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A Multilevel Newton Method for Mixed-Energy
Domain Simulation of MEMS

N. R. Aluru and Jacob White,Member, IEEE

Abstract—An efficient black-box algorithm for self-consistent
analysis of three-dimensional (3-D) microelectromechanical sys-
tems (MEMS) is described. The algorithm is matrix-free based
and employs a multilevel Newton technique to solve the cou-
pled electromechanical equations. The new approach is shown
to converge very rapidly and is much faster than relaxation
algorithm for tightly coupled cases. While this paper focuses
on coupled electromechanical analysis, the proposed algorithm
can be extended to include several coupled domains typically
encountered in MEMS. [355]

Index Terms—MEMS modeling, mixed-energy domain simula-
tion, multilevel Newton method, relaxation technique.

I. INTRODUCTION

A LTHOUGH there are many microelectromechanical sys-
tem (MEMS) designs that use piezoelectric, thermal,

pneumatic, and magnetic actuation, the most popular approach
in present day microsensor and microactuator designs is to use
electrostatic forces to move micromachined parts. Designers
of such microelectromechanical devices need efficient, robust,
and easily used computer simulation tools to investigate design
alternatives. Since most of the structures of interest are geo-
metrically complicated, electromechanically coupled, and are
inherently three-dimensional (3-D), microelectromechanical
CAD (MEMCAD) tool developers have been focused on
improving the usability, efficiency, and robustness of coupled
3-D electromechanical analysis [8], [14]. In particular, anal-
ysis of 3-D electromechanical systems involves two coupled
domains: elastomechanics and electrostatics, which have each
been studied very extensively in the literature (see, e.g., [4] for
elastomechanics and [10] for electrostatics), and commercial
simulation tools are available for each domain. This paper
proposes a new approach to construct a 3-D coupled electro-
mechanical simulation tool that is convergent, accurate, and
stable and utilizes already existing and commercially available
simulation tools for each individual domain. The idea of a
construction of a MEMCAD tool from existing black boxes is
important for very good reasons—many applications in MEMS
involve more than two coupled energy domains, and often it is
necessary to investigate more than one actuation mechanism or
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study a different actuation mechanism by replacing an existing
one. This flexibility can be achieved by constructing a black-
boxes-based simulation tool that is convergent. Even though
this paper reviews an approach for coupled electromechanical
analysis, the idea can be extended to include several coupled
energy domains.

The numerical techniques employed for coupled electro-
mechanical analysis have so far been based on relaxation
[5], [7], a form of surface-Newton method [3], [15], and a
tightly coupled Newton method [1], [2]. In particular, finite-
element-based elastostatic analysis and accelerated boundary-
element-based electrostatic analysis have been combined using
algorithms based on relaxation, a form of surface-Newton
method, and a tightly coupled Newton method. The relaxation
technique is easy to program and can be trivially extended
to include several coupled domains. However, the relaxation
approach fails to converge for strong coupling between energy
domains. As a result, the relaxation technique is limited in
its applicability for coupled-domain simulation. The surface-
Newton technique is also a black-box approach, but requires
more effort to program than the relaxation technique. The key
idea in the surface-Newton approach is to reduce the dimen-
sionality of the coupled problem from 3-D to two-dimensional
(2-D) and to employ a Newton technique to determine the sur-
face node positions. In the case of electromechanical systems,
once the surface node positions are known, the surface charges
and the interior node positions can be determined by decoupled
electrostatic and mechanical analysis, respectively. This ap-
proach requires modifications when the coupling between the
energy domains is not just through the surface, and, hence, is
not a general approach for multiple energy-domain simulation.
Most importantly, the surface-Newton approach is matrix-
free based and is extremely sensitive to the choice of the
matrix-free parameter. A tightly coupled Newton method can
be very quick and efficient when compared to the relaxation
and surface-Newton approaches for coupled electromechanical
analysis. A tightly coupled Newton method, however, is
not black-box based and, hence, cannot be extended very
trivially to include several coupled domains. In this paper, we
present a new multilevel Newton approach for coupled-domain
simulation of MEMS. The new technique is black-box based
and is shown to be very efficient, convergent even for strong
coupling between domains, and can be trivially extended to
include several coupled domains.

The rest of the paper is organized as follows. Section II
discusses the self-consistent electromechanical analysis, and
the black-box-based relaxation technique for electromechani-
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(a) (b)

Fig. 1. Illustration of electromechanical coupling problem through a 2-D beam over a ground plane example: (a) applied voltage causes a charge distribution
and (b) the deformed structure with charge redistribution.

cal analysis is described in Section III. The multilevel Newton
scheme is introduced in Section IV, and numerical results
are presented in Section V comparing the relaxation and
multilevel Newton schemes. Finally, conclusions are given in
Section VI.

II. SELF-CONSISTENT ELECTROMECHANICAL ANALYSIS

Electromechanical systems typically involve a mechanical
structure which undergoes deformation when subjected to
electrostatic actuation. The electromechanical coupling is il-
lustrated through a beam over a ground plane example shown
in Fig. 1. When a voltage is applied between the beam and
the ground plane, a charge distribution is induced on the
surface of the beam. This charge distribution causes the beam
to deflect and the charge distribution on the beam surface
changes because of the beam deflection. An equilibrium state
is obtained when the forces due to the beam deflection and
the surface charges balance each other. The beam deflection
and the electrostatic charges can be obtained by the solution of
coupled problems involving mechanical or elastostatic analysis
and electrical or electrostatic analysis.

The elastic deformation of the structure can be predicted
by studying nonlinear elastostatics (or elastodynamics, as the
case may be). A commercial simulator such as ABAQUS1

is typically employed for the finite-element solution of the
nonlinear elastostatic equations. Mathematically, the solution
of the elastostatic equations can be represented as

(1)

where is a black-box elastostatic solve to compute
the structural displacements, given the pressure , which
is a function of the surface charges. The details of a finite-
element formulation to solve (1) are presented in [2]. Note that
the elastostatic equations are nonlinear and typically a Newton
method is employed to compute the displacement.

Given the potentials on the conductors, the charges can be
predicted by an electrostatic analysis. Fast simulators, such
as FASTCAP [10] can be employed to accurately compute
the surface charge distribution. FASTCAP employs a bound-
ary integral formulation with multipole [9] or precorrected
fast Fourier transform acceleration techniques [12]. Mathe-
matically, the solution of the electrostatic equations can be
represented as

(2)

1Hibbit, Karlsson, and Sorenson, Inc., Providence, RI.

where denotes a black-box electrostatic solve to
compute the surface charges, given the conductor geom-
etry , and the applied potentials . The dependence of
the electrostatic solve on is explained by the change in
the conductor geometry as it undergoes deformation due
to electrostatic forces. The voltages are held fixed during
the coupled electromechanical analysis and in subsequent
discussion, the dependence of the electrostatic residual on
will be dropped, it being understood that voltages are specified
on the conductors for electrostatic analysis. The details of a
boundary integral formulation to solve (2) are presented in
[10].

Coupled electromechanical analysis requires the self-
consistent solution of (1) and (2). With the availability
of black-box solvers such as ABAQUS for mechanical
analysis and FASTCAP for electrical analysis, coupled
electromechanical analysis has been implemented with the
black-box algorithms discussed in the next two sections.

III. RELAXATION TECHNIQUE

A simplest black-box approach for coupled electromechan-
ical analysis is the Gauss–Seidel relaxation algorithm [5]. In
this approach, the data is passed back and forth between black-
box electrostatic and elastostatic analysis programs until a
converged solution is obtained. The relaxation procedure is
summarized as given below

Algorithm 1: Relaxation procedure for coupled
electromechanical analysis.

.
Repeat

Compute .
Compute .

;
until and

As is evident from the above procedure, black-box ap-
proaches based on relaxation can be implemented very quickly
for coupled electromechanics and for other coupled domain
analysis of MEMS. However, as will be shown in the results
section, the relaxation algorithm fails to converge for strong
coupling between electrical and mechanical domains.

IV. M ULTILEVEL NEWTON ALGORITHM

In this section, we present a new multilevel Newton
technique for black-box analysis of coupled electromechanical
equations. The proposed multilevel Newton technique is
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Fig. 2. Top view of a beam over a ground plane example.

matrix-free based, converges very rapidly, and does not
suffer from the drawbacks of the surface-Newton or relaxation
algorithms. In the multilevel Newton technique, the coupled
electromechanical equations are solved by employing a nested
Newton–Raphson method. The outer-Newton iteration solves
the following residual equation:

(3)

In (3), is the charge on the conductors for the conductor
geometry defined by , is the structural displacement
because of the electrostatic forces generated by the charge,
and if both and are zero or approximately
zero, then the charge and the displacement are a self-
consistent solution to the electromechanical system. Note that
because the residual is defined in a certain way it can be
computed using black boxes. The Jacobian for the residual
given in (3) is given as

(4)

With the definition of the residual and the Jacobian defined
through (3) and (4), respectively, the multilevel Newton tech-
nique for solving the coupled electromechanical equations can
be summarized as follows:

Algorithm 2: Multilevel Newton technique for
coupled electromechanical analysis.

.
Repeat

Solve

for

Set .
Set .

;
until and .

The linear system of equations in algorithm 2

will be solved by employing an iterative solver, such as a
generalized conjugate residual (GCR) [6]. The GCR algorithm

Fig. 3. Comparison of peak deflections from relaxation and coupled algo-
rithms for a beam over a ground plane structure. Note that the two curves
overlap.

for the solution of a linear system of equations is summarized
below

Algorithm 3: GCR algorithm for solving
Make an initial guess to the solution, .
Set .
Set .
do

if , return as the solution.
else

.

.
.

.

where are chosen so that
for

Set .

The key step in the GCR algorithm is the computation of the
matrix–vector product . The matrix–vector product required
in the iterative solver can be computed using finite-difference
approximation, i.e.,

(5)
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Fig. 4. Deflection of the beam (not to scale) for an applied bias of 17.23 V.

TABLE I
COMPARISON OF RELAXATION AND MULTILEVEL NEWTON

ALGORITHMS FOR NUMBER OF ITERATIONS AND CPU(S)
FOR A THICK BEAM AND GROUND PLANE EXAMPLE

# Iterations CPU(s)
Bias

Relaxation Multlilevel
Newton

Relaxation Multlilevel
Newton

2.0 4 2 283.5 698.7
4.0 5 3 381.0 967.0
6.0 6 3 507.7 1244.9
8.0 7 3 608.4 1079.6
10.0 8 3 710.2 1086.8
12.0 10 3 909.5 1086.7
14.0 13 4 1244.4 1530.7
16.0 20 4 2015.8 1499.0
17.0 41 5 4248.1 1957.0
17.20 94 5 9713.83 2145.7
17.23 200 7 20 910.5 2823.5

(a)

(b)

Fig. 5. Convergence of relaxation and multilevel Newton algorithms for a
beam and ground plane structure: (a) applied bias is 17.20 V and (b) applied
bias is 17.23 V.

Fig. 6. Convergence of the GCR algorithm for coefficienta = 0:01 and
coefficienta = 0:255.

where the matrix-free parameteris given as

sign

For the definition of given in Algorithm 2, the matrix–vector
product can be computed as

(6)

where is a matrix-free parameter which is small and different
from zero, is an increment in the charge vector, andis
an increment in the displacement vector. Bothand are
generated by the GCR algorithm. The choice ofgiven above
is identical to the one proposed for the surface-Newton method
[15]. In the context of the surface-Newton method, the limits
on and have been obtained through numerical experiments.
Noting that the black-box elastostatic and electrostatic solves

and can be performed outside the GCR solver,
an algorithm for computing the matrix–vector product given
in (6) is as follows:
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Fig. 7. Top view of a beam over a ground plane example.

Fig. 8. Deflection of the beam (not to scale) for an applied bias of 2.38 V.

Algorithm 4: Computation of the matrix–vector
product for each GCR iteration.

Assume , and are given,
and , are computed
outside GCR.
Compute by a black box
electrostatic solve.
Compute by a black box
electrostatic solve.
Compute

As shown in algorithm 4, each iteration of the GCR solver re-
quires two black-box solves. The first black-box solve

is to compute the charges on the perturbed geometry and
the second black-box solve is to compute the
displacements given perturbed electrostatic forces. Since the
elastostatic equations are nonlinear, a Newton technique is
employed to compute the displacements. The inner Newton
loop within each GCR iteration and the outer Newton loop
to solve the coupled electromechanical equations makes this
approach a multilevel Newton technique.

The coefficients and in the matrix-free parameter def-
inition can be picked precisely for the multilevel Newton
technique. Specifically, a choice of and
are employed for the multilevel Newton technique. While
this choice of exhibited rapid convergence of the GCR
algorithm for all the electromechanical examples considered
in this paper, we show in the results section that the multilevel
Newton technique can be sensitive to the choice of the
parameter employed.

TABLE II
COMPARISON OFRELAXATION AND MULTILEVEL NEWTON ALGORITHMS FOR

NUMBER OF ITERATIONS AND CPU(S) FOR A BEAM AND GROUND PLANE EXAMPLE

# Iterations CPU(s)
Bias

Relaxation
Multilevel
Newton

Relaxation
Multilevel
Newton

1.0 6 3 3511.4 5466.7
1.5 8 3 4753.5 5864.4
2.0 13 4 7693.5 7612.8
2.25 20 4 11 756.6 7797.9
2.35 36 5 20 821.9 10 046.8
2.38 75 5 42 749.0 9958.6

Fig. 9. Convergence of relaxation and multilevel Newton algorithms just
before pull-in for the beam and ground-plane example.

Remarks:

1) An approach that would eliminate the nonlinear elasto-
static and electrostatic solves in each GCR iteration can
be developed by defining the residualin algorithm 2
to be equal to the elastostatic and electrostatic residuals
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Fig. 10. Two silicon bars at a potential difference of 0 V.

Fig. 11. Deflection of the bar (not to scale) for an applied bias of 2000 V.

(see [2]). This is, however, not a black-box approach and
one needs to develop in-house code in order to employ
this approach.

2) The definition of the residual given in (3) considers the
out-of-balance displacements and charges. A multilevel
Newton method can also be implemented for out-of-
balance forces as the residual. However, care should be
exercised as multilevel Newton methods can be very
sensitive to the choice of the matrix-free parameter if
the residual is not scaled properly.

3) The multilevel Newton technique is guaranteed to con-
verge as long as the initial conditions are not very far
off from the final solution. This is the same difficulty
with the Newton technique [11]. In order to compute
displacements for high applied voltages, zero initial
conditions may not converge, in which case voltage
stepping can be applied.

4) The cost per iteration of a multilevel Newton method
is typically higher when compared to the relaxation
method.

V. RESULTS

Numerical results are presented for three examples: beam
over a ground plane, two silicon bars positioned perpendicular
to each other, and a comb drive structure. A Young’s modulus
of 169 Gpa and a Poisson’s ratio of 0.3 is used for all the
examples. The performance of the multilevel Newton and
relaxation algorithms is examined for all the examples. In
particular, the convergence characteristics and the simulation

TABLE III
COMPARISON OFRELAXATION AND MULTILEVEL NEWTON ALGORITHMS FOR

NUMBER OF ITERATIONS AND CPU(s)FOR THE CROSSBARS EXAMPLE (A *
INDICATES THAT THE ALGORITHM FAILS TO CONVERGE FOR THEBIAS)

# Iterations CPU(s)
Bias

Relaxation
Multilevel
Newton

Relaxation
Multilevel
Newton

200.0 6 3 449.4 1255.8
400.0 11 4 1154.2 1738.9
600.0 27 4 3666.8 2583.4
700.0 73 3 10 984.2 1992.1
750.0 200 3 44 447.2 1966.1
800.0 * 3 * 1857.7

times are compared. All computations are performed on a Dec
Alpha computer.

A. Beam Examples

Two beam examples over a ground plane structure are
considered: the beams are of different dimensions and the
convergence characteristics of the relaxation and multilevel
Newton algorithms are different and these are pointed out in
the results.

Example 1: The beam example considered here is 500m
long, 50 m wide, 14.35 m thick, and positioned 1 m
above the ground plane. Fig. 2 shows a top view of the
beam example. The beam is discretized into 50 parabolic
elements, and the ground plane is discretized into 250 four-
node elements. When a positive potential with reference to the
ground plane is applied on the beam, the beam deflects toward
the ground plane because of the electrostatic force. As the
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(a)

(b)

Fig. 12. Convergence of relaxation and multilevel Newton algorithms for the
silicon bars example: (a) applied bias is 750 V and (b) applied bias is 800 V.

potential difference increases, the tip of the beam approaches
the ground plane and touches the ground plane for a certain
bias defined as the pull-in voltage. The pull-in voltage for the
beam considered here is 17.24 V.

Fig. 3 compares the peak deflection obtained from the
relaxation and multilevel Newton algorithms. The results are
identical verifying the accuracy of the multilevel Newton
solver. The deflection of the beam for an applied bias of
17.23 V is shown in Fig. 4.

The performance of the relaxation and multilevel Newton
algorithms for the beam example is summarized in Table I.
Observe that the multilevel Newton algorithm takes fewer iter-
ations and is much faster compared to the relaxation algorithm
for tightly coupled cases. Fig. 5 compares the convergence
of the relaxation and multilevel Newton algorithms for the
beam and ground plane example. Note that closer to pull-in
the relaxation algorithm converges slowly, but the coupled
algorithm converges rapidly. The slow convergence of the
relaxation algorithm, near pull-in, is due to the increased
coupling between elastostatic and electrostatic systems. As the
coupled algorithm accurately accounts for all the coupling it
exhibits rapid convergence behavior.

Fig. 13. Comb drive example.

The multilevel Newton algorithm employs a matrix-free
approach to compute the matrix–vector product required in
the GCR algorithm. The selection of a matrix-free parameter
to accurately compute the matrix–vector product is discussed
in Section IV. Specifically, the matrix-free parameter involved
two coefficients ( ), and their choices were given as

and . While the convergence of the GCR
algorithm is not sensitive to the value of, Fig. 6 indicates
that the GCR algorithm can converge slowly if the coefficient
is picked as instead of . This is not very
surprising as matrix-free methods can be sensitive to the choice
of the matrix-free parameter. The performance of the matrix-
free method can be improved significantly by considering
nonconstant values of the parameter. For example, as shown
in Fig. 6, when the residual stops to decrease, the value of
parameter can be changed for the next iteration so that the
residual starts to decrease again. We are, however, not aware of
a mathematically elegant way to adaptively change the value
of parameter so the residual decreases monotonically.

Example 2: The beam structure considered is 80m long,
10 m wide, 0.5 m thick, and positioned 0.7m above the
ground plane. Fig. 7 shows a top view of the beam example.
The pull-in voltage for the beam considered here is 2.39 V. The
beam is discretized into 200 parabolic elements (1002 1
along length, width, and thickness, respectively) and the
ground plane is discretized into 624 four-node elements. The
deflection of the beam at 2.38 V, just before pull-in, is shown
in Fig. 8.

The comparison of relaxation and multilevel Newton algo-
rithms for the entire bias sweep is summarized in Table II. As
the bias voltage approaches pull-in, the relaxation algorithm
converges slowly or fails to converge due to the increased
coupling between elastostatic and electrostatic equations. The
multilevel Newton algorithm, on the other hand, converges
faster even as we approach pull-in. Comparison of the sim-
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(a) (b)

Fig. 14. Deformation of the comb (not to scale) for an applied bias of 85 V. Shown on the left is the complete structure, and on the right is just the comb.

ulation times reveals that the multilevel Newton algorithm
takes a little longer as compared to the relaxation algorithm for
low bias voltages. However, closer to pull-in, the multilevel
Newton algorithm takes very few iterations and is much
faster. To predict the pull-in voltage for the beam structure,
relaxation algorithm takes a total of 91285.9 s while the
coupled multilevel Newton algorithm takes 46 747.2 s. Hence,
the multilevel Newton algorithm is about two times faster than
the relaxation algorithm for this example. The convergence of
the multilevel Newton and relaxation algorithms for an applied
bias of 2.38 V is shown in Fig. 9.

B. Cross Bars Example

The cross bars example consists of two silicon bars posi-
tioned as shown in Fig. 10. The beam positioned horizontally
is the movable part and is positioned 1m above the fixed
beam in the direction. The left end of the horizontal beam
is fixed, so that when a potential is applied on the movable
beam, the tip of the movable beam deflects in thedirection.
The movable beam is discretized with 30 parabolic elements
and the fixed beam is discretized with 30 linear elements. The
deflection of the beam for a potential difference of 2000 V is
shown in Fig. 11. Note that this solution is obtained with the
multilevel Newton approach and the relaxation algorithm does
not converge for a potential difference of more than 750 V.

The performance of the relaxation and multilevel Newton al-
gorithms for the cross bars example is summarized in Table III.
The relaxation algorithm fails to converge for a potential dif-
ference of more than 750 V across the bars. The convergence
of the relaxation and multilevel Newton algorithms for 750-V
potential difference is shown in Fig. 12(a). Even after 200
iterations, the relaxation algorithm fails to converge to less
than three orders of magnitude. Fig. 12(b) shows the rapid
convergence of the multilevel Newton algorithm and the break
down of the relaxation algorithm for an applied bias of 800 V.

Table III indicates that the multilevel Newton algorithm is
very efficient as compared to the relaxation algorithm. For
an applied bias of 700 V, the multilevel Newton algorithm is
about 5.5 times faster, and for an applied bias of 750 V, the
multilevel Newton algorithm is about 23 times faster compared
to the relaxation algorithm.

C. Comb Drive Example

The comb example consists of a deformable comb structure,
a drive structure, and a ground plane. As shown in Fig. 13, the
F-shaped finger structure is the movable comb, the E-shaped
finger structure is the drive, and the rectangular-shaped struc-
ture is the ground plane. The comb is discretized into 172
parabolic elements, the drive is discretized into 144 linear
bricks, and the ground plane is discretized into 2688 four-node
elements. When a positive potential is applied on the drive
structure, and zero potential on the comb and the ground plane,
the comb structure deforms out of plane. The deformation of
the comb structure for an applied bias of 85 V is shown in
Fig. 14. Note that only the comb structure deforms and the
drive and the ground plane do not move.

A comparison of the relaxation and multilevel Newton al-
gorithms for the comb example is summarized in Table IV. At
low voltages, the deflection of the comb is small, the coupling
between the electrical and mechanical systems is weak and
the relaxation algorithm works very well. At low voltages, the
multilevel Newton algorithm takes fewer iterations compared
to the relaxation algorithm but the simulation time for the
multilevel Newton algorithm is a little longer. For higher
voltages, the multilevel Newton algorithm converges much
faster compared to the relaxation algorithm. For a bias of 80 V,
the multilevel Newton algorithm is about 7.7 times faster.
The convergence of the relaxation and multilevel Newton
algorithms at 80-V bias is shown in Fig. 15. For an application
of 85 V on the drive, the relaxation algorithm fails to converge
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TABLE IV
COMPARISON OFRELAXATION AND MULTILEVEL NEWTON ALGORITHMS FOR

NUMBER OF ITERATIONS AND CPU(S) FOR A COMB DRIVE EXAMPLE (A *
INDICATES THAT THE ALGORITHM FAILS TO CONVERGE FOR THEBIAS)

# Iterations CPU(s)
Bias

Relaxation
Multilevel
Newton

Relaxation
Multilevel
Newton

25.0 7 3 3595.4 5802.2
50.0 16 4 9138.0 10 195.1
75.0 70 4 42 160.3 12 053.2
80.0 142 3 81 827.0 10 660.4
85.0 * 3 * 10 767.8

Fig. 15. Comparison of convergence of relaxation and multilevel Newton
algorithms for a comb example at an applied bias of 80 V.

Fig. 16. Comparison of convergence of relaxation and multilevel Newton
algorithms for a comb example at an applied bias of 85 V.

and the multilevel Newton algorithm converges very rapidly
and takes only three iterations. This is illustrated in Fig. 16.

VI. CONCLUSION

In this paper, we presented a matrix-free-based multilevel
Newton coupled algorithm for 3-D electromechanical analysis.
Similar to the relaxation algorithm, the multilevel Newton
algorithm employs repeated black-box calls to elastostatic and

electrostatic analysis. While the relaxation algorithm fails to
converge for tight coupling between mechanical and electri-
cal domains, the multilevel Newton algorithm is shown to
converge very rapidly. Numerical results are presented for
several electromechanical devices and CPU statistics indicate
that the multilevel Newton can be two orders of magnitude
faster than relaxation algorithm. The multilevel Newton al-
gorithm has been shown to be sensitive to the choice of the
matrix-free parameter. However, the choice of the matrix-free
parameter given in this paper works extremely well for coupled
electromechanical analysis. The multilevel Newton technique
described in this paper can be extended for other coupled
domains in MEMS such as microfluids, but the choice of the
matrix-free parameter may need more investigation.
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