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ABSTRACT

Charge optimization is an essential element of rational
drug design; given ligand and receptor proteins, one wishes
to determine the ligand charge distribution—a vector of par-
tial atomic charges—that maximizes the favorable change in
electrostatic free energy on binding. Work in biophysics has
shown that this problem is convex, and that it can be solved
using standard quadratic programming methods. However,
the use of these techniques requires an initial calculation of
the Hessian matrix; the present work introduces an new method
that avoids this expensive computation and also scales much
more favorably with problem size. The technique couples
a boundary element formulation with a primal-dual interior
point algorithm; initial results suggest that the cost to solve
these optimization problems can be reduced by more than an
order of magnitude.

1 INTRODUCTION

One aspect of rational drug design is the consideration of
electrostatic interactions between the receptor protein, whose
activity is to be alleviated or blocked, and the designed lig-
and protein [1]–[5]. The interactions are long range and have
significant contributions to the overall free energy of bind-
ing; optimizing these interactions is therefore important, but
unfortunately also quite challenging. Two opposing effects
must be carefully balanced: favorable electrostatic interac-
tions between the ligand and receptor in the bound state, and
an unfavorable ligand desolvation penalty. Prior work [5]
based on continuum electrostatics models has shown that the
problem of optimizing the electrostatic free energy change
in binding is convex and quadratic with respect to the ligand
partial atomic charges.

Traditionally, the solution of the charge optimization prob-
lem has relied on optimization schemes that depend on an
explicit form for the Hessian matrix. Determination of the
Hessian is computationally expensive, however, and no op-
timization can be performed until the entire Hessian matrix
has been calculated. This work demonstrates an optimization
scheme that avoids the large preliminary computation, and in
addition seems capable of accelerating the optimization pro-
cess by more than an order of magnitude.

The new Hessian-implicit scheme is based on a primal-
dual interior point method [6]. The use of a boundary ele-
ment method [7], [8] to perform the electrostatic calculations

allows the boundary element simulation to be coupled into
the interior-point framework; the two systems of equations
are then solved simultaneously using iterative methods.

Section 2 briefly reviews the energy optimization prob-
lem, the primal-dual interior point framework, and the bound-
ary element method used for energy calculations. Section 3
presents the Hessian-implicit method, and Section 4 illus-
trates the computational advantage of the new method. Sec-
tion 5 concludes the paper and closes with ideas for future
work.

2 BACKGROUND

2.1 Modeling Electrostatics

The problem of interest is to take a molecular surface, ei-
ther that of the ligand alone, or that of the ligand-receptor
complex, and compute the reaction potential in the ligand
due to a charge distribution in the ligand. Boundary ele-
ment methods are used to calculate this potential both for the
ligand-receptor complex in solution (called the bound sys-
tem) and for the ligand alone in solution (the unbound sys-
tem). The following derivation summarizes the formulation
presented in [7], [8], which is based on a mixed continuum-
discrete model. We derive the relation between charge dis-
tribution and reaction potential for the bound system; the
derivation is identical for the unbound system except that the
ligand surface is taken as the interface between solvent and
protein, rather than the surface of the ligand-receptor com-
plex.

The solvent is treated as a homogeneous medium with
high permittivity, which models the polarization effect of the
solvent, and Debye screening lengthκ, which models the ef-
fect of mobile ions in solution [9], [10]. The protein inte-
rior is treated as a homogeneous region with low permittiv-
ity. The partial atomic charges are treated as discrete point
charges at the atom centers. An electrostatic simulation takes
as input a vector of point charge values, and produces as out-
put the reaction potential at the atom centers due to the di-
electric properties of the media and the mobile ions in solu-
tion.

Green’s second theorem is applied to the solvent region
and the protein interior, producing two integral equations for
the potential in the two regions. Applying the boundary con-
ditions at the surface generates a coupled pair of integral



equations:
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Here,nc is the number of point charges modeled in the
ligand and~rΩ is any point on the molecular surface. Thus,
ϕ(~rΩ) corresponds to the potential on the surface, and∂ϕ

∂n (~rΩ)
corresponds to the normal derivative of the potential on the
surface. Also,ε1 andε2 are the low dielectric constant and
high dielectric constants, respectively, andεr = ε2=ε1; G1(~rΩ;~r0)
andG2(~rΩ;~r0) represent the free space Green’s functions for
the Poisson equation and the linearized Poisson-Boltzmann
equation, respectively. Onceϕ(~rΩ) and ∂ϕ

∂n (~rΩ) are deter-
mined, the reaction potential at the charge points can be cal-
culated from:
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Discretizing the interface surfaceΩbound into triangular

panels, and then using a piecewise constant collocation scheme
produces a block system of equations from (1) and (2),"

1
2I+

R
panelk

∂G1
∂n d~r0 �R

panelk
G1d~r0

1
2I� R

panelk
∂G2
∂n d~r0 1=ε

R
panelk

G2d~r0

#�
ϕ
∂ϕ
∂n

�
=

�
∑nc

i=1
qi
ε1

G1

0

�
(4)

whereϕ and ∂ϕ
∂n are vectors of panel potentials and normal

fields, respectively. For notational simplicity, we write the
block matrices as follows:�
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Similarly, the discretized version of (3) can be written as

ϕreac = A3;1ϕ+A3;2
∂ϕ
∂n

: (6)

Each of the blocks in (5) is square with dimensionn p, the
number of panels used to discretize the surface. The blocks
A3;1 andA3;2 are each of dimensionnc by np, andA1;3 is np

by nc in size.
Because the reaction potential is a linear function of the

charge distribution, it can also be writtenϕ reac = Lq, whereL

is implicitly defined by (5) and (6). Theith column ofL can
be determined by computingϕ reac from (5) and (6) assuming
q= ei, theith unit vector. Calculating thenc columns ofL for
both the unbound and bound systems therefore requires 2n c

simulations.
Iterative methods such as GMRES [11] are used to solve

equation (5) in a matrix-free way, and accelerated methods [12]
have been developed to quickly perform the required matrix-
vector multiplications. Complete derivations of the above
formulation are presented in [7], [8].

2.2 Free Energy Optimization

The atomic structures of the ligand, receptor, and ligand-
receptor complex are taken as given, as is the receptor charge
distribution. The ligand charge distributionq is varied to
minimize the electrostatic free energy of binding. The ob-
jective function has been shown [5] to be convex and of the
form

∆∆G0
L = qT (Lbound �Lunbound)q+dTq: (7)

The notation∆∆G0
L denotes the change in free energy

with respect to varying the ligand charge distribution only.
To simplify the derivation of the implicit-Hessian technique,
the quadratic term corresponding to the unbound system will
be considered only at the end of the discussion.

Linear equality constraints are imposed on the ligand charge
distribution to enforce charge conservation on various func-
tional groups, and bound constraints are imposed on each
charge value to ensure that the calculated charges are physi-
cally reasonable. We thus have a linearly constrained quadratic
program:

minimize qTLboundq+dTq

subject to Acq = b

and mi � qi �Mi;8i 2 f1; : : : ;ncg
(8)

whereAc is a matrix of ones and zeros used to enforce sum
of charge constraints on subsets of the vectorq.

2.3 Primal-Dual Interior Point Methods

The standard form of a quadratic program is typically
written as

minimize yTQy+dTy

subject to Ay = b

and y� 0

(9)

whereQ is symmetric and positive definite [6], [13]. The
convexity of the objective and the linear constraints meet a
constraint qualification; that is, to find the global minimizer,
it suffices to find a primal vectory�, Lagrange multiplier
vectorλ�, and dual slack vectors� that together satisfy the



Karush-Kuhn-Tucker (KKT) conditions:
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wheren is the number of primal variables in the problem.
Primal-dual interior point methods find a primal-dual solu-
tion (y�;λ�;s�) by applying a specialized Newton-Raphson
method to find the zeros of the function
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The matricesY andS are diagonal with diagonal entries
equal to the corresponding elements ofy ands. The Newton-
Raphson steps are scaled to enforce the condition (13) at ev-
ery iteration, and biased to improve convergence [6].

3 HESSIAN-IMPLICIT OPTIMIZATION

3.1 Problem Transformation

The transformation of (8) into the standard form (9) is
accomplished by introducing slack variablest andr such that

m+ t = q; t � 0 (15)

q+ r = M; r � 0: (16)

The problem then can be reduced into standard form using
the substitution
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t
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along with a number of other easily derived substitutions.

3.2 Incorporating an Implicit Hessian

With the substitutions above, the(k+ 1)th Newton step
can be calculated by linearizingF(yk;λk;sk),2
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The representation ofLq in (5) and (6) can be coupled
with this system equations, and thus:2
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Preconditioned GMRES is used to iteratively solve (19),
and requires approximately the same time as solving (5) by
itself. The full implementation also includes the gradient
from the second quadratic termqT Lunboundq; the integral op-
erators corresponding to the unbound system are coupled to
(19) in an analogous manner to those for the bound system.

4 COMPUTATIONAL RESULTS

Test optimization problems were generated in the follow-
ing manner: two concentric spheres were considered to be
the bound and unbound molecular surfaces, andn c charge lo-
cations were randomly selected within the unbound sphere;
ne random equality constraints were generated, and random
box constraintsm andM were also determined. The unbound
surface was discretized into 124 panels, and the bound sur-
face was discretized into 166 panels.

To verify that the Hessian-implicit method calculates the
same optimal solution as a method which first calculates an
explicit Hessian, a set of problems with varying problem di-
mension were solved using both methods. The convergence
criterion for the optimization process was set toyT s� 10�8nc.
Figure 1 shows the norm of the error between the Hessian-
explicit and Hessian-implicit based solutions, normalized by
1=
p

nc. It should be noted that the condition number of
L = Lbound �Lunbound increases by 11 orders of magnitude
between the smallest example problem and the largest, but
the error does not grow in this fashion.
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Figure 1: Verification of the Hessian-implicit method accu-
racy



The computational cost for the Hessian-implicit method
grows very slowly with problem dimension, as Figure 2 il-
lustrates. Because the integral operators dominate the aug-
mented Jacobian in (19), and the primal-dual system of equa-
tions is very sparse, the cost metric used here is the number
of integral operator matrix-vector products required to com-
plete the optimization problem. Realistic problems may have
as many as 3000 charges, which would make the Hessian-
implicit method even more attractive as an accelerated opti-
mization technique.
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Figure 2: Computational scaling

5 CONCLUSION

This paper presented a Hessian-implicit primal-dual inte-
rior point optimization method that rapidly solves the charge
optimization problem. The method couples two boundary
element simulations (each of which computes one term of
the objective function gradient) into a traditional primal-dual
framework. Using the new optimization method, each New-
ton step requires approximately twice the computation of one
electrostatic simulation. Primal-dual methods converge rapidly,
and the number of iterations required scales exceptionally
well with the number of charges; this results in an order
of magnitude improvement in performance over the calcu-
lation of an explicit Hessian, even for moderately sized test
cases. Future work will improve performance for repeated
optimization (with varied constraint sets), and extend the for-
mulation to allow nonlinear constraints.
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