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Abstract

In this paper we present a fast and efficient program
for extraction of the frequency dependent inductance
of structures with permeable materials. The program,
FastMag, uses a magnetic surface charge formulation,
efficient techniques for evaluating the required integrals,
and a preconditioned GMRES method to solve the re-
sulting linear system. Results from examples are pre-
sented to demonstrate the accuracy and versatility of
the FastMag program.

1 Introduction

Permeable materials have been used in many of today’s
Micro-Electro-Mechanical Structures, MEMS, such as,
micromotors [1], planar inductors [2, 3], and magnetic
force based actuators [4, 5] to increase the device’s in-
ductance, and consequently, the force generated by the
device. Permeable materials have been also used in
magnetic micro power applications to miniaturize vari-
ous electronic devices including inductors and transform-
erg [6, 7).

A common approach to extract the inductance for
these structures is to apply a finite difference or finite
element method to the governing equations in differen-
tial form. Such an approach generates a global mesh for
all parts of the analyzed structure and for the surround-
ing external space. This causes the number of unknowns
to increase significantly, and thus, a very large linear
system can be generated, as shown in Figure 1. Solv-
ing this large generated linear system requires excessive
memory and CPU time, making the analysis of complex
3-D permeable structures impractical.

In this paper, we develop a fast algorithm for effi-
cient extraction of the frequency dependent inductance
of structures with magnetic materials. The approach
used is based on including fictitious magnetic surface
charges [8, 9, 10]. The approach also avoids comput-
ing fields inside the permeable materials, as these small
fields are difficult to compute accurately due to numer-
ical cancellation errors. This approach is more efficient
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Figure 1: Finite difference discretization of all of space

than finite element methods as it only requires discretiza-
tion of the current carrying conductors and the surfaces
of the magnetic materials. :

In Section 2, the integral formulation and integral eval-
uation schemes used in FastMag are reviewed. In Sec-
tion 3, we described a preconditioned GMRES method
which is up to an order of magnitude faster than a stan-
dard direct method. In Section 4, we present compu-
tational experiments that demonstrate the convergence
characteristics and the accuracy of our approach. Fi-
nally, in Section 5, we summarize the work presented in
the paper.

2 Integral Formulation Backgrou:hd
2.1 Equivalent Magnetic Problem

For many problems in MEMS, one can assume that re-
gions that contain permeable materials are separated
from current carrying conductors, as shown in Figure 2.
For such problems, it is possible to use a fictitious mag-
netic charge method in which the conductors are divided
into filaments over which the current is assumed con-
stant, and the permeable material surface is divided into
panels over which the magnetic charge is assumed con-
stant {8]. Using this approach the magnetic problem
becomes equivalent to the free space problem, as shown
in Figure 3.



Figure 2: Current sources are outside the magnetic ma-
terial
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Figure 3: Linear magnetic material can be represented
with an equivalent free space problem with magnetic sur-
face charges distributed on the magnetic material inter-
faces. The interface is discretized into panels on which
charge is assumed constant

479

The fictitious magnetic charge can be determined from
the equation for the jump in the normal magnetic field
at the permeable material interface as in,

2m(pe +1) _ Jr)dv' - n(r)
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where py, is the fictitious surface cha.rge density, Seore 18
the surface of the magnetic material, y, is the magnetic
material’s relative permeability, J is the current density,
and n(r) is the unit vector normal to the magnetic ma-
terial surface calculated at point r. Note that the second
term of (1) represents the normal magnetic field due to
currents, and the third term represents the normal mag-
netic field due to fictitious magnetic charges.

The conductor current satisfies an integral equation
derived using a modified vector potential which includes
the effect of the magnetic material on the current distri-
bution as in,
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where Sy, is the surface of the permeable material, and
¢ is the scalar potential. Note that the second term
and the third term of (2), divided by jwyu, represent the
vector potential due to the currents and the the vector
potential due to fictitious magnetic charges, respectively.

In order to solve these two coupled integral
equations(1) and (2), we discretized the surface of the
magnetic material into panels and the current carrying
conductors into filaments that are then combined into
loops. By using these loop and panel basis functions to
represent the currents and charges, we converted (1) and
(2) to the following system that could be solved numer-

ically [8]:
[]=[7] e

where Iy, V, and g,, are the loop current vector, loop
voltage vector, and ¢y, is the fictitious magnetic charge
density vector, respectively.

JwLp(w)

(Hn, —1I)

[ R{w) + jwL s(w)
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2.2 Evaluation of R and L;
A general element in the loop resistance sub-matrix R
can be directly computed using

—f Li-1edL
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f:



Figure 4: Evaluating [Hns],;, the magnetic field due to
current mesh %, at point r;, dotted with the unit normal
to panel k, ng.

A general element in the loop inductance sub-matrix
#fil. in mesh § .

Lj is given by
£
f=1 Ln' V;

4ray

where o is the conductivity, V} is the volume of filament
f in mesh §, }; is the unit length along the length of the
i** mesh, ay is the cross sectional area of filament f, If is
the unit length along the length of the filament, f, and
L; is the length of the i** mesh.

The elements in (5) can be computed using analytical
formulas for partial mutual inductance and partial self
inductance of rectangular filaments {11].

Li-Ie

7=

Ly = dv'dL (5)

2.3 Evaluation of Hn, and Hn,

A general element in the sub-matrix Hn;s in the linear
system (3), [Hn ], is the magnetic field due to current
mesh i, at point r;, dotted with the unit normal to panel
k, ng, as shown in Figure 4. [Hnj],; is the sum of line
integrals over all the filaments that constitute mesh i, as
in

#fil. in mesh i

- jwﬂo Br — 1
Hn sl = fz=:1 Gt = Syl
#fil. in mesh i 1
/ V-——-—-—-—T X lt‘ le(ﬂ' (6)
f=1 Lfﬁ, F |T'¢ -r l

where l¢ is the unit vector along the length of filament f.
Each element, Gy, in the summation in (6) can be cal-
culated analytically by transforming each filament into
the panel coordinates [8].

A general element in the sub-matrix Hn, in the linear
system (3), [Hn,],,, is the magnetic field due to the
magnetic charge of | panel k, dotted with the unit normal
to panel p, n(p), is given by,

fs, fs Vh‘_j;ﬁ - n(p)dSkdS,
(M
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Figure 5: A non Piercing current loop surface. The sur-
face should avoid cutting the permeable material in order
to avoid numerical cancellation errors,

where S; and S; are the surfaces of panels k and p,
respectively, and a, is the area of panel k. The above
integral is approximated using a qualocation scheme [9].

2.4 Evaluating [L,],,

The matrix element [L,],; corresponds to the impact of
magnetic charge on panel k¥ on the current in loop i and
is given by:

1

— ! I

Jwpo
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n{r)dS, (8)

Sloop i |T'
where n(r) is the normal to the surface of current loop ¢ at
point r and Si,0p i is the non-piercing surface bounded by
the filaments in loop . In order to avoid numerical can-
cellation errors, the surface should be non-piercing. That
is, the surface should not penetrate the magnetic mate-
rial, as shown in Figure 5. Constructing “non-piercing”
surfaces for arbitrary geometries of conductors and per-
meable material structures can be very difficult, but the
problem can be avoided by converting the surface inte-
gral into a line integral [10].

3 Preconditioned GMRES

Gaussian elimination is a standard method to solve linear
gystems such as the one in (3). Since (3) is dense, Gaus-
sian elimination is computationally very expensive as it
requires order n® operations, where n is the number of
unknowns. For complicated MEMS structures, n is more
than several thousands, and therefore, dense Gaussian
elimination becomes too expensive. For this reason we
used the krylov-subspace based iterative method GM-
RES [12]. The computational cost of using GMRES is
order kn?, where k is the number of iterations needed to
achieve convergence. Clearly GMRES will be less expen-
sive if few iterations are needed to achieve convergence.



As is well-known, GMRES convergence can be signif-
icantly accelerated by using a preconditioner. A good
preconditioner should be an accurate approximation of
the inverse of the system matrix yet be inexpensive to
compute. We used a right preconditioner matrix, P, with
which we were effectively using GMRES to solve

( =[] o
for the unknown vector z. We then compute [ IEM ]

&
using the matrix vector product, Pz.

Since the individual elements in the sub-matrix Hn,, in
{3) decay like X, the sub-matrix [Hn, — I] has its largest
entries on the diagonal. Note that the diagonal elements
of Hn, are zeros, thus, the identity matrix produces a
good approximation of the sub-matrix {Hn, — I]. The
elements of coupling sub-matrix Hn; are the field values
on the panels. These values are, at largest, of the same
order as the elements of Hn, which is dominated by the
identity. Moreover, the elements of the sub-matrix jwL,
decay like % which is much faster than the 1 decay of
the elements of jwL ;. Thus, the sub-matrices Hn; and

jwL, are small and are ignored in the preconditioner.
The above argument suggests that a good P would be:

% 5]

where [p~! is an approximation to the sub-matrix
[R(w) + jwLs(w)]™". The sub-matrices R and L; are
related to the partial inductance model [13, 14, 15] via
the following equations

R{w} + jwlL j(w)
Hnjy

jwLy(w)
(Hn, - I)

0
-1

ip—?

P 0

(10)

L=ML,M"
R= MR, M! (11)
where M is the sparse mesh matrix, Ly is the Ny 3 N
partial inductance matrix, with Ny is the total number of
filaments. R, is the Ny x N diagonal matrix of filament
DC resistances.

Note that Ip~! should be a good approximation to
[MRy(w)M? + juML,M*w)]™ . I we get a sparsified
approximation of L,, we can then get a sparse matrix
Ip, and thus a sparse preconditioner, P, using (10) will
be formed.

The simplest sparse approximation of L is the diag-
onal, but that approximation excludes the tight interac-
tion between clusters of filaments used to model the non-
uniform current distribution associated with the skin ef-
fect. To address this problem, the block diagonals of Ly
agsociated with different conductor sections are used as
a preconditioner [15].

481

150 ug

6um

8um

Figure 6: Coil surrounding u,. = 1000 cylinder.
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Figure 7: Convergence of GMRES using different pre-

conditioners, for the problem of the cylindrical inductor

with permeable core. The linear system size is 1765 by

1765.

4 Algorithm Results

In Figure 7, we show the convergence rate of the Fast-
Mag program when extracting the inductance of of the
cylindrical coil with permeable core shown in Figure 6.
We see that the section preconditioner converges faster
than the diagonal of L, method and that both of them
are much faster GMRES with no preconditioner.

Figure 7 shows the number of GMRES iterations
needed to extract the inductance of the cylindrical coil
with permeable core shown in Figure 6. As it is illus-
trated Figure 8, using a preconditioner significantly re-
duced the number of iterations in the GMRES algorithm.
A good preconditioner helps keep the number of itera-
tions almost constarit with the increase of the number of
unknowns, as it is the case for the section block diagonal
preconditioner.
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Figure 8: Effect of preconditioner on the number of it-
erations used in GMRES for the cylindrical inductor ex-
ample.
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Figure 9: Eigen values for the preconditioned system and
the un-preconditioned system. Note the many near-zero
eigen values for the un-preconditioned system

The faster convergence of GMRES when using the sec-
tion block diagonal preconditioner can be explained by
examining the eigen value distributions of the precondi-
tioned system matrix and the un-preconditioned system
matrix in Figure 9. The eigen values for the precon-
ditioned system are much more clustered than in the
un-preconditioned system. Moreover, there are many
more near-zero eigen values in the un-preconditioned sys-
tem. These near zero eigen values imply that the ma-
trix is ill conditioned, and therefore, GMRES converges
slowly [16).

We used the industrial example of a microfabricated
inductor in {17] to further test the convergence rate of
our preconditioned GMRES algorithm. The microfab-
ricated inductor is shown in Figure 10, 11. We used
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Figure 10: Side view of the microfabricated inductor

Figure 11: Top view of the multi layer core microfabri-
cated inductor '

the section block diagonal preconditioner to accelerate
the convergence rate of GMRES. For a resulting linear
system of 2905 x 2905, the section preconditioner signifi-
cantly improved the convergence compared to not using
a preconditioner, as shown in Figure 12. '

In Figure 13, we show the CPU time consumed when
solving the cylindrical inductor with the preconditioned
GMRES method and with the standard direct methods
such as Gaussian Elimination. Figure 13 shows that the
preconditioned GMRES method using the section pre-
conditioner is up to an order of magnitude faster than
standard Gaussian Elimination method.

An example to demonstrate the accuracy of the algo-
rithm is the standard test example of a spiral planar in-
ductor over a permeable material substrate. The tested
realistic spiral inductor in Figure 14 has a diameter of
280p, with a 10u by 10p cross section. The permeable
material substrate is 1500 by 15004, with 2004 as its
thickness. Figure 15 shows the variation of extracted
inductance with the permeability of the permeable sub-
strate. The inductance of the spiral inductor over a mag-
netic substrate increases as the permeability increases,
until it reaches an upper limit which is almost double
the value of the spiral inductance without a substrate.
This matches very well the theoretical analysis in [18].
Figure 16 shows the frequency response of the inductance
of the spiral inductor in Figure 14. Note the high fre-
quency inductance is lower than the low frequency one,
due to the skin effect.
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Figure 16: Inductance frequency response of the spiral
inductor over a magnetic substrate example. The sub-
strate has a relative permeability of 2000.

Figure 14: A spiral inductor over a magnetic substrate.
The spiral inductor has a diameter of 280y, with a 10u
by 10p cross section. The permeable material substrate
is 15004 by 15004, with 2004 as its thickness.
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5 Conclusions

. In this paper, we presented FastMag, a fast algorithm
to efficiently extract the frequency dependent inductance
for 3-D structures that contain permeable materials. The
algorithm uses a magnetic surface charge formulation
and efficient techniques for evaluating the required in-
tegrals. This algorithm avoids numerical cancellation
errors by calculating fields outside of the permeable ma-
terial. Computational results were presented to demon-
strate the accuracy and the speed of our algorithm. The
resulting system is solved iteratively using a precondi-
tioned GMRES method that is up to an order of magni-
tude faster than the standard direct method, and there-
fore, facilitate the analysis of complicated structures.

This work was supported by Synopsys Inc., and by
the MEMS Macromodeling Program of the Defense Ad-
vanced Research Projects Agency, the National Science
Foundation.
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