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ABSTRACT

In this paper we present an improvement to the fictitious
magnetic charge approach to computing inductances in the
presence of permeable materials. The improvement replaces
integration over a “non-piercing” surface with a line integral
and an efficient quadrature scheme. Eliminating the need to
generate non-piercing surfaces substantially simplifies han-
dling problems with general geometries of permeable mate-
rials. Computational results are presented to demonstrate
the accuracy and versatility of the new method.

Categories and Subject Descriptors

G.4 [Mathematical Software]: Algorithm design and anal-
ysis; G.1.2 [Approximation]: Approximation of surfaces
and contours

General Terms
Algorithms

1. INTRODUCTION

Improvements in fabrication technology is making it possi-
ble to use permeable materials in a variety of micromachined
devices (or MEMS), and designers are exploiting these mate-
rials to increase magnetic force or inductance while preserv-
ing small device size [1, 2, 3, 4, 5, 6, 7]. However, the pla-
nar nature of most micromachining technology implies that
designers can not simply wrap coils of wire around highly
permeable cores. Instead, the geometric freedom available
results in designs that are difficult to analyze analytically,
making numerical extraction tools essential.

One approach to computing inductance in the presence of
permeable materials is the fictitious magnetic charge method
[8, 9], in which permeable material interfaces are replaced
with fictitious sheets of magnetic charge. The fictitious mag-
netic charges are then determined by enforcing continuity of
normal magnetic fields at the permeable material interfaces.
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Figure 1: Current sources are outside the magnetic
material

The method is accurate, even for highly permeable materi-
als, because fields are never computed inside those perme-
able materials. However, there is also a difficulty. In crder
to use the fictitious magnetic charge method it is necessary
to construct a surface which bounds the current carrying
conductors and does not penetrate the permeable material.
Constructing “non-piercing” surfaces for arbitrary geome-
tries of conductors and permeable material structures is very
difficuls.

In this paper we show that the fictitious magnetic charge
method can be modified, eliminating the need for the non-
piercing surfaces. In Section 2, we briefly describe the in-
tegral formulation of the fictitious magnesic charge method
and its use of non-piercing surfaces. In Section 3, we present

a new method which uses line integrals and quadrature schemes.

In Section 4, we give computational results to demonstrate
the accuracy of our approach. Finally, in Section 5, we sum-
marize the work presented in the paper.

2. FORMULATION BACKGROUND

For many problems in MEMS, one can assume that the
permeable materials do not conduct current and are sep-
arated from conductors, as shown in Figure 1. For such
problems it is possible to derive an integral formulation for
the conductor currents based on introducing fictitious mag-
netic charge at permeable material interfaces [8]. Using this



Discretized

Original Problem Equivalent Problem

Equivalent Problem

Magnstic material

Figure 2: Linear magnetic material can be repre-
sented with an equivalent free space problem with
magnetic surface charges distributed on the mag-
netic material interfaces. The interface is discretized
into panels on which charge is assumed constant

approach the magnetic problem becomes equivalent to the
free space problem, as shown in Figure 2. The fictitious
magnetic charge can be determined from the equation for
the jump in the normal magnetic field at the permeable ma-
terial interface as in,

2n(pr +1) J(rdv' -n(r)
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where p., is the fictitious surface charge density, Score is the
surface of the magnetic material, g, is the magnetic ma-
terial’s relative permeability, J is the current density, and
n(r) is the unit vector normal to the magnetic material sur-
face calculated at point r. Note that the second term of (1)
represents the normal magnetic field due to currents, and
the third term represents the normal magnetic field due to
fictitious magnetic charges.

The conductor currents satisfy an integral equation de-
rived using a vector potential generated by the conductor
currents and the fictitious magnetic charges,
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where Sy, is the surface of the permeable material, and ¢
is the scalar potential. Note that the second term and the
third term of (2), divided by jwp, represent the vector po-
tential due to the currents and the the vector potential due
to fictitious magnetic charges, respectively.

In order to solve these two coupled integral equations (1)
and (2), the surface of the magnetic material is discretized
into panels and the current carrying conductors are sliced
into filaments that are then combined into loops. Using
these so-generated loop and panel basis functions converts
the integral equations (1) and (2) to a linear system of equa-

[ -1

where Ips, V, and g, are vectors of loop currents, loop volt-
ages, and fictitious magnetic charge densities, respectively.
The sub-matrices R, Ly, Hn, and Hn; are computed using
techniques described in [8, 9].
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Figure 3: A non Piercing current loop surface. The
surface should avoid cutting the permeable material
in order to avoid numerical cancellation errors.

2.1 Evaluating [L,),,

The matrix element [L,],, corresponds to the impact of
magnetic charge on panel k on the current in loop ¢ and is

given by:
1
fo T

loop i

Jwpo
a7
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where n(r) is the normal to the surface of current loop 7 at
point r and Sicop i is the non-piercing surface bounded by
the filaments in loop ¢. In order to avoid numerical cancel-
lation errors, the surface should be non-piercing. That is,
the surface should not penetrate the magnetic material, as
shown in Figure 3.

The integral in (4) comes from integrating 1/r over the
surface bounded by the filaments in current loop ¢ and evalu-
ating the result at a point at the permeable material surface.
For simple configurations of current carrying conductors and
permeable materials, one can find a non-piercing surface like
the tented one shown in Figure 4. This tented surface can

then be divided into triangles, and therefore, [L,],. can be
expressed as:
_ _Jwpo 1.
[Lolas = = > vrl — n(A)dSa  (5)

A YSa

where Sa is a triangle on the current loop surface, and n(A)
is the normal to triangle on the current loop (loop) surface.
The integral inside the summation in (5) is the potential due
to a dipole charge distribution on a triangles which can be
evaluated analytically [10].

3. IMPROVING THE EVALUATION OF 1], ,

In this section, we show the improvement we have made
to calculation of the [L,],. integral using line integration.
This avoids the problem of finding and constructing non-
piercing surfaces which can be very difficult and sometimes
impossible for a range of MEMS devices such multiple turn
spiral inductors. Also, this method facilitates the automa-
tion of inductance extraction using the fictitious magnetic
charge no matter how complicated is the configuration of the
current carrying conductors or the permeable structures.
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Figure 4: Evaluating [L,],,, the effect of the mag-
netic charge on panel k on the current in loop .
Note that the surface of the current loop ¢ is divided
into triangles.

Consider translating the surface of the loop to a new co-
ordinate system such that the center of panel k is the origin
of the new coordinate system, Py. Thus, the integral in (4)
becomes

. n(r)]dS (6)

loop i
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where n(r) is the normal to the surface of current loop i at
point r and u, is the unit vector along the r direction. The
integral in (6) is equal to 422 Iq(Py), where In(Po) is the
solid angle integral. The solid angle integral is dependent
only on the contour of the surface [11]. The solid angle
integral Io(Pp) is given by

1 Z(1) (5-9) (£ ) .
Io(Po) = E}{c [W - 1] ——p—dL (7

where R and Z are the two spherical coordinates of the point
| on contour C, p is the projection of vector R on the x-y
plane, p is the unit vector along p, f and 7 are the unit
tangential vectors of the contour C and the projection curve
of C on x-y plane, respectively, and © = #) x 2 with Z being
a unit vector along the z-axis. The geometry is shown in
Figure 5.

Now we use the idea of the solid angle to get an efficient
way to calculate [L,],;. After translating the surface of the
loop to a new coordinate system such that the center of panel
k is the origin of the new coordinate system, P, [L,],; can
be calculated as in
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Figure 5: Evaluating of the solid angle integral at
the origin Py

After some mathematical manipulation, we get an expres-
sion for Exy as in
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Note that (z1,y1,21) is the translated starsing point of fila-
ment f and (z2, y2, z2) is the translated end point of filament
f, as shown in Figure 5.

The integral in (9) has a smooth integrand and can be
computed easily using numerical quadrature {12]. We, thus,
efficiently evaluate the elements of L, in the linear system

(3).
4. COMPUTATIONAL RESULTS

In order to demonstrate the accuracy and the versatility
of the improved fictitious magnetic surface charge method,
we used the improved method to solve for the frequency
dependent inductance of a realistic spiral inductor over a
permeable material substrate, as shown in Figure 6.

The new technique cornputes integrals using the line in-
tegral over the length of the spiral and avoids generating
non-piercing surfaces. The tested realistic spiral inductor in
Figure 6 has a diameter of 280y, with a 10x by 10u cross sec-
tion. The permeable material substrate is 15004 by 15004,



Figure 6: A spiral inductor over a magnetic sub-
strate.
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Figure 7: Variation of the inductance of spiral in-
ductor with relative of the magnetic substrate.

with 200y as its thickness. Figure 7 shows the variation of
extracted inductance with the permeability of the permeable
substrate. The inductance of the spiral inductor over a mag-
netic substrate increases as the permeability increases, till it
reaches an upper limit which is almost double the value of
the spiral inductance without a substrate. This agrees very
well with the theoretical analysis in [13]. Figure 8 shows the
frequency response of the inductance of the spiral inductor
in Figure 6. Note the high frequency inductance is lower
than the low frequency one, due to the skin effect.

5. CONCLUSIONS AND ACKNOWLEDG-
MENTS

An improved method for extracting frequency dependent
inductances in the presence of permeable materials has been
presented. The method eliminates the need to generate
non-piercing surfaces, and is easily applied to general three-
dimensional problems. Results were presented to demon-
strate the accuracy and versatility of the new method.
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Figure 8: Inductance frequency response of the spi-
ral inductor over a magnetic substrate example. The
substrate has a relative permeability of 2000.
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