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ABSTRACT

In this paper we present an improved algorithm for
nonlinear model order reduction (MOR) based on the
trajectory piecewise-linear method proposed in [6] which,
as shown before, provides an effective and efficient strat-
egy for automatically generating low-cost macromodels
of highly nonlinear dynamical systems. The proposed
extension consists of applying a more sophisticated pro-
jection basis, which merges multiple reduced order bases
in Krylov subspaces generated at different linearization
points. As a result we obtain a ‘richer’, aggregated re-
duced basis which, as shown on the example of a mi-
cromachined switch, enables us to improve the accuracy
and further reduce the order of the macromodels for the
considered highly nonlinear device.
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1 INTRODUCTION

Recent progress in integrated circuit fabrication tech-
nology has enabled digital system designers to integrate
analog circuitry and micromachined devices, but such
mixed-technology microsystems are extremely difficult
to design because of limited verification and optimiza-
tion tools available. In particular, there are no gen-
erally effective techniques for automatic generation of
reduced order system-level models from detailed physi-
cal descriptions of micromachined blocks. Most existing
research on model order reduction (MOR) has focused
on techniques for linear systems, and many of these ap-
proaches have not been effective when applied to the
kind of nonlinear problems associated with microma-
chined devices. The existing nonlinear MOR techniques,
- based on linear or quadratic reduction (cf. [1], [2], [4],
[7]), are primarily useful for weakly nonlinear systems.
In order to overcome this weak nonlinearity limitation, a
trajectory piecewise-linear reduction technique (TPWL)
was developed [6]. The initial effectiveness of the TPWL
technique suggests that the method has promise, and in
this paper we investigate ways to improve TPWL’s ac-
curacy and efficiency.

We start in the next section by describing a trajec-
tory piecewise-linear nonlinear model order reduction

technique. Section 3 shows computational results for a
micromachined switch example, verifying the discussed
numerical method, and Section 4 presents our conclu-
sions.

2 TRAJECTORY
PIECEWISE-LINEAR MODEL
ORDER REDUCTION

In this section we summarize the trajectory piecewise-
linear MOR technique, discussed in more detail in [6],
and then describe the new approach for generating the
basis for the reduced order model. We start with pre-
senting the piecewise-linear representation of nonlinear
dynamical systems, followed by describing the method
of generating the piecewise-linear model. Finally, we
propose a new projection scheme using an aggregated
reduced order basis.

2.1 Piecewise-linear representation

The main drawback of Taylor-series based MOR meth-
ods for nonlinear systems is that these methods typi-
cally expand the nonlinear operator about a single state
zo(cf. [1], [2], [4], [7]) and therefore the generated mod-
els are only accurate locally. In [6], it was suggested to
use a collection of expansions around states visited by a
given training trajectory. To present the approach more
concretely, consider a general nonlinear system:

= = j(@) + Bu, (1)

where z is an N-dimensional state vector, u is an M-
dimensional input vector (typically M << N), and B is
an N x M matrix. A set of s linearizations of f about
the states zg,...,zs—1 could be used to generate linear
systems of the form:

dz

5 = (@) + Ai(z - z:) + Bu

where A4; = Q%l is the Jacobian of f evaluated at z;.
In order to represent a system that transitions smoothly
from one linearization to the next, consider a weighted
combination of the above models:

c(ii_at: - i i) f(2:) + i w;(z)Ai(z — z;) + Bu (2)
=0 =0
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where w;(z) are weights depending on state z. As-
suming a convex combination of models implies that
the weights are positive and that Zf;é wi(z) = 1. A
simple weighting scheme is to use w;(z) = (exp(||z —
zill)) %/ TiZo (exp(llz — zil])) 2.

Given a g-th order (¢ << N) projection basis defined
by a N x ¢ matrix V (cf. Section 2.3), and using the
change of variables z = Vz, yields a representation of
system (2):

{%=0%W&Fk+vwkf+3w

@ (3)

where B, = VTB, C, = CTV, A, = [Aor Arr . .. As_1)s]
and Air = VTAiV, Y= [’)’0 .. .’ys_l] =

VT (f(zo) — Aozo),- .-, VT (f(z5-1) — As—125-1)]

and [20, 21, ..., 2s—1] are representations of linearization
points zg,...,Zs—1 in the reduced basis:
—_ 1T T T
[Zo,zl, N ,23_1] = [V IIIo,V Ty, .- .,V .’ZJs_l]

2.2 Generation of piecewise-linear
models

One of the key issues which need to be addressed in
the above piecewise-linear approach is how to generate
model (2), or more specifically, how to select lineariza-
tion points z;. In the approach proposed in [6] a ‘train-
ing’ trajectory in the state space of the nonlinear system
is generated by simulating the response of the nonlinear
system to a given ‘training’ input signal. The lineariza-
tion points z; are taken from the training trajectory.
In this way the number of linearized models is kept
small. The trade-off is that the piecewise-linear model
(2) is input-specific, and consequently it approximates
well the initial nonlinear system for system trajectories
located ‘close enough’ to the training trajectory. In or-
der to reduce the cost of generating the piecewise-linear
model a fast approximate simulation method, employ-
ing linearized reduced order models generated ‘on the
fly’, is also proposed (cf. [6] for details).

2.3 Generating the aggregated reduced
order projection basis

The last component of the proposed MOR algorithm
is to determine the projection matrix V. In [6] the pro-
jection matrix was constructed using a Krylov subspace
based on a linearization about the initial state zy. In-
stead, consider replacing the above approach with the
following three-step procedure. First, at each of the lin-
earization points z;, generate a reduced order basis in
a suitable Krylov space, corresponding to a linearized
model generated at z;. Second, form the union of all
the bases, and third, reduce the set using the singu-
lar value decomposition. The final reduced basis can

2 um of poly Si
0.5 um of poly Si

(t) — center point

2.3 um gap
filled with air

0.5 um SiN

Figure 1: Micromachined switch (following Hung et
al. [3]).

then be used to generate a collection of reduced order
linearized models (cf. (3)), such that each of them will
have a transfer function which matches (up to a cer-
tain number of moments) the transfer function of the
corresponding nonreduced linearized model.

Since we generate a ‘richer’ basis we expect that it
will more accurately approximate the initial state space.
One may argue that the above method may generate
models of significantly larger order than the simple al-
gorithm. In fact the situation is the opposite. As shown
in the next section, the extended algorithm has poten-
tial to generate suitable, accurate reduced bases with
smaller order than the simple algorithm using a single
linearization around the initial state.

3 A MICROMACHINED SWITCH
EXAMPLE

In this section we present simulation results using a
micromachined switch example shown in Figure 1. The
dynamic behavior of the switch can be determined by
solving a coupled system of partial differential equations
which models the interacting electrostatic, elastostatic
and fluidic forces in the switch [3]. Spatial discretization
of the coupled system of partial differential equations
and a proper choice of state space generate a nonlin-
ear dynamical system in form (1) (cf. [6]), and for the
examples considered below we used a spatial discretiza-
tion that generated an N = 880 order system. Note
also that the tests were performed using an implemen-
tation of the algorithms in Matlab running on a Linux
workstation with a Pentium III Xeon processor.

The first group of tests aimed at validating the gen-
erated piecewise-linear reduced order algorithms. More
specifically, we needed to find out whether a given re-
duced model correctly approximated the initial nonlin-
ear system for the inputs which were different that the
‘training’ input used to generate that model. The result
of one of such tests is shown in Figure 2. In this test
the piecewise-linear model of order ¢ = 26 was gener-
ated for the 9-volt step training input. Then, we tested
the model with a cosinusoidal input voltage with 7-volt
amplitude. One may note that that the obtained tran-
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sient matches almost perfectly the reference result. The
graph also provides a comparison of the piecewise-linear
model with the linear and quadratic reduced order mod-
els of the same order and using the same projection ba-
sis (cf. [2], [4], [7])- It is clear that the proposed TPWL
model provides a significantly better accuracy than the
other two models.

System response for input voltage v(t) = 7cos(4r t)

— full nonlinear model, N=880

+=+= linear reduced model, q=26

------ quadratic reduced model, =26

- = piecewise-linear reduced model, q=26
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Figure 2: Comparison of system response computed us-

ing the linear, quadratic and piecewise-linear reduced
order models. Input signal u(t) = (7 cos(4rt))?.

System response for input voltage v(t) = 5.5H(t)
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Figure 3: Comparison of system response computed us-
ing the piecewise-linear models with a simple and ex-
tended algorithm of generating the reduced order basis.

Next, we compared the two algorithms for generating
the projection basis — the simple one (used in [6]) and the
extended one, proposed in this paper. Figure 3 shows
the deflection of the center of the micromachined fixed-
fixed beam computed using the two considered methods.
In both MOR methods the 5.5-volt step input voltage

System response for input voltage v(t) = 5.5H(t)

— full nonlinear model, N=880
- - piecewise-linear model, g=41

Center point deflection [microns]
|
o

0.05 0.1
Time [ms]

Figure 4: Comparison of system response computed us-
ing the full nonlinear simulator and the piecewise-linear
reduced order model with a simple algorithm of generat-
ing the reduced order basis. The model of order ¢ = 41
was generated for the 5.5-volt step input voltage.

was used as a ‘training’ input and the number of lin-
earization points equaled 6. For the simple algorithm
the order of the reduced model equaled ¢ = 31. In
the extended algorithm, a basis of order 7 was gener-
ated at each of the linearization points. Then the size
of the aggregate basis V,,, was reduced from 42=6-7
to 28 using the SVD algorithm. One may note that
the piecewise-linear model of order ¢ = 28, generated
with the aggregated reduced order basis gives signifi-
cantly more accurate results than the piecewise-linear
model generated with a simple basis. (On the graph,
the dashed line overlaps perfectly with the solid line.)
In order to obtain the desired accuracy with the MOR
method using the simple basis generation algorithm, the
order of the basis has to be increased to ¢ = 41 in the
considered case (cf. Figure 4).

Figure 5 shows the simulated pull-in effect for the mi-

cromachined beam example. Again in this case the algo-

rithm employing the extended algorithm to generate the
reduced basis provides the best accuracy among the con-
sidered MOR techniques. The extended algorithm also
generates a model with the lowest order. One should
note that in the extended algorithm we generated a col-
lection of very low order bases at different linearization
points rather than a larger basis at a single linearization
point, as in the initial approach. As shown by the pre-
sented results this may lead to a model with a smaller
order, which is faster to simulate. The trade-off is that
the extended basis generation algorithm is computation-
ally more expensive.

We have also used the same reduced order piecewise-
linear model of order ¢ = 26 to find the sinusoidal steady
state of the micromachined switch. To this end we used
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System response for step input voltage v(t) = 9H(t)
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Figure 5: Comparison of system response computed
with linear, quadratic and piecewise-linear reduced or-
der models to the step input voltage u(t) = 92 (¢ > 0).

Table 1: Comparison of the subsequent harmonics of
the sinusoidal steady state, computed using a full order
nonlinear model and the reduced order piecewise linear
(TPWL) model. The input signal to the system was
u(t) = (9 cos(rt))2. The piecewise-linear model of order
q=26 was generated for the 9-volt step input voltage.

Reduced order Error
-nics  model TPWL model (%]
dc 1.9587 1.9526 0.4
1st -0.1967+0.0351i -0.1935+0.0352i 1.6
2nd -0.0289+0.0283i -0.0263+0.02631 8.2
3rd 0.0004+0.0143i -0.00174+0.0155i 17.6

Harmo Full nonlinear

the shooting method with our reduced model and then
computed the subsequent harmonics of the resulting pe-
riodic signal. Table 1 compares the first three harmon-
ics computed with the reduced order model and the full
nonlinear model. One may note good agreement in the
results, which indicates that our technique may be ef-
fectively applied e.g. to analyze harmonic distortion of
nonlinear systems.

Finally, some performance tests were made for the
discussed method. Table 2 shows model generation times
as well as simulation times with reduced order mod-
els for linear, quadratic and piecewise-linear MOR tech-
niques. One may note that the piecewise-linear reduced
order model, although more expensive to generate, pro-
vides a comparable performance as the linear reduced
order model. It is also apparent from the table that the
quadratic MOR is significantly more expensive than the
proposed piecewise-linear MOR.

Table 2: Comparison of the times of generation of the
reduced model and reduced order simulations for the
linear, quadratic and piecewise-linear MOR techniques
(N = 880, g = 26).

MOR Model generation Simulation
method time [s] time-[s]
linear

MOR 14.8 1.0
quadratic

MOR 3712.3 - 333
TPWL

MOR 293.5 8.3

4 CONCLUSIONS

In this paper we have proposed an algorithm for gen-
erating the reduced order projection basis, which aggre-
gates a number of bases computed at different states of
the system. The results of numerical tests indicate that
application of this new scheme allows one to further in-
crease the accuracy and reduce the order of macromod-
els extracted with the trajectory piecewise-linear MOR
algorithm. Furthermore, the extended algorithm does
not increase excessively the reduced model generation
time, therefore providing a good alternative for the ba-
sic method presented in [6].
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