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A Multilevel Newton Method for Mixed-Energy
Domain Simulation of MEMS
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Abstract—An efficient black-box algorithm for self-consistent ~ study a different actuation mechanism by replacing an existing
analysis of three-dimensional (3-D) microelectromechanical sys- gne. This flexibility can be achieved by constructing a black-

tems (MEMS) is described. The algorithm is matrix-free based 1,05 hased simulation tool that is convergent. Even though
and employs a multilevel Newton technique to solve the cou-

pled electromechanical equations. The new approach is shown thiS Paper reviews an approach for coupled electromechanical
to converge very rapidly and is much faster than relaxation analysis, the idea can be extended to include several coupled
algorithm for tightly coupled cases. While this paper focuses energy domains.

on cgupled elgc(tjromgchialn(jcal analylsis, th? grgpose_d a|9°_”th|r|” The numerical techniques employed for coupled electro-
can be extended to include severa couple omalins typlca Yy . . .
encountered in MEMS. [355] mechanical analysis have so far been based on relaxation

[5], [7], a form of surface-Newton method [3], [15], and a
tightly coupled Newton method [1], [2]. In particular, finite-
element-based elastostatic analysis and accelerated boundary-
element-based electrostatic analysis have been combined using
|. INTRODUCTION algorithms based on relaxation, a form of surface-Newton
LTHOUGH there are many microelectromechanical sy$r€thod, and a tightly coupled Newton method. The relaxation
tem (MEMS) designs that use piezoelectric, thermd€chnique is easy to program and can be trivially extended
pneumatic, and magnetic actuation, the most popular appro&@Hnclude several coupled domains. However, the relaxation
in present day microsensor and microactuator designs is to @®roach fails to converge for strong coupling between energy
electrostatic forces to move micromachined parts. Designél@mains. As a result, the relaxation technique is limited in
of such microelectromechanical devices need efficient, robuég, applicability for coupled-domain simulation. The surface-
and easily used computer simulation tools to investigate desfygwton technique is also a black-box approach, but requires
alternatives. Since most of the structures of interest are gé&aore effort to program than the relaxation technique. The key
metrically complicated, electromechanically coupled, and ai¢ea in the surface-Newton approach is to reduce the dimen-
inherently three-dimensional (3-D), microelectromechanicaionality of the coupled problem from 3-D to two-dimensional
CAD (MEMCAD) tool developers have been focused of2-D) and to employ a Newton technique to determine the sur-
improving the usability, efficiency, and robustness of couplddce node positions. In the case of electromechanical systems,
3-D electromechanical analysis [8], [14]. In particular, anabnce the surface node positions are known, the surface charges
ysis of 3-D electromechanical systems involves two couplehd the interior node positions can be determined by decoupled
domains: elastomechanics and electrostatics, which have ealgttrostatic and mechanical analysis, respectively. This ap-
been studied very extensively in the literature (see, e.g., [4] foroach requires modifications when the coupling between the
elastomechanics and [10] for electrostatics), and commeraggergy domains is not just through the surface, and, hence, is
simulation tools are available for each domain. This papeot a general approach for multiple energy-domain simulation.
proposes a new approach to construct a 3-D coupled electrst importantly, the surface-Newton approach is matrix-
mechanical simulation tool that is convergent, accurate, aftde based and is extremely sensitive to the choice of the
stable and utilizes already existing and commercially availabigatrix-free parameter. A tightly coupled Newton method can
simulation tools for each individual domain. The idea of e very quick and efficient when compared to the relaxation
construction of a MEMCAD tool from existing black boxes isand surface-Newton approaches for coupled electromechanical
important for very good reasons—many applications in MEM&nalysis. A tightly coupled Newton method, however, is
involve more than two coupled energy domains, and often it@®t black-box based and, hence, cannot be extended very
necessary to investigate more than one actuation mechanisiyiQrally to include several coupled domains. In this paper, we
Manuscript received June 15, 1998; revised January 5, 1999. This W&)r.[;esent. a new multilevel Newton appr.oach.for coupled-domain
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Fig. 1. lllustration of electromechanical coupling problem through a 2-D beam over a ground plane example: (a) applied voltage causes a bo#igye distri
and (b) the deformed structure with charge redistribution.

cal analysis is described in Section Ill. The multilevel Newtowhere R (u, V) denotes a black-box electrostatic solve to
scheme is introduced in Section IV, and numerical resukt®mpute the surface charges given the conductor geom-
are presented in Section V comparing the relaxation aetty u, and the applied potential¥’. The dependence of
multilevel Newton schemes. Finally, conclusions are given the electrostatic solve om is explained by the change in
Section VI. the conductor geometry as it undergoes deformation due
to electrostatic forces. The voltages are held fixed during
the coupled electromechanical analysis and in subsequent
] ] ) _discussion, the dependence of the electrostatic residu&l on
Electromechanical systems typically involve a mechanicglij| pe dropped, it being understood that voltages are specified
structure which undergoes deformation when subjected df the conductors for electrostatic analysis. The details of a

electrostatic actuation. The electromechanical coupling is Bbundary integral formulation to solve (2) are presented in
lustrated through a beam over a ground plane example showg;.

in Fig. 1. When a voltage is applied between the beam andcoypled electromechanical analysis requires the self-
the ground plane, a charge distribution is induced on tR@nsistent solution of (1) and (2). With the availability
surface of the beam. This charge distribution causes the begimpack-box solvers such as ABAQUS for mechanical
to deflect and the charge distribution on the beam surfaggalysis and FASTCAP for electrical analysis, coupled
changes because of the beam deflection. An equilibrium stgigctromechanical analysis has been implemented with the

is obtained when the forces due to the beam deflection agdck-hox algorithms discussed in the next two sections.
the surface charges balance each other. The beam deflection

and the electrostatic charges can be obtained by the solution of

coupled problems involving mechanical or elastostatic analysis I1l. RELAXATION TECHNIQUE

and electrical or electrostatic analysis. A simplest black-box approach for coupled electromechan-
The elastic deformation of the structure can be predict@shl analysis is the Gauss—Seidel relaxation algorithm [5]. In

by studying nonlinear elastostatics (or elastodynamics, as th& approach, the data is passed back and forth between black-

case may be). A commercial simulator such as ABAOU$ox electrostatic and elastostatic analysis programs until a

is typically employed for the finite-element solution of thesonverged solution is obtained. The relaxation procedure is

nonlinear elastostatic equations. Mathematically, the solutigommarized as given below

of the elastostatic equations can be represented as

Il. SELF-CONSISTENT ELECTROMECHANICAL ANALYSIS

Algorithm 1: Relaxation procedure for coupled

w= Ry (P(q)) (1) electromechanical analysis.
k=1 u*=0.
where Ry, (P(q)) is a black-box elastostatic solve to compute Repeat
the structural displacements given the pressur@, which Computeg® = Rg(u®).
is a function of the surface chargesThe details of a finite- Computeu™ 1) = Ry (P(q")).
element formulation to solve (1) are presented in [2]. Note that k=k+1;
the elastostatic equations are nonlinear and typically a Newton until [|u* — w1 < e and||g® — ¢* 1| < e.

method is employed to compute the displacement . .
Given the potentials on the conductors, the charges can b@s Is evident from the. above prgcedure, black-box ap-
predicted by an electrostatic analysis. Fast simulators, s&{g aches based on relaxat|c_)n can be implemented very qU|cI_<Iy
as FASTCAP [10] can be employed to accurately compu ar cogpled electromechanics and_for other co_upled domain
the surface charge distribution. FASTCAP employs a boun%pal_ySIS of MEMS. _However_, as W'I_l be shown in the results
ary integral formulation with multipole [9] or precorrectedsecuo.n’ the relaxation qlgorlthm fails to _converge.for strong

fast Fourier transform acceleration techniques [12]. Mathgt-)Upllng between electrical and mechanical domains.
matically, the solution of the electrostatic equations can be
represented as IV. MULTILEVEL NEWTON ALGORITHM

¢ = Rp(u, V) @) In this section, we present a new multilevel Newton
’ technique for black-box analysis of coupled electromechanical
LHibbit, Karlsson, and Sorenson, Inc., Providence, RI. equations. The proposed multilevel Newton technique is
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Fig. 2. Top view of a beam over a ground plane example.

matrix-free based, converges very rapidly, and does not 0
suffer from the drawbacks of the surface-Newton or relaxation S ki ey xation
algorithms. In the multilevel Newton technique, the coupled 0% » T
electromechanical equations are solved by employing a nested
Newton—Raphson method. The outer-Newton iteration solves
the following residual equation: g 015
_ ® 02
R, ) = {17 FE ). @ 3 N
& -025 ~ »

In (3), R (u) is the charge on the conductors for the conductor 03
geometry defined by, R,/(q) is the structural displacement
because of the electrostatic forces generated by the charge -0.35 \
and if bothg— R (u) andu— Ry, (q) are zero or approximately
zero, then the charge and the displacement are a self- IR T EETIEEY 6 18
consistent solution to the electromechanical system. Note that Voltage

because the residudl is defined in a certain way it can berig 3. comparison of peak deflections from relaxation and coupled algo-
computed using black boxes. The Jacobian for the residuims for a beam over a ground plane structure. Note that the two curves

given in (3) is given as overlap.
T(u, ) = 1 —9REg/0u ' ) for the solution of a linear system of equations is summarized
’ —JdRy /0q I below
Algorithm 3: GCR algorithm for solvingdz = b
With the definition of the residual and the Jacobian defined Make an initial guess to the solution?.
through (3) and (4), respectively, the multilevel Newton tech- Setp? =0 = b — Az".
nique for solving the coupled electromechanical equations can Setk = 0.
be summarized as follows: do {
if ||7|| < tol, returnz* as the solution.
Algorithm 2: Multilevel Newton technique for else{
coupled electromechanical analysis. (ApF, %)
k=1 u"=0¢*=0. azw-
Repeat 2R = ok
Solve PRl =k o Apk, ’
prHt =t 3T Bl
Tk, %) = {gq } = —R(u*, ¢*) for &,, 6. where{/; } are chosen so that
u (AphTt Apy =0for0<j <k
Setubtl =k + 6, Setk=FLk+ 1.
Setg"t! = ¢ + 4, ¥
E=k+1, 1 ’
until [lu* — ¥ < e and||g* — ¢* | <. The key step in the GCR algorithm is the computation of the
matrix—vector productip. The matrix—vector product required
The linear system of equations in algorithm 2 in the iterative solver can be computed using finite-difference
s approximation, i.e.,
J{ ‘ } - R
6’11,
will be solved by employing an iterative solver, such as a oR - Rutbxr)- R (5)

generalized conjugate residual (GCR) [6]. The GCR algorithm u * 0
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Fig. 4. Deflection of the beam (not to scale) for an applied bias of 17.23 V.

TABLE |

COMPARISON OF RELAXATION AND MULTILEVEL NEWTON
ALGORITHMS FOR NUMBER OF ITERATIONS AND CPU(S)

FOR A THICK BEAM AND GROUND PLANE EXAMPLE

# lterations CPU(s)
Bias Relaxation Multlilevel Relaxation Multlilevel
Newton Newton
2.0 4 2 283.5 698.7
4.0 5 3 381.0 967.0
6.0 6 3 507.7 1244.9
8.0 7 3 608.4 1079.6
10.0 8 3 710.2 1086.8
12.0 10 3 909.5 1086.7
14.0 13 4 1244.4 1530.7
16.0 20 4 2015.8 1499.0
17.0 41 5 4248.1 1957.0
17.20 94 5 9713.83 2145.7
17.23 200 7 20910.5 2823.5

Residual

0.1
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0.001

0.0001
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Fig. 5. Convergence of relaxation and multilevel Newton algorithms for a
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Fig. 6. Convergence of the GCR algorithm for coefficient= 0.01 and
coefficienta = 0.255.

where the matrix-free parametéris given as

[ I
a€(0.01,0.5) be(01,1)

6 = sign(u + r) + min <1 al|ull M)

For the definition ofR given in Algorithm 2, the matrix—vector
product can be computed as

5 by~ 5 (Re(u+08,) ~ Rp(w)
J{&q } ~ . (6)

bu— 5 (Ra(a +06,) — Rn(a))

wheref is a matrix-free parameter which is small and different
from zero, ¢, is an increment in the charge vector, ahdis

an increment in the displacement vector. Béthand é,, are
generated by the GCR algorithm. The choice gfiven above

is identical to the one proposed for the surface-Newton method
[15]. In the context of the surface-Newton method, the limits
on a andb have been obtained through numerical experiments.
Noting that the black-box elastostatic and electrostatic solves
Ry(q) and Rg(w) can be performed outside the GCR solver,

beam and ground plane structure: (a) applied bias is 17.20 V and (b) appl@a algorithm for CompUting the matrix-vector prOdUCt given
bias is 17.23 V.

in (6) is as follows:
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Fig. 7. Top view of a beam over a ground plane example.

Fig. 8. Deflection of the beam (not to scale) for an applied bias of 2.38 V.

Algorithm 4. Computation of the matrix—vector TABLE Il
product for each GCR iteration. COMPARISON OF RELAXATION AND MULTILEVEL NEWTON ALGORITHMS FOR
Assumeéu, 5(1’ andé are given, NUMBER OF I TERATIONS AND CPU(S) FOR A BEAM AND GROUND PLANE EXAMPLE
andu; = Ry(q), 1 = Re(u) are computed _ # lterations CPU(s)
outside GCR. Bias Relaxation M’\lljltllevel Relaxation M’\Lljlnlevel
Computeg, = Rp (v + 66,) by a black box enton cwton
puteg; = Lg w) DY 1.0 6 3 3511.4 5466.7
electrostatic solve. 15 8 3 47535 5864.4
Computeuy = Ry (g + 06,) by a black box 2.0 13 4 7693.5 7612.8
electrostatic solve. 2.25 20 4 11756.6 7797.9
Compute 2.35 36 5 20821.9 10046.8
P 2.38 75 5 42749.0 9958.6
1
) bqg — 9 (2 — q1) o1 J
J 0 _ . . --relaxation-
6u 0.01 : mutti-level: Newton:

O — - (u2 - ul)
0 0.001
As shown in algorithm 4, each iteration of the GCR solver re- [

quires two black-box solves. The first black-box saRg(u+ 00001 ¢
86,,) is to compute the charges on the perturbed geometry an_§
the second black-box solvBy; (g + 66,) is to compute the 2
displacements given perturbed electrostatic forces. Since the 1e-06
elastostatic equations are nonlinear, a Newton technique is
employed to compute the displacements. The inner Newton
loop within each GCR iteration and the outer Newton loop le-08
to solve the coupled electromechanical equations makes this
approach a multilevel Newton technique. le-09 ]'0 2'0 3'0 4'0 510 6'0 7'0 %0

The coefficientse and & in the matrix-free parameter def- # Iterations
inition can be picked precisely for the multilevel NeWtOI‘hg_ 9. Convergence of relaxation and multilevel Newton algorithms just
technique. Specifically, a choice af = 0.01 andb = 0.1 before pull-in for the beam and ground-plane example.
are employed for the multilevel Newton technique. While
this choice of# exhibited rapid convergence of the GCR Remarks:
algorithm for all the electromechanical examples consideredl) An approach that would eliminate the nonlinear elasto-
in this paper, we show in the results section that the multilevel  static and electrostatic solves in each GCR iteration can
Newton technique can be sensitive to the choice of the be developed by defining the residualin algorithm 2
parametera employed. to be equal to the elastostatic and electrostatic residuals

le-05 &

le-07
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Fig. 10. Two silicon bars at a potential difference of 0 V.
BB
Fig. 11. Deflection of the bar (not to scale) for an applied bias of 2000 V.

(see [2]). This is, however, not a black-box approach and

this approach.

TABLE 1lI
one needs to develop |n_house Code |n Order to emplo)pOMPARISON OF RELAXATION AND MULTILEVEL NEWTON ALGORITHMS FOR

NUMBER OF ITERATIONS AND CPU(S)FOR THE CROSSBARS EXAMPLE (A *
INDICATES THAT THE ALGORITHM FAILS TO CONVERGE FOR THEBIAS)

2) The definition of_the residual given in (3) conS|der§ the T Terations CPUE)

out-of-balance displacements and charges. A multilevel pgjss , Multilevel , Multilevel
. Relaxation Relaxation

Newton method can also be implemented for out-of- Newton Newton
balance forces as the residual. However, care should_he 200.0 6 3 449.4 1255.8
exercised as multilevel Newton methods can be very 688'8 ; j ;égg'g gggj
sensmvg to t.he choice of the matrix-free parameter #f—g55 73 3 109842 1992 1
the residual is not scaled properly. 750.0 200 3 44447 2 1966.1

3) The multilevel Newton technique is guaranteed to con- 800.0 * 3 * 1857.7

4)

verge as long as the initial conditions are not very far

off from the final solution. This is the same difficultyjmes are compared. All computations are performed on a Dec

with the Newton technique [11]. In order to comput%pha computer.

displacements for high applied voltages, zero initial

conditions may not converge, in which case voltagk gesm Examples

stepping can be applied.

The cost per iteration of a multilevel Newton method TWe beam examples over a ground plane structure are

is typically higher when compared to the relaxatiogonsidered: the beamg are of different dl_mensmns an.d the

method. convergence characteristics of the relaxation and multilevel
Newton algorithms are different and these are pointed out in
the results.

V. RESULTS Example 1: The beam example considered here is 500

Numerical results are presented for three examples: bebong, 50 pm wide, 14.35m thick, and positioned Ium
over a ground plane, two silicon bars positioned perpendicukdove the ground plane. Fig. 2 shows a top view of the
to each other, and a comb drive structure. A Young’s modulbeam example. The beam is discretized into 50 parabolic
of 169 Gpa and a Poisson’s ratio of 0.3 is used for all thdements, and the ground plane is discretized into 250 four-
examples. The performance of the multilevel Newton amtbde elements. When a positive potential with reference to the
relaxation algorithms is examined for all the examples. Iground plane is applied on the beam, the beam deflects toward
particular, the convergence characteristics and the simulatibe ground plane because of the electrostatic force. As the
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Fig. 13. Comb drive example.
0.01
T 0.001 . . .
2 The multilevel Newton algorithm employs a matrix-free
& 0.0001 approach to compute the matrix—vector product required in
1e-05 the GCR algorithm. The selection of a matrix-free parameter
to accurately compute the matrix—vector product is discussed
1e-06 in Section IV. Specifically, the matrix-free parameter involved
1e-07 two coefficients ¢, &), and their choices were given as=
108 L 0.01 and b = 0.1. While the convergence of the GCR
e

0 10 20 30 40 S50 60 70 80 90 100 algorithm is not sensitive to the value 6f Fig. 6 indicates
# Iterations that the GCR algorithm can converge slowly if the coefficient
(b) is picked ase = 0.255 instead ofa = 0.01. This is not very
Fig. 12. Convergence of relaxation and multilevel Newton algorithms for tHBUrprising as matrix-free methods can be sensitive to the choice
silicon bars example: (a) applied bias is 750 V and (b) applied bias is 800 §f the matrix-free parameter. The performance of the matrix-
free method can be improved significantly by considering
potential difference increases, the tip of the beam approacmesiconstant values of the parameteFor example, as shown
the ground plane and touches the ground plane for a certainFig. 6, when the residual stops to decrease, the value of
bias defined as the pull-in voltage. The pull-in voltage for thearameter can be changed for the next iteration so that the
beam considered here is 17.24 V. residual starts to decrease again. We are, however, not aware of
Fig. 3 compares the peak deflection obtained from tleemathematically elegant way to adaptively change the value
relaxation and multilevel Newton algorithms. The results a@f parameter: so the residual decreases monotonically.
identical verifying the accuracy of the multilevel Newton Example 2: The beam structure considered is 8& long,
solver. The deflection of the beam for an applied bias 4D ;m wide, 0.5um thick, and positioned 0.Zm above the
17.23 V is shown in Fig. 4. ground plane. Fig. 7 shows a top view of the beam example.
The performance of the relaxation and multilevel Newtomhe pull-in voltage for the beam considered here is 2.39 V. The
algorithms for the beam example is summarized in Tabledeam is discretized into 200 parabolic elements (¥0P x 1
Observe that the multilevel Newton algorithm takes fewer itealong length, width, and thickness, respectively) and the
ations and is much faster compared to the relaxation algorittground plane is discretized into 624 four-node elements. The
for tightly coupled cases. Fig. 5 compares the convergengeflection of the beam at 2.38 V, just before pull-in, is shown
of the relaxation and multilevel Newton algorithms for thén Fig. 8.
beam and ground plane example. Note that closer to pull-inThe comparison of relaxation and multilevel Newton algo-
the relaxation algorithm converges slowly, but the couplaithms for the entire bias sweep is summarized in Table Il. As
algorithm converges rapidly. The slow convergence of ttlibe bias voltage approaches pull-in, the relaxation algorithm
relaxation algorithm, near pull-in, is due to the increasembnverges slowly or fails to converge due to the increased
coupling between elastostatic and electrostatic systems. As toeipling between elastostatic and electrostatic equations. The
coupled algorithm accurately accounts for all the coupling multilevel Newton algorithm, on the other hand, converges
exhibits rapid convergence behavior. faster even as we approach pull-in. Comparison of the sim-
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Fig. 14. Deformation of the comb (not to scale) for an applied bias of 85 V. Shown on the left is the complete structure, and on the right is just the comb.

ulation times reveals that the multilevel Newton algorithrifable 1l indicates that the multilevel Newton algorithm is
takes a little longer as compared to the relaxation algorithm feery efficient as compared to the relaxation algorithm. For
low bias voltages. However, closer to pull-in, the multilevedn applied bias of 700 V, the multilevel Newton algorithm is
Newton algorithm takes very few iterations and is muchbout 5.5 times faster, and for an applied bias of 750 V, the
faster. To predict the pull-in voltage for the beam structurejultilevel Newton algorithm is about 23 times faster compared
relaxation algorithm takes a total of 91285.9 s while thi the relaxation algorithm.

coupled multilevel Newton algorithm takes 46 747.2 s. Hence,
the multilevel Newton algorithm is about two times faster tha
the relaxation algorithm for this example. The convergence of

the multilevel Newton and relaxation algorithms for an applied The comb example consists of a deformable comb structure,
bias of 2.38 V is shown in Fig. 9. a drive structure, and a ground plane. As shown in Fig. 13, the

F-shaped finger structure is the movable comb, the E-shaped
finger structure is the drive, and the rectangular-shaped struc-

B. Cross Bars Example ture is the ground plane. The comb is discretized into 172

The cross bars example consists of two silicon bars poparabolic elements, the drive is discretized into 144 linear
tioned as shown in Fig. 10. The beam positioned horizontallyicks, and the ground plane is discretized into 2688 four-node
is the movable part and is positioneduin above the fixed elements. When a positive potential is applied on the drive
beam in thez direction. The left end of the horizontal beanstructure, and zero potential on the comb and the ground plane,
is fixed, so that when a potential is applied on the movabilee comb structure deforms out of plane. The deformation of
beam, the tip of the movable beam deflects in thdirection. the comb structure for an applied bias of 85 V is shown in
The movable beam is discretized with 30 parabolic elemeritgy. 14. Note that only the comb structure deforms and the
and the fixed beam is discretized with 30 linear elements. THeve and the ground plane do not move.
deflection of the beam for a potential difference of 2000 V is A comparison of the relaxation and multilevel Newton al-
shown in Fig. 11. Note that this solution is obtained with thgorithms for the comb example is summarized in Table IV. At
multilevel Newton approach and the relaxation algorithm doésw voltages, the deflection of the comb is small, the coupling
not converge for a potential difference of more than 750 V.between the electrical and mechanical systems is weak and

The performance of the relaxation and multilevel Newton alkhe relaxation algorithm works very well. At low voltages, the
gorithms for the cross bars example is summarized in Table Ihhultiievel Newton algorithm takes fewer iterations compared
The relaxation algorithm fails to converge for a potential difto the relaxation algorithm but the simulation time for the
ference of more than 750 V across the bars. The convergenugltilevel Newton algorithm is a little longer. For higher
of the relaxation and multilevel Newton algorithms for 750-Woltages, the multilevel Newton algorithm converges much
potential difference is shown in Fig. 12(a). Even after 20faster compared to the relaxation algorithm. For a bias of 80 V,
iterations, the relaxation algorithm fails to converge to leshe multilevel Newton algorithm is about 7.7 times faster.
than three orders of magnitude. Fig. 12(b) shows the rapithe convergence of the relaxation and multilevel Newton
convergence of the multilevel Newton algorithm and the brealtgorithms at 80-V bias is shown in Fig. 15. For an application
down of the relaxation algorithm for an applied bias of 800 \bf 85 V on the drive, the relaxation algorithm fails to converge

Comb Drive Example
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COMPARISON OF RELAXATION AND MULTILEVEL NEWTON ALGORITHMS FOR

TABLE IV

NUMBER OF ITERATIONS AND CPU(S) FOR A ComB DRIVE EXAMPLE (A *
INDICATES THAT THE ALGORITHM FAILS TO CONVERGE FOR THEBIAS)

307

electrostatic analysis. While the relaxation algorithm fails to
converge for tight coupling between mechanical and electri-
cal domains, the multilevel Newton algorithm is shown to
converge very rapidly. Numerical results are presented for
several electromechanical devices and CPU statistics indicate
that the multilevel Newton can be two orders of magnitude
faster than relaxation algorithm. The multilevel Newton al-
gorithm has been shown to be sensitive to the choice of the
matrix-free parameter. However, the choice of the matrix-free
parameter given in this paper works extremely well for coupled
electromechanical analysis. The multilevel Newton technique
described in this paper can be extended for other coupled
domains in MEMS such as microfluids, but the choice of the

# Iterations CPU(s)
Bias Relaxation Multilevel Relaxation Multilevel
Newton Newton
25.0 7 3 3595.4 5802.2
50.0 16 4 9138.0 10195.1
75.0 70 4 42160.3 12053.2
80.0 142 3 81827.0 10660.4
85.0 * 3 * 10767.8
1
0.1
0.01
0.001
=
=
2 0.0001
]
o
1e-05
le-06 1]
1e-07
le-0g L ] I ] 1 1 1 1 : 2]

0 20 40 60 80
# Iterations

100 120 140 160

Fig. 15. Comparison of convergence of relaxation and multilevel Newtor{3]
algorithms for a comb example at an applied bias of 80 V.

(4]

(5]

(6]

(7]

Residual

(8]

(9]
[20]

# Tterations

[11]
Fig. 16. Comparison of convergence of relaxation and multilevel Newton
algorithms for a comb example at an applied bias of 85 V. [12]

[13]
and the multilevel Newton algorithm converges very rapidly
and takes only three iterations. This is illustrated in Fig. 16114]

VI. CONCLUSION

In this paper, we presented a matrix-free-based multileviab)
Newton coupled algorithm for 3-D electromechanical analysis.
Similar to the relaxation algorithm, the multilevel Newton
algorithm employs repeated black-box calls to elastostatic and

matrix-free parameter may need more investigation.
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