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On Exponential Fitting for Circuit Simulation

Luis Miguel Silveira, Student Member, IEEE, Jacob K. White, Associate Member, IEEE,
Horicio Neto, and Luis Vidigal

Abstract—In this paper, the stability and accuracy properties
of exponentially fit integration algorithms applied to the test
problem x = —Ax are compared with the more standard back-
ward-Euler and semi-implicit methods. For the analysis, 4 €
IR"*" is assumed to be connectedly diagonally dominant with
positive diagonals, as this models the equations resulting from
the way MOS transistors and interconnect parasitics are treated
in circuit-level timing simulation programs. Examples are used
to demonstrate that all the exponential-fitting methods, and the
semi-implicit methods, are much less accurate than backward-
Euler for tightly coupled stiff problems, and an example is given
which destabilizes one of the exponential-fitting methods. It is
then proved that in the limit of large time steps, the more stable
exponential-fitting methods become equivalent to a semi-im-
plicit algorithm. Finally, it is shown that the backward-Euler,
semi-implicit, and certain exponentially fit algorithms are mul-
tirate A-stable.

I. INTRODUCTION

ESIGNERS of MOS digital circuits often use tran-
sistor-level simulation programs that are very fast but
have limited accuracy compared with circuit simulation
programs such as SPICE [1]. This reduction in computa-
tion time allows for entire designs, or at least whole crit-
ical paths, to be simulated, though only a rough idea of
circuit performance can be derived. Programs of this type
are referred to as timing simulators and typically are sim-
plified circuit simulators with loosely controlled accu-
racy. Specifically, these programs use nodal analysis to
derive a system of differential equations that describes the
circuit. Then, by exploiting the assumption that each node
has a capacitor to ground, the programs can use simplified
semi-implicit multistep integration algorithms [2]-[4].
Recently, exponentially fit integration methods [5] have
been applied in an attempt to improve the performance
and accuracy of timing simulation, as in the programs
CINNAMON [6], XPSim [7], ELOGIC [8] and ADEPT
[9]. For the purposes of this paper, we define the first-
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order exponentially fit integration algorithm as
X(tm 1) = X(tn) + (6(2) = x(@)(1 — &™) (1)

where h = t,,,, — I, is the time step and x (o) and 7
depend on the particular exponentially fit integration
method being used. The interpretation of these parameters
is that x(o0) is an estimate of the equilibrium or steady-
state value of x, and 7 is an estimate of the time constant
of the approach to steady state.

Exponentially fit methods seem appealing because when
applied to numerically integrating the scalar linear differ-
ential equation x + dx = b, d, b € IR, with an appropriate
choice of 7 and x (o0), the exact solution is produced. This
accuracy for scalar problems has the practical conse-
quence that when exponentially fit integration methods are
applied to solving the differential equations associated
with MOS digital circuits, they frequently retain reason-
able accuracy for much larger time steps than standard
multistep methods. In this paper, we investigate whether
such approaches are still superior to implicit or semi-im-
plicit schemes when used to simulate MOS circuits which
include interconnect parasitic resistances.

It is difficult to draw any general conclusions about the
relative merits of the above algorithms by comparing the
performance of the related programs. All the programs
mentioned above demonstrate speed advantages over
SPICE of nearly two orders of magnitude, and their ac-
curacies are sensitive to time step control heuristics. In-
stead, in this paper we attempt to compare the algorithms
theoretically in an admittedly simplified setting, but one
which we feel lends insight. In particular, we assume a
matrix test problem:

x=—-Ax x(0)=xy # o0 )]

where A € IR"*". In our case, A is assumed to be con-
nectedly diagonally dominant [10] with positive diago-
nals, as this models the equations resulting from the way
MOS transistors and interconnect parasitics are treated in
timing simulation programs.

We start in the next few sections by comparing the sev-
eral integration methods using fixed time steps and then
analyze the multirate case. In particular, in the next sec-
tion we show that consistency enforces a relation between
x(o0) and 7 of (1) and that the methods used in the pro-
grams CINNAMON and XPSim can be derived from (1).
In Section III, stiff, tightly coupled examples are exam-
ined to demonstrate a stability problem with the XPSim
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algorithm and an accuracy problem with the CINNA-
MON algorithm. A more stable semi-implicit version of
the XPSim algorithm, denoted IPSim, is given, and it is
proved that in the limit of large time steps the IPSim and
CINNAMON style exponentially fit algorithms become
equivalent to the semi-implicit algorithm originally used
in the MOTIS program [2]. In Section IV, we prove that
the CINNAMON, MOTIS, and backward-Euler algo-
rithms are multirate A-stable. Conclusions are given in
Section V, followed by acknowledgments.

II. ExpLiciT EXPONENTIAL FITTING
Not all values of the x(o0) and 7 parameters introduced
in (1) produce consistent integration methods, where by
consistency we mean that the error introduced in one time
step, h, is O(h?). Assuming that x(z,,) is exact and using
a Taylor series expansion of the exact solution about x (z,,),
we find that the exact solution for time ¢, ., is given by

() = x(t,) + hi(t,) + O

where the superscript E is used to denote the exact solu-
tion. The approximate solution computed from (1) is

x(%) — x(tn)
T

X(twe1) = X(t,) + R + O(h).

Therefore, for consistency, x(oo) and 7 must satisfy the
condition

x(e) — x(t, )
1) = 2 _ . 3)
Using the relation in (3) we can rewrite (1) as
X(tpe)) = X(t,) + 71 = "1, )

which defines a family of consistent, one-step, first-order,
explicit, exponentially fitted formulas parameterized by 7.

Also note that when h — 0, and 7 is bounded away from
07

=

(1 —e My =, 5)

-

which implies that formula (4) reduces to the well-known
forward-Euler integration algorithm and therefore inherits
its convergence properties. That is, when numerically in-
tegrating on a finite interval [0, T] and in the limit as h
— 0’

max {|x(t,) — £ @)} =0,
O<m<M

©)

where t,, = mhand ty, = T.
For a system of N ordinary differential equations, (4)
can be generalized as

X(tyy) = x(t,) + DA — ™)k, (D
where now x € IR” and D is an n X n diagonal matrix,
withd, = 1 /7, ie{l, -+, n}.

The approach to exponential fitting used in the circuit

simulators CINNAMON and XPSim can be reduced to
the above formulation, again assuming fixed time steps.
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Fig. 1. Updating a node value with CINNAMON (circuit interpretation).

It is in the choice of the fitting matrix, D, that the ap-
proaches differ significantly. We will illustrate the differ-
ence between the two exponential fitting methods for the
test problem in (2). In CINNAMON, a simple approach
is used: the 7; is selected from the diagonal term of the A
matrix as

T = —
ai;

8

and the x; (o) is set according to the consistency relation-
ship (3) to be

x;() = x;(t,) + 71X (1)

forie {1, ---,n}.

There is a simple circuit interpretation of the CINNA-
MON algorithm. Each node in the circuit is updated to a
new time point by computing the exact solution to that
node, given that all the other nodes are treated as fixed
voltage sources with values given from the previous time-
point (see Fig. 1).

In the XPSim algorithm, the value selected for x (o) in
(7) is, for a linear system, the correct steady-state value.
Note that when applied to nonlinear circuits, the x (o)
used is not necessarily the correct steady state, and may
change at each time step, adding to the computational cost
of the method [7]. However, if the intention is to simulate
digital logic circuitry, the x (o0) computation can possibly
be avoided by exploiting the fact that eventually the cir-
cuit voltages approach the power supply or ground. For
our problem, x (o) = 0, and by consistency (3) reduces
to

®

— _xi(tm)
T TR (10)

and

_ Xi(tw)
X;(ty 1) = x;(1,) exp (h xi(tm)>

n
21 aijxj (tm)

= x;(t,) exp —h!

X (1) an

forie{l, -+, n}.
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Clearly, the XPSim algorithm as described above can-
not be used when the solution passes through 0. In that
case 7 is not bounded away from 0, (5) no longer applies,
and the XPSim algorithm is not consistent. In fact, the
method is positive invariant. That is, the XPSim algo-
rithm can only produce a positive x(z,, . ,) from a positive
x(7,,). For our examples, this difficulty can be mostly ig-
nored if the initial condition is assumed to be a positive
vector. Then, if the problem is as given in (2), where A
is strictly or connectedly diagonally dominant, the exact
solution and the solution computed by XPSim will be pos-
itive for all time [11]. The method is still useful since
logic circuits with a single positive supply, no floating
capacitors, and physically reasonable transistor models
will have node voltages that are always nonnegative. If
the voltages do change signs, a modified XPSim algo-
rithm must be used, where, for example, a CINNAMON-
like technique can be used when the solution approaches
0 [12].

III. Fixep TIME STEP PROPERTIES

Because exponential-fitting methods are tuned to scalar
problems, they obviously are going to perform well when
A of (2) is strongly diagonally dominant. In fact, some of
the methods can be A-stable for the test problem. Never-
theless, their accuracy degrades surprisingly quickly when
A is stiff but only weakly diagonally dominant [5]. In this
section we consider the example in Fig. 2, a tightly cou-
pled two-node circuit where the initial condition at each
node is 1 V.

A. Stability Properties

An eigenvalue analysis shows that the example in Fig.
2 has two widely separated time constants, at 7 = 2.0075
and 7 = 0.0075, and is therefore a very stiff problem, as
well as being tightly coupled.

A comparison of the computed results simulating this
circuit using the backward-Euler (BE), the XPSim (XP),
and the CINNAMON (CIN) algorithms with a 0.1 s time
step is plotted in Fig. 3 (the algorithm IP in this figure is
described below). As is clear from the picture, all algo-
rithms produce roughly the same accurate results.

In Fig. 4, the results from simulating the same exam-
ple, but using a 1.1 s time step, are plotted. For this case,
disappointing results are achieved for the CINNAMON
(CIN) and XPSim (XP) methods when compared with the
standard backward-Euler (BE) algorithm. The solution
computed with XPSim is unstable and the solution com-
puted with CINNAMON is inaccurate in that it decays
much too slowly. (The algorithms SI and IP will be de-
scribed below.)

It is possible to stabilize the XPSim algorithm for di-
agonally dominant problems by making the computation
semi-implicit. When applied to (2), a semi-implicit ver-
sion of XPSim, which we denote as IPSim (IP), is

@® ri2 @

R1 = 100Q

2'A"A'%
i i R2= 200Q
°1T R1  R2 _]_cz R12= 1Q
C1=C2=1F

Fig. 2. Test circuit.

0o} ) g
0sf
07}

0.6

0.5

(1)

04} 4

03

02r

0.1

0 10 20 30 40 50 60 70 80 90 100
time
Fig. 3. v,(t) forh = 0.1.

v(1)

o 10 20 30 40 50 60 70 80 % 100

time
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;ixi(ty 1) + § a;x;(t,,)
J#i

Xi(tw+1) = x;(1,) exp | —h Xi(tw)

(12)

forie {1, - - -, n}. Note that the method is not implicit
with respect to the denominator term in the exponential,
as this does not enhance stability and makes for a harder
nonlinear problem to solve at each step. The IPSim al-
gorithm is similar to the Gauss-Jacobi semi-implicit al-
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gorithm used in the MOTIS [2] program, which for our
test problem is described by the update equation

Xty +1) = X (ty) — hl:aiixi(tm+l) + Z aijxj(’m)] (13)
J#FI

fori e {1, - - -, n}. Note that in both (12) and (13) the
update equation is made implicit with respect to the var-
iable being updated.

The CINNAMON, MOTIS and IPSim algorithms have
similar stability properties, as is made clear in the follow-
ing theorem:

Theorem 1: When applied to solving (2), where A is
assumed to be strictly or connectedly diagonally dominant
with positive diagonals, the MOTIS and CINNAMON al-
gorithms are A-stable, and if the initial condition is a pos-
itive vector, IPSim is A-stable.

We will not prove Theorem 1 here. The A-stability of
MOTIS for these types of problems is well known [13];
the A-stability of the CINNAMON algorithm is a special
case of Theorem 3, which follows (also see [14] and [15]);
and the A-stability of IPSim requires a lengthy proof,
which can be found in [15].

B. Accuracy Properties

If the time step is set to 10 s, as in Fig. 5, the result
from the XPSim algorithm becomes too unstable to plot,
and the result from the CINNAMON algorithm gets
‘“stuck,”’ that is, it decays much more slowly than the
exact solution. This property of the CINNAMON algo-
rithm, that of getting ‘‘stuck,’” is particularly insidious,
as the slowly changing node may be misinterpreted as
having achieved equilibrium. This can confuse an event-
driven simulator based on the CINNAMON algorithm and
may lead to large errors.

The results using the IPSim (IP) and MOTIS (SI) al-
gorithms to simulate the circuit in Fig. 2 with 1.1 and
10 s time steps are plotted in Fig. 4 and Fig. 5 respec-
tively. As the plots show, the IPSim algorithm is stable
but produces results not significantly more accurate than
the MOTIS or CINNAMON algorithms. This comparison
is true in general, as is made clear in the following theo-
rem.

Theorem 2: If A has positive diagonal entries, then in
the limit of large time steps, the CINNAMON, IPSim,
and MOTIS algorithms produce identical results.

Proof: Summarizing, the update equations for the
MOTIS, CINNAMON, and IPSim algorithms are, re-
spectively,

Xty 1) = xi(ty) — h{aiixi(tnw-l) + Z ung(fm)} (14)
j#i

| — e hai[ 2
xi(tm+ I) = -xi(tm) - 'Zl aijxj(tm):‘ (15)
j=

i
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aXi(ty+1) + § a;x;(t,,)
E

. = x:(t, —h
Xi (tm + I) xl( m) exp Xi (tm)
(16)
It is easy to see in the limit of large k, and given that a;
is positive for all i, that x;(t,, + ;) for both the MOTIS and
the CINNAMON algorithm is
a;
Xiltme1) = = 2= Xt (17)
J#Ei Ay
The result in (17) holds true for the IPSim algorithm as
well. This can be seen by considering that in the limit of
large h the argument of the exponential in IPSim’s update
equation, (16), cannot go to o. Therefore, the term from
the numerator of the exponential’s argument in (16),

a;ixi(tm+1) + g a;x;(ty), (18)
j#Ei

must approach zero as h = oo. |

C. Ordering

In general, it is possible to improve the stability and
accuracy of explicit or semi-implicit methods by ordering
the equations being solved and using updated values when
possible. Specifically, when calculating x; (s, + 1) the use
of the already computed values of x;(z, ) for j < i will
improve the accuracy of the solution. This is exploited in
most implementations of semi-implicit integration algo-
rithms [3], [16] and also in the CINNAMON circuit sim-
ulator [17].

Using ordering in the XPSim algorithm leads to the fol-
lowing update equation for x;:

Xi (1) = X (L)

Z ainj(tm+ ]) + Z a,«jxj(tm)
J<i =i

~h Xi () ’

© exp

(19

where subscript index also indicates the ordering.
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Fig. 7. Circuit to test possible stability of ordered XPSim.

In Fig. 6 we present the plots of computed solutions to
the test circuit in Fig. 2, under the same conditions of Fig.
4, i.e., using a 1.1 s time step. The waveforms shown
correspond to backward-Euler (BE) and ordered versions
of CINNAMON (CINo), IPSim (IPo), XPSim (XPo), and
the semi-implicit algorithm (SIo). Here, the ordering used
always updates node 1 first. From the figure, and com-
pared with the results shown in Fig. 4, one can see that
ordering improved the accuracy of all methods, most no-
tably that of XPSim, which is stabilized by ordering. Also
from the plot we note that, with ordering, the solution
produced with CINNAMON becomes quite accurate and
that the solution produced with IPSim is almost the same
as that obtained with the semi-implicit algorithm, albeit
at the expense of more computation.

The results of the above plot are partially deceptive in
that it is not always possible to stabilize the XPSim al-
gorithm by ordering, as can be demonstrated by consid-
ering the example circuit in Fig. 7. Solutions for the ini-
tial condition of both nodes at 1 V were computed using
node 1 first ordered XPSim (XPo), node 1 first ordered
CINNAMON (CINo), and backward-Euler (BE), all with
a time step h = 6, and are plotted in Fig. 8. Note that the
solution computed with the ordered XPSim method shows
oscillations of increasing magnitude. This plot is some-
what surprising since the system matrix is not far from
diagonal. In addition, if the time step is made larger, say,
to h = 7, then it is impossible to stabilize XPSim with
any ordering, a fact that can be established by exhaustive
search over all the possible orderings.

BE
......... CINo
s .. XPo
al
S 3 g
>
2 i 1
o)
0 10 20 30 4 S0 6 70 80 9 100

time

Fig. 8. v,(¢) from the circuit in Fig. 7 for h = 6.

IV. MULTIRATE PROPERTIES

Most practical circuit-level simulators use adaptive time
step control to ensure accuracy in the computed solution,
and timing simulators gain some of their speed advantage
over SPICE-like simulators by independently adapting the
time steps for individual circuit nodes. An integration
method which allows different nodes in the circuit to use
different time steps is referred to as a multirate integration
method, and the stability theory for such methods is not
as complete as for the fixed time step case [18]. In this
section, we show that the MOTIS, CINNAMON, and
backward-Euler algorithms are multirate A-stable for our
test problem, which in turn implies that A-stability is pre-
served regardless of the time step selection strategy. Also,
we note that for the tightly coupled stiff example in Sec-
tion III, a time step control strategy based on ensuring that
each circuit node changes by some fixed voltage incre-
ment cannot be used directly with CINNAMON- and
MOTIS-style algorithms and does not make it possible to
use large time steps with XPSim.

A. Multirate Methods

As mentioned above, a key advantage of timing simu-
lators is that different time steps can be used for different
circuit nodes. In particular, the update equations for the
backward-Euler, MOTIS, and CINNAMON algorithms
in this multirate case become

xi(tw) = x;(th—y) — hiy |:aiixi(t£n) + ]z}i aijlt,i"({xj}):l

Xt = x;(th-1) — h£n|:aiixi(t£n) + jgi aijlx,",,_,({xj})j}

i
—h,aii

i i l1-e
xi(tm) = xi(tmfl) - @

: [aiixi(tin—l) + j§i aijlr;"_l({xj})], (20)

i

where i}, = ti, — t,_, is the mth time step for the ith
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circuit node, and /,({x; }) € IR is the interpolation operator
required because r,, is not necessarily equal to #},. For
example, if linear interpolation is used, then

I({x}) = yx () + (1 = Px(t,- ), 2N

where m is such that t € [t,,_ 1, 2], and ¥ = (¢t — 1, )/
(tw — tn—1). In general, we assume that the interpolation
operator is a linear function of the sequence values. Note
that this is distinct from linear interpolation; any poly-
nomial interpolation scheme is a linear function of the se-
quence values.

A general approach to solving for the sequences which
satisfy the multirate discretization equations in (20) is to
use a discretized waveform relaxation (WR) approach
[19]. Roughly, on each WR iteration, the behavior of each
node voltage is computed for all time using the best avail-
able information about the other node voltages. Then a
second WR iteration is performed, with the waveform
computation at each node using the updated information
about the other nodes. The WR iterations are repeated un-
til convergence is achieved. In particular, Algorithm 1,
given below, is an idealized WR algorithm based on the
backward-Euler discretization.

Algorithm 1 (Backward-Euler Discretized WR Algorithm)
Fork =1t >
Fori=1ton
Form =11to o
Solve:

xf(th) = xf@h,_) — h;[aﬁx,*(zm + 2 a,,,z,f({x;—'})]
J*Fi m

(22)
for x¥(t1).

Here k is the waveform iteration index and {x} is an
initial guess sequence whose initial value matches the test
problem initial condition. The WR algorithm can be al-
tered to use the CINNAMON or the MOTIS discretization
scheme by changing (22) to

i
i ; 1 — ¢ hmai
k k
Xi(ty) = x{(t,—1) —
a;;

: [a,-,-xf(r;,_o + 2 a.jl,fm_l({xj-‘"b] (23)
J#FI

or
*(t) = X6, -0) = hin[aiin‘(tin) + 2 aul,;,,({xj’-‘“})}
IEX:

(24)

respectively.

Clearly, there are more efficient approaches for com-
puting the time points associated with the CINNAMON
and MOTIS algorithms. The WR algorithm is mentioned
here because of a prejudice of one of the authors and be-
cause it will be used to prove multirate A-stability.
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B. A-Stability Theorem

The main result of this subsection is that the methods
above are multirate A-stable. The definitions of multirate
A-stability [18] and an interpolation property precede the
theorem statement below.

Definition 1: The methods in (20) are multirate A-sta-
ble for our test problem if for any set of positive time
steps,

lim x;(¢5) = 0 (25)

m— oo

forallie {1, - -, n}.

Definition 2: An interpolation operator is maximum re-
ducing if
max |L({x})| = max |x(,)|. (26)
r m
For example, piecewise constant and linear interpolations
are maximum reducing, and quadratic interpolation is not.

Theorem 3: When applied to solving (2), where A is
assumed to be strictly or connectedly diagonally dominant
with positive diagonals, the MOTIS, CINNAMON, and
backward-Euler style multirate algorithms are multirate
A-stable for any interpolation operator which is maximum
reducing.

The following two lemmas will be useful in the proof
of Theorem 3.

Lemma 1: Consider two real sequences, z[m] and y[m],

me {0, 1, - -+ o}, for which y[0] = 0. If
ylm + 1] = y[m] — ay[m] + Bz[m], @7
where o, 8 € IR and « € [0, 1], or if
yim + 1] = y[m] — ay[m + 1} + Bz[m], (28)
where a, 8 € IR and « > 0, then
18] 29)

max |y[m]| < T, max {zlm]].

The following is a special case of the main result in [20],

Lemma 2: The multirate integration methods given in
(20) are multirate A-stable when applied to (2), where A
is strictly or connectedly diagonally dominant with posi-
tive diagonals, if the iterates produced by the associated
multirate discretized WR algorithms contract in a maxi-
mum norm over the sequence for any set of positive time
steps.

Restated, Lemma 2 implies that if for any set of posi-
tive time steps, the WR iterates defined by (22), (23), and
(24) satisfy the inequality

I8yl < vl oy~ (30)
where_ﬁy" € IR" is defined by 6y’ = max,, [xf(}) —
£, B+ |l is any norm on IR®, and y < 1, then the

MOTIS, CINNAMON, and backward-Euler style multi-
rate algorithms are multirate A-stable.
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Proof of Theorem 3: Subtracting iteration k& from k
— 1in (22), (23), and (24) results in

axf(ty) = oxk(th )

- K, |:aii axk(th) + jgl_ a,vjl,;({éxf— ! })} 3D

) ) 1 - —h';,,au'
sxk(rh) = &xXk(tl,_ ) — ——

. [a,»,» ok, )+ 2 a,.,l,,_‘({axf*‘})} (32)
J#i "
X () = Oxf (th_1)
- K [aﬁ axfiy + 2 a,.jl,;nfl({ax}‘l})} (33)
j#i

where 6xf (r1) = x¥(t{) — x*~'(¢\). Note that the linear-
ity of the interpolation operator is exploited.

Lemma I can be combined with the maximum reducing
property of the interpolation operator to show that the
8x*’s of (31), (32), and (33) all satisfy the following in-
equality:

Y lay]| :
max |8x5(t8)| = _Z — max |6x,’-‘"'(tf,,,)|. 34)
m J*¥i Ay m
Since A is connectedly diagonally dominant, there exists
a norm such that

oy ll < ylloy '
for some v < 1 [10], where 8y* € IR" and
& = max,, \5x{-‘(!ﬁ,,)|.

By comparing (30) with (35), it is clear that Lemma 2 can
then be applied to complete the proof. u

(35)

C. Voltage-Increment Time Step Control

The two most commonly used time step selection cri-
teria are local truncation error [1] and node voltage change
[6], [8], [9]. In the latter method, the time step for each
circuit node is selected to ensure that the node voltage
changes by a fixed increment. The voltage-increment time
step control scheme combined with either XPSim or CIN-
NAMON style algorithms has been shown to be effective
for simulating MOS digital circuits if parasitics are not
included, as these circuits are usually not tightly coupled.
In this section we show by example that the voltage-in-
crement approach is ineffective for tightly coupled prob-
lems in that it does nor allow the XPSim algorithm to use
large time steps, and must be modified to be used with a
CINNAMON style algorithm.

Specifically, we consider computing the solution to the
circuit in Fig. 2 using the CINNAMON and XPSim mul-
tirate algorithms, as given in (20). In this example, the
circuit voltages change from 1 to 0 V, and this suggests
that reasonably accurate solutions should be obtainable if
the time steps are selected so as to ensure a 0.1 V change
on each node. For the CINNAMON algorithm, however,
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Fig. 9. v,(t) for AV = 0.1.

this approach must be modified. Recalling the discussion
in Section III, the CINNAMON algorithm tends to get
stuck for tightly coupled stiff circuits, and for this exam-
ple the change of voltage in one step of the CINNAMON
algorithm will never be as large as 0.1 V, no matter how
large the time step. For comparison purposes, we used as
the step size for CINNAMON the time step required to
make a forward-Euler algorithm change by 0.1 V. Note
that Theorem 3 guarantees that this forward-Euler based
time step selection strategy cannot destabilize the CIN-
NAMON algorithm.

The XPSim and CINNAMON multirate computed
waveforms as well as the exact solution are plotted in Fig.
9. Here, piecewise-constant interpolation was used. As is
clear from the figure, the voltage-increment time step
control does not make it possible to take large time steps
with XPSim. Also, the modified voltage-increment time
step control algorithm for CINNAMON, mentioned
above, did not ensure accurate results.

V. CONCLUSIONS

In this paper we have described some of the theoretical
aspects of using exponential fitting for timing simulation
and have focused on connectedly diagonally dominant
problems, as this models the equations resulting from the
way MOS transistors and interconnect parasitics are
treated in timing simulation programs. We showed that
for tightly coupled stiff problems, XPSim can be unstable
and proved for our test problem that the MOTIS, CIN-
NAMON, and backward-Euler integration algorithms are
multirate A-stable. We also proved that in the limit of
large time steps, CINNAMON, IPSim, and the well-
known MOTIS semi-implicit algorithms produce exactly
the same results.

The experimental results presented for tightly coupled
stiff, but still connectedly diagonally dominant, problems
demonstrate that backward-Euler is more accurate than
any of the exponential-fitting methods, and can be far
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more accurate for large time steps. In particular, for these
problems the CINNAMON, IPSim, and MOTIS algo-
rithms all tend to get ‘‘stuck’’ for large time steps. The
XPSim method, on the other hand, can be unstable for
large time steps because it frequently fits to a growing
exponential. We also showed that ordering improves the
accuracy of CINNAMON and IPSim, and can, but does
not always, stabilize XPSim. Our work therefore indi-
cates that when simulating digital circuits with intercon-
nect parasitics, decomposing the problem into small
blocks (e.g. partitioning a MOS digital circuit into logic
gates) and using backward-Euler, or some other fully im-
plicit method, will be more reliably accurate and more
efficient than using exponential-fitting or semi-implicit
methods.

We think this study makes one other practical point. If
an event-driven time step control algorithm is being used,
the fact that the CINNAMON, MOTIS, and IPSim style
methods get ‘‘stuck’’ on tightly coupled stiff problems can
fool the event-driven mechanism and produce very inac-
curate results. For such problems XPSim does not get
“‘stuck,’’ but rather is unstable (a property shared by stan-
dard explicit multistep methods). These observations sug-
gest that additional work on exponential fitting be focused
on removing the stiffness for the XPSim style algorithms
or improving the time step control for CINNAMON style
algorithms [21].
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