [s],
nonlinear model TPWL model Fig. 10. Comparison of system response (nonlinear transmission line circuit
i(t) = H{t — 3) model) computed with linear, quadratic, and TPWL reduced-order models (of
(N = 1500, g = 30) 95733 80.8 orderg = 10) for the step input currerift) = H(t —3) [H(t) = 1 fort > 3
i(t) = exp(—t) andH (t) = 0 fort < 3]. The TPWL model was generated using a unit step
(N = 1500, g = 30) 11713.1 1109 input current.
i(t) = sin(2nt/10)
(N = 100, g = 10) 254 27 VI. COMPUTATIONAL RESULTS

A. Model Verification—Transient Simulations

the proposed TPWL simulator. The reference resultis computedThis section presents results of computations using TPWL
with a simulator using a full order nonlinear model. In the simweduced-order models, obtained with the MOR technique pro-
lation the number of time steps was 10A0£ 10, AT = 0.01), posed in Section IV-C. Our main goal is to find out whether this
the TPWL simulator used the reduced basis of ogder30 (the technique does really generatemodelof our system. Let us
original problem size wa& = 1500) and the linearization point recall that, in the proposed MOR algorithm, the model [which
changed 20 times (i.e., it used 21 different linear models duribgsically consists of a collection of reduced-orggrg matrices

the simulation). As Fig. 9 clearly shows, the output voltage obky,, ..., Ai,, ..., A(s_1),] is obtained by performing a fast
tained by the TPWL method matches very well the reference mmulation for agiventraining input signal. In order to show that
sult (the curves overlap almost perfectly). Table | shows the reke have indeed generated a model we should verify that it gives
ative error between the voltage= [v(0), v(AT), ..., v(T)] correct outputs not only for the input it was generated with, but
computed with linear, quadratic, and TPWL simulators and tlaso for other inputs.

reference voltage,.; obtained with the full nonlinear model of  This verification was done experimentally. We considered
the circuit. It is apparent that the proposed piecewise-linear alar nonlinear transmission line circuit model (cf. Section II)
gorithm gives significantly more accurate results than the lineaith N = 100 nodes and generated a reduced-order TPWL
or quadratic simulations, producing results which accuratetyodel of orderq = 10 using a step inpui(t) = H(t — 3).

match the steady state of the system. For this example, the linearization point changed four times,
Table Il compares performance of the full nonlinear simulatdherefore, our model consisted of five reduced-order matrices
for the considered nonlinear transmission line circuit modely,, ..., A4.. The reduced-order model was tested for different

and the proposed TPWL solver, which performs reduced-basiputs, including the step input used to generate it. Fig. 10 shows
computations, for three different inputs. In order to assutke result for the step input (the same input we used for model
appropriate accuracy, for the circuit wii = 1500 nodes, the extraction). Figs. 11 and 12 show the reduced-order simulation
order of the reduced basis equalee= 30, and for the circuit results for a cosinusoidal input and an exponentially decaying
with N = 100, ¢ = 10. The simulators were implementedinput, respectively. In all the cases, the output voltages obtained
in Matlab, therefore, the presented execution times should wih the TPWL reduced-order model accurately approximate
used for comparison only. High-performance implementatiotise reference voltages (the curves overlap almost perfectly).
will most likely give significantly lower absolute executionThis indicates that our reduced-order system provides a sensible
times and may change the relative performance of the twwodel for the original nonlinear circuit.

algorithms. The tests were performed on a Linux workstation Fig. 13 provides an analogous test for the example of a mi-
with a Pentium Il Xeon processor. It is apparent that for eitheromachined beam described in Section Il. In this case, the re-
small or large original problem sizes, the piecewise-lineduced-order model was generated for the step 8-V training input
simulator is significantly faster than the full nonlinear solveroltage ¢ = 41, the model used nine linearization points. Then
For N = 1500, a hundredfold acceleration in computation timé was tested for a cosinusoidal input with a 7-V amplitude. Once
was achieved. again, the transient obtained with the TPWL model matches
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System response for input current i(t) = (cos(2n t/10)+1)/2 System response for input voltage v(t) = 7cos(4r t)
0.025 T T r T 0 T T r =T T
— full nonlinear model, N=100 — full nonlinear model, N=880
+= = linear reduced model, g=10 7] == linear reduced model, g=40
- | quadratic reduced model, q=10 ,,/ -005¢4  J \ | q'Uadl'aAth ref.iuced model, q=40 L
0.02 —,~' “\, [ = -_piecewise-linear model (step input), g=10 | ,* 8 - - _piecewise-linear reduced model, g=41

V]
°
o
o

Voltage at node 1
o
<
Center point deflection [microns]

0.005

0 0.1 0.2 0.3 0.4 0.5 0.6
Time [s] Time [ms]

Fig. 11. Comparison of system response (nonlinear transmission line cirdtig. 13. Comparison of system response (micromachined switch example)
model) computed with linear, quadratic, and TPWL reduced-order models @fmputed with linear, quadratic, and piecewise-linear reduced-order models (of
orderg = 10) for the input current(¢) = (cos(27¢/10) + 1)/2. The TPWL orderg = 40 andg = 41) for the input voltageu(t) = 7 cos(4xt). The

model was generated using a unit step input current. piecewise-linear model was generated for the 8-V step input voltage.
S)I/stem respons:s for input curr:ent i(t) = exp(—‘t)) andvm, and 2) the auxiliary ianItscmmrsti Vgnds Vintms Vintps
N —— ol noninear modsl N=100 Upst, @Ndvem min USEd in common-mode rejection testing. We
o.0168 ‘\_‘ =~ linear reduced model, =10 1 considered two full-order models of the op-amp: 1) simplified:
0014k b e e oae (stop mputy, a-10 | | €mploying linearized capacitance models for MOSFETS [then,
\ g(z) = Gz—cf. equation (1)] and 2) regular: employing non-
50.012 1 linear capacitance models (i.e., with a state-dependent capaci-
% 001 | tance matrix). In both cases, the full nonlinear simulations were
2" performed using NITSWIT circuit simulator, described in [12]
;;;)0_003 / and [13]. In order to generate the reduced-order TPWL models,
£ we applied the following set of training inputs:
£ 0.006} |
0, t < 290
0-004¢ ] Vin1(t) = { 12.5-1073(t — 290)/10, 290 <t < 300
0.002} 1 12.5-1073, t > 300.
0 vine = —v;in1 (Cf. Fig. 14) and auxiliary input signals shown in

6 8 % Fig. 15.

For the case with a linearized capacitance matrix, we obtained
Fig. 12.  Comparison of system response (nonlinear transmission line cireditTPWL model of order; = 18 (with 35 linearization points
model) computed with linear, quadratic, and TPWL reduced-order models - : - : :
orderg = 10) for the input curreni(t) = exp(—t). The TPWL model was Qﬂd eight mpu_ts), and for the case with th_e nonllr_]ear _Cap_aC"
generated using a unit step input current. tance we obtained a model of order 34 (with 29 linearization

points). As one may note, due to an increased complexity of the

very accurately the reference result obtained with the full noaPPlied MOSFET device models, the order of the resulting re-
linear model of ordelV = S80. duced-order model is higher in the second case.

Figs. 10-13 also provide a comparison of the proposed]he obtained reduced-order TPWL models were then tested

TPWL reduced-order model with linear and quadratic rdor the following input (cf. Fig. 14):

duced models, generated using methods described in [1], 0, t < 290

[15], and [23]. It is app_arent _from the graphs that the TPWL vim (1) = { 11.5-1073(¢ — 290)/110, 290 < t < 400

reduced-order model gives significantly more accurate results

than the linear and quadratic reduced-order models using 11.5-1072, ¢ > 400.

Taylor expansions about the initial state. It should be stressegl,, = —wvin1). Figs. 16 and 17 show a comparison of the

at this point that all models (linear, quadratic, and TPWL) weteansients computed with NITSWIT and with the reduced-order

of the same order and, moreover, applied the same BasisTPWL models for one (of the two) output nodes of the ampli-

(obtained with the procedure described in Section IV-C1). fier. One may note excellent agreement of the output signals for
Next, we considered the operational amplifier example, deeth cases, which indicates that suitable reduced-order TPWL

scribed in Section Il. The examined circuit hAd= 51 nodes models of the original systems have been constructed. The re-

and eight inputs: 1) the differential input with input signals,  sults also indicate that the proposed MOR method may be suc-

Time [s]
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= jl — V,y [training input]
o ! v, [training input]
g or 4 A [testing input] 7
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Fig. 16. Comparison of the output voltage (op-amp example, simplified
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Fig. 17. Comparison of the output voltage (op-amp example, regular
nonlinear capacitance models), computed with a reduced-order TPWL model
and NITSWIT circuit simulator.

TABLE I
COMPARISON OF THETIMES OF MODEL EXTRACTION AND REDUCED
ORDER SIMULATION FOR THE LINEAR, QUADRATIC AND TPWL
MOR TECHNIQUES THE ORIGINAL PROBLEM HAD SiZE
N = 1500. THE REDUCED MODEL HAD SIZE
g = 30. THE TESTS WERE RUN FOR THE
NONLINEAR TRANSMISSIONLINE EXAMPLE

MOR Model extraction  Simulation
method time [s] time [s]
linear 44.8 1.18
quadratic  2756.5 315
TPWL 80.7 8.0

cessfully used for multiple input systems. It is important to point
out that not only do the TPWL models have a lower order than
the original system, but also they are much easier to use. Since
a TPWL model consists of a weighted combination of linear
models, the time stepping is very straightforward. In a simplified
backward Euler time stepping scheme we compute the weights
w; [cf. (9)] e.g., using the previous state of the system or a pre-
dictor of the next state and then, assuming that these weights are
fixed, we find the state at the next time step by performing only a
single Newton update (i.e., solving a low-order linear system of
equations). In a more sophisticated time stepping scheme, one
can account for derivatives af;(z), which is also straightfor-
ward, since the weights are simple scalar functions. In a regular
simulator, if using backward Euler scheme, finding the next state
requires computation of a number of Newton updates for the full
order nonlinear system, which is considerably more complex.

B. Performance and Complexity of the MOR Algorithm

Table Il shows a comparison of the performance of the dis-
cussed MOR techniques and the reduced-order solvers. All the
algorithms were implemented in Matlab. The tests were per-
formed on a Linux workstation with a Pentium Il Xeon pro-
cessor. One may note that performance for linear and TPWL

linearized capacitance models), computed with a reduced-order TPWL mogépdels is comparable. The generation of the quadratic model
and NITSWIT circuit simulator.

is significantly more expensive, due to the costly reduction of
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System response for input voltage v(t) = 5.5H(t) System response for input voltage v(t) = 5.5H(t)
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Fig. 18. Comparison of system response (micromachined switch examdfg. 19. Comparison of system response (micromachined switch example)
computed using the TPWL models extracted with the simple and the extendednputed using the full nonlinear simulator and the TPWL reduced-order model
algorithm for generating the reduced-order basis. In both cases, the models veateacted with the simple algorithm for generating the reduced-order basis. The

generated for the 5.5-V step input voltage. model of ordery = 41 was generated for the 5.5-V step input voltage.
the Hessian matrix, which requirgd computations of the ma- 0 S.yStem rosponee or Ste? thiss V°|ta?e Yo =9H(.t )
trix-vector productV (z ® z), whereW is a full orderN x N?
Hessian matrix (usually represented implicitly—cf. [1]).

The memory complexity of the TPWL reduced-order Solve o5} \ =~~~ =~ 77— o ommommmmmmmmm s i
is O(sq?), wheres is the number of linearization points. Conse: §
guently, the memory cost is roughdytimes larger than the cost E
for the linear reduced-order simulator [which@¥q?)]. The é 1k 1
memory cost of the quadratic reduced-order solvéX(ig’) (the &
reduced-order Hessian must be stored explicitly as a matrix), =
if s = ¢, then the memory requirements for the piecewise-line. '?_.1_5, |
solver are approximately thg same as fo_r the qgadratlc solv % ——fulmoninear model, N=880
For the examples of the nonlinear transmission line and the r © == linear reduced model, g=40 AN
cromachined switch (cf. Figs. 10-18,= 5 = ¢/2 ors = o | e oo o 4=40 "\
9 < g¢/4), so in those cases the memory used by the piec - - _tpwl reduced model, extended basis, g=26 AN
wise-linear algorithm equaled roughly only half (or a quarter) ¢ L. ‘ ‘ ‘ ' N

. 0 0.1 0.2 0.3 0.4 0.5 0.6

the memory used by the quadratic solver. In the case of the « Time [ms]

erational amplifiers =~ 2¢ (linearized capacitance case), which

translates to doubled storage requirements as compared toffe2?0. Comparison of system response (micromachined switch example)
computed with different MOR algorithms. TPWL models were generated for

quadratic model. the 9-V step input voltage.

C. Performance of the Extended Algorithm for Generating thganerated with the extended reduced-order basis, gives signif-
Reduced-Order Basis icantly more accurate results than the TPWL model generated
This section presents computational results comparing twdth a simple basis. (On the graph, the dashed line overlaps per-
algorithms for generating the reduced-order basis: a simple ofextly with the solid line.) In order to obtain the desired accuracy
presented in Section IV-C1, and the extended one, introduceahiith the model extracted with the simple basis generation algo-
Section IV-C3. Fig. 18 shows the deflection of the center of thé#hm, the order of the basis needs to be increased+o41 in
micromachined fixed—fixed beam computed using the two cotite considered case (cf. Fig. 19).
sidered methods. In both MOR methods, the 5.5-V step inputFig. 20 shows the simulated pull-in effect for the microma-
voltage was used as a “training” input and the number of lichined switch example. Again, in this case, the MOR method
earization points equaled six. For the simple algorithm, the ordemploying the extended algorithm to generate the reduced basis
of the reduced-model equalegd= 31. In the extended algo- provides the best accuracy among the considered MOR tech-
rithm, a basis of order sever-p - q1 + 1, q1 = 3—cf. Step niques. It also generates a model with the lowest order.
2)a) in the algorithm from Section 1V-C3] was generated at eachOne should note that in the extended algorithm, we generate
of the linearization points. Then the size of the aggregate baaigollection of very-low-order bases at different linearization
Vage has been reduced frof2 = 6 - 7 to 28 using the SVD al- points rather than a larger basis at a single linearization point, as
gorithm. One may note that the TPWL model of orget 28, in the initial approach. As shown by the presented results, this
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TABLE IV TABLE V
COMPARISON OF THETIMES OF MODEL EXTRACTION AND REDUCED ORDER COMPARISON OF THESUBSEQUENTHARMONICS OF THE SINUSOIDAL
SIMULATION FOR THE TPWL MOR ALGORITHMS USING TWO DIFFERENT STEADY STATE, COMPUTED USING A FULL ORDER NONLINEAR
METHODS OFGENERATING THE REDUCED ORDER BASIS. THE TESTS MODEL AND THE REDUCED ORDER TPWL MODEL
WERE RUN FOR THE MICROMACHINED SWITCH EXAMPLE. THE
ORIGINAL PROBLEM SIZE EQUALED IV = 880 Har-  Full nonlinear Reduced order Error
monics model TPWL model [%]
Reduced basis dc (co) 9.3736 9.4061 0.4
generation Model extraction  Simulation Ist(c1) 3.9684-02625i 3.9630-02641i 0.2
algorithm time [s] time [s] 2nd (cz) -0.2803+0.0617i -0.3100+0.0578i 10.5
simple, =28 26.5 3.1 3rd (c3) 0.0223-0.0106i  0.0233-0.0138i 135
simple, =31 274 34
simple, q=41 30.9 6.5
extended, qg=28 66.8 3.1 TABLE VI

COMPARISON OF THEMAIN INTERMODULATION HARMONICS OF THE
SINUSOIDAL STEADY STATE, COMPUTED USING A FULL-ORDER
NONLINEAR MODEL AND THE REDUCED ORDER

—_ %ull nonlinear m‘odel, N=1500‘
0.016 - - piecewise-linear model (step input), =30 }' TPWL MoDEL (¢ = 39)
0.014F i Har-  Full nonlinear Reduced order Error
monics model TPWL model [%]
0.012 4 dc -0.4967 -0.4915 -1.1
fo—fi 0.0072-0.0223i  0.0077 - 0.0232i 43
0.01r 1 2f1 — f2 0.0046-0.0037i  0.0044 - 0.0029i -10.9
fi -0.0667 +0.1116i -0.0667 + 0.1116i1 0.1
0.008¢ 1 f» -0.0638-0.1003i -0.0629-0.1008i  -0.1
0.006l 2fo — f1 0.0013-0.0050i  0.0015 - 0.0051i 1.9
’ 2f1 0.0104+0.0008i 0.0108 + 0.0010i 3.8
0.004F 1
0.002 of the discrete output signal(n) = y(nAt). The first four
Fourier coefficients:;, (not normalized) are shown in Table V.

0 2 4 6 8 10 One may note that the sinusoidal steady sjatgobtained with
Time [s] .

the discussed reduced-order model matches closely up to the
Fig. 21. Comparison of sinusoidal steady state (nonlinear transmission Mﬂrd .harmonlc qf the referencel smgsmdal steady state of the
circuit model) computed using full nonlinear and TPWL models. The inp@onsidered nonlinear transmission line model. This result sug-
signal wasi(t) = (cos(2mt) +1)/2. gests that the extracted reduced-order models may be used to

) o _analyze second-order effects like harmonic distortion.

may lead to a model with a lower order, which is faster to simu- | "5 different series of tests, we applied a TPWL reduced-
late. The tradeoff is that the extended basis generation algoritBfger model to compute intermodulation distortion for the con-
Table IV, which shows performance of the MOR techniques f@sr MOSFETS). We generated two TPWL models: the first one
the considered micromachined beam example. of orderq = 39 (with 39 linearization points), and the second
one of orderg = 35 (with 36 linearization points) for a sinu-

soidal training input (which was the same in both cases)
This section compares results of simulation of the sinusoidal

steady state computed with the full-order nonlinear models and vin1(t) = —vin2(t) = (2 - 20 - sin(27 f1£) + 24) - 1072

the reduced-order TPWL models. The tests were performed forr]

the examples of a nonlinear transmission line circuit model ((Y{ er?{)l - 1 MHz. T??n' th_e moq(;als v_\iﬁrg_;festedt ;or the mput.
Fig. 1) and the operational amplifier, described in Section II. signaibeing a sum ot two sinusolds with different frequencies.

In the first series of tests, we computed the sinusoidal ste%xl(t) = —via(t) = [20-(Sin(27rf1t)—I—Sin(27rf2t))+24]-10_3
state for the nonlinear transmission line model with= 1500

nodes, excited with the input curreift) = (cos(27t) + 1)/2. wheref; = 1 MHz and f, = 1.2 MHz, and the spectrum of
The simulation was performed with a simple, fixed time stejhe computed sinusoidal steady state was extracted using DFT.
shooting method. Fig. 21 shows the computed sinusoidedbles VI and VII show the complex amplitudes of the main in-
steady-state output of the system in time domain. One migymodulation products and the driving harmonics obtained with
note that the result obtained with the reduced-order modeltbe TPWL reduced-order models and the full nonlinear model
orderg = 30 closely matches the reference result. of the considered op-amp. The error shown in the tables is the
The frequency domain analysis has also been performed felative error of the computed amplitude. The results indicate
the sinusoidal steady—state output sigi@) shown in Fig. 21. that the TPWL reduced model is able to effectively reproduce
[y(t) = v1(t), wherevy(t) is the voltage at node 1 of the cir-the intermodulation distortion effects in the considered case. At
cuit.] We computed a complex discrete Fourier transform (DF e same time, comparison between the two tables shows that

D. Sinusoidal Steady—-State Simulations
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TABLE ViII

COMPARISON OF THEMAIN INTERMODULATION HARMONICS OF THE

SINUSOIDAL STEADY STATE, COMPUTED USING A FULL ORDER

NONLINEAR MODEL AND THE REDUCED ORDER
TPWL MoODEL (¢ = 35)

Har-  Full nonlinear Reduced order Error
monics model TPWL model [%]
dc  -0.4967 -0.4921 -1.0
fo—fi 0.0072-0.0223i 0.0081 - 0.0226i 2.4
2f1 — f2 0.0046 - 0.0037i 0.0056 - 0.0042i 18.8
fi -0.0667 +0.1116i -0.0667 + 0.1108i -0.6

f> -0.0638-0.1003i -0.0634 - 0.10051 -0.1

2f, — f1  0.0013 - 0.0050i 0.0019 - 0.0048i -0.3
2f1  0.0104 + 0.0008i  0.0108 + 0.0004i 3.7

cation of the discussed TPWL MOR approach is not limited
to single-input single-output or multiple-input multiple-output
dynamical systems given in form (1). For instance, if we extend
the weighting procedure to take into account not only the state
space of the system, but also the space of input signals, we may
be able to construct TPWL macromodels for systems with fully
nonlinear input operators.
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the computed amplitudes of intermodulation products vary sig-
nificantly depending on the applied TPWL model which sug-
gests that in this case we may not further reduce the order of the
macromodel. [1]

[2]
VIl. CONCLUSION

In this paper, we have proposed an efficient numerical[3l]
approach for MOR and simulation of nonlinear dynamical
systems. The results obtained for the examples of nonlinear
circuits and a micromachined switch indicate that the presented4]
method provides very good accuracy for different applications
(and both single- and multiple-input systems). The method also[5]
proves to be characterized by low computational and memory
requirements, therefore, providing a cost-efficient alternative
for the nonlinear MOR techniques based on linear and quadratié6
models.

Although the algorithm in its current state has proved to be[7]
very effective, its performance still depends on a few param-
eters, which need to be adjusted more or less arbitrarily for ag;
given application example. The discussed parameters are related
mainly to the weighting procedure, as well as the method OL[Q]
selecting subsequent linearization points. Consequently, further
developments of the proposed MOR algorithm are necessary in
order to achieve its true robustness. Topics for further investi-
gation include e.qg.: 1) developing more sophisticated weightinéll
procedures which would exploit available information on the
original system in order to obtain more accurate TPWL model$12]
and/or to preserve stability or passivity of the original system;

2) incorporatinga posteriorierror estimation procedures to the
algorithm of selecting the collection of linearization points; and[13]
3) controlling approximation errors in the proposed fast simu-
lation algorithm. A separate problem is to define what is an OP114]
timal training input for a given nonlinear system.

There are also many possible extensions of the presented
MOR technique, which may include applying different types[15
of bases in the reduced-order TPWL simulators or develfig)
oping schemes for automatic model generation with multiple
“training” inputs, which may allow one to extend the validity of 17]
the quasipiecewise-linear reduced-order model to inputs with
different scales of amplitudes. One should also note that appli-
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