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ABSTRACT
In this paper we describe an approach for generating geometrically-
parameterized integrated-circuit interconnect models that are effi-
cient enough for use in interconnect synthesis. The model gen-
eration approach presented is automatic, and is based on a multi-
parameter model-reduction algorithm. The effectiveness of the tech-
nique is tested using a multi-line bus example, where both wire
spacing and wire width are considered as geometric parameters.
Experimental results demonstrate that the generated models accu-
rately predict both delay and cross-talk effects over a wide range of
spacing and width variation.

1. CATEGORIES AND SUBJECT DESCRIP-
TORS

B.7.2 Design Aids, Layout, Placement and routing, Simulation.

2. GENERAL TERMS
Algorithms, Design, Performance.

3. KEYWORDS
Interconnect synthesis, Parametrized model order reduction.

4. INTRODUCTION
Developers of routing tools for mixed signal applications could

make productive use of more accurate performance models for in-
terconnect, but the cost of extracting even a modestly accurate model
for a candidate route is far beyond the computational budget of the
inner loop of a router. If it were possible to extract geometrically
parameterized models of interconnect performance, then such mod-
els could be used for detailed interconnect synthesis in performance
critical digital or analog applications. In this paper we present a
scheme for automatically constructing parameterized models for
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interconnect, and demonstrate the scheme’s effectiveness using a
width and spacing parameterized multi-line bus.

The idea of generating parameterized reduced-order interconnect
models is not new, recent approaches have been developed that
focus on statistical performance evaluation [1, 2] and clock skew
minimization [3]. Our work differs from the cited efforts in two im-
portant ways. First, the target application, interconnect synthesis,
requires parameterized models valid over a wide geometric range.
Second, the technique described below is a multi-parameter exten-
sion of the projection-subspace based moment matching methods
that have proved so effective in interconnect modeling [12, 13, 10,
9, 8, 7, 11].

In the following section we present the basic background on
multi-parameter model-order reduction for a two-parameter case,
and then in section three we describe the generalization to an ar-
bitrary number of parameters. In section four, we demonstrate the
effectiveness of the method on a wire-spacing parameterized multi-
line bus example, and consider both delay and cross-talk effects. In
section five we use the generalized multi-parameter model reduc-
tion approach to re-examine the multi-line bus example, but now
allow both wire width and wire spacing to be parameters. Conclu-
sions are given in section six.

5. BACKGROUND
One recently developed technique for generating simple geomet-

rically parameterized models of physical systems is based on first
using a very detailed representation, such as a discretized partial
differential equation, and then reducing that representation while
preserving the variation due to changing parameters [5]. The re-
duction approach used for handling geometric parameter variation
in these physical system closely parallels the techniques for dy-
namical system model reduction, a situation that follows from con-
sidering the Laplace transform description of a dynamical system
and then allowing the frequency variable to substitute for a ge-
ometric parameter. This close parallelism has allowed for some
cross-fertilization, for example a subspace-projection based mo-
ment matching method was borrowed from the dynamical system
model-reduction context and used to automatically generate spacing-
parameterized models of wire capacitances [6].

The observation that geometric parameters and frequency vari-
ables are interchangeable, at least in a restricted setting, suggests
that the problem of generating geometrically parameterized reduced-
order models of interconnect can be formulated as a multi-parameter
model-order reduction problem. In addition, it is possible to exploit
the recently developed connection between projection subspaces
and multi-parameter moment-matching [4] to generate an effective
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algorithm. Below, we make this idea more precise.
Consider the linear system�

s1E1 � s2E2 � A � x � Bu (1)

y � Cx (2)

where s1 and s2 are scalar parameters; x is a state vector of dimen-
sion n; u and y are m-dimensional input and output vectors; E1, E2
and A are n � n matrices; and B and C are n � m and m � n matrices
which define how the inputs and outputs relate to the state vector x.

If one of the parameters, s1 or s2, are associated with frequency,
and the other associated with a geometric variation, then (1) would
be a dynamical system and E � s1 � s2 � � s1E1 � s2E2 � A would be
its descriptor matrix.

For many interconnect problems, the number of inputs and out-
puts, m, is typically much smaller than n, the number of states
needed to accurately represent the electrical behavior of the inter-
connect. In order to generate a representation of the input-output
behavior given by (1) using many fewer states, one can use a projec-
tion approach [7]. In the projection approach, one first constructs
an n � q projection matrix V where q 	 n, and then one generates
the reduced model from the matrices of the original system using
congruence transformations [10]. Specifically, the reduced system
is given by�

s1V T E1V � s2V T E2V � V T AV � x̂ � V T Bu (3)

y � CV x̂ (4)

were the reduced state vector x̂ is of dimension q and is representing
the projection of the large original state vector x 
 V x̂.

The columns of V are typically chosen in such a way that the
final response of the reduced system matches q terms in the Taylor
series expansion in s1 and s2 of the original response. For a non-
singular A we can write (1) as�

I � � s1M1 � s2M2 � � x � BMu

y � Cx

where

M1 � � A � 1E1

M2 � � A � 1E2

BM � � A � 1B �
We can then derive an expression for the state vector x which we
can conveniently expand in Taylor series

x � �
I � � s1M1 � s2M2 � �
� 1BM u� ∞

∑
m � 0

�
s1M1 � s2M2 � mBM u� ∞

∑
m � 0

m

∑
k � 0

Fm
k � M1 � M2 � BM u sm � k

1 sk
2

The coefficients of the series Fm
k � M1 � M2 � can be calculated us-

ing [4]

Fm
k � M1 � M2 ���� �� � 0 if k ���� 0 � 1 �
�
�
��� m �

I if m � 0
M1Fm � 1

k � M1 � M2 � � M2Fm � 1
k � 1 � M1 � M2 � otherwise

In [4] it is also shown that for a single input system (BM � b) if the
columns of V are constructed to span the Krylov subspace

V � colspan ! b � M1b � M2b � M2
1b � � M1M2 � M2M1 � b � M2

2b � ����� " �

or equivalently,

V � colspan # nq$
m � 0 % m$

k � 0

Fm
k � M1 � M2 � b &(' �

then the reduced model matches the first q � nq � nq � 1 ��) 2 moments
of the Taylor series expansion in s1 and s2.

6. P-PARAMETERS MODEL ORDER RE-
DUCTION

In this Section we consider the extension of the previous results
to a linear system�

s1E1 � �*��� � spEp � A � x � Bu (5)

y � Cx (6)

where the descriptor matrix E � s1 � ����� � sp � � s1E1 � ����� � spEp � A
depends on p parameters s1 � �*��� � sp. The reduced model can still be
generated using a congruence transformation�

s1V T E1V � ����� � spV T EpV � V T AV � x̂ � V T Bu

y � CVx̂

and once again, in order to calculate the column span of the projec-
tion matrix V it is convenient to write the system (5) as�

I � � s1M1 � ����� � spMp � � x � BMu

y � Cx

where

Mi � � A � 1Ei for i � 1 � 2 � �*��� � p
BM � � A � 1B

and expanding in Taylor series

x � + I , � s1M1 �-�
�
�.� spMp �0/ � 1BM u� ∞

∑
m 1 0

+ s1M1 �2�
�
�*� spMp / mBM u� ∞

∑
m 1 0

m �43 k3 5�6 6 6 5 kp 7
∑

k2 1 0
�
�
��
�
� m � kp

∑
kp 8 1 1 0

m

∑
kp 1 0

+Fm
k2 9 6 6 6 9 kp � M1 �
�
�
�*� Mp � BM u / s

m �43 k2 5�6 6 6 5 kp 7
1 sk2

2 �
�
� s
kp
p

The coefficients of the series Fm
k2 : ; ; ; : kp

� M1 � ����� � Mp � can be calcu-
lated using:

Fm
k2 : ; ; ; : kp

� M1 � ����� � Mp � �=<> ? 0 if ki @A ! 0 � 1 � �*��� � m " i � 2 � ����� � p
0 if k2 � ����� � kp @A ! 0 � 1 � �*��� � m "
I if m � 0

and for all other cases

Fm
k2 9 6 6 6 9 kp � M1 �
�
�
�*� Mp �B� M1Fm � 1

k2 9 6 6 6 9 kp � M1 �
�
�
�*� Mp � � (7)� M2Fm � 1
k2 � 1 9 6 6 6 9 kp � M1 �
�
�
�*� Mp � �2�
�
�� MpFm � 1
k2 9 6 6 6 9 kp � 1 � M1 �
�
�
�*� Mp �

For a single input system (BM � b) the columns of V can be con-
structed to span the Krylov subspace

V � colspan � b � M1b � M2b �
�
�
�*� Mpb � M2
1 b � � M1M2 � M2M1 � b �
�
�
�*��
�
�C� � M1Mp � MpM1 � b � M2

2 b � � M2M3 � M2M3 � b �
�
�
� � �
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Figure 1: Sketch of the modeled 16 parallel wires interconnect
bus.

or equivalently

V � colspan

�� � nq�
m 1 0

m �43 kp 5�6 6 6 5 k3 7�
k2 1 0

�
�
� m � kp�
kp 8 1 1 0

m�
kp 1 0

Fm
k2 9 6 6 6 9 kp � M1 �
�
�
�*� Mp � b � �� �

For a multi-input system the columns of V can then be constructed
to span the Krylov subspaces produced by the columns of BM

V � colspan

�� ��� nq
m 1 0

� m � 3 kp 5�6 6 6 k3 7
k2 1 0 �
�
� � m

kp 1 0 Fm
k2 9 6 6 6 9 kp � M1 �
�
�
�.� Mp �*+ BM / 1 �
�
�
�.�� nq

m 1 0
� m � 3 kp 5�6 6 6 k3 7

k2 1 0 �
�
� � m
kp 1 0 Fm

k2 9 6 6 6 9 kp � M1 �
�
�
�.� Mp �*+ BM / j

� ��
7. EXAMPLE: A BUS MODEL PARAME-

TRIZED IN THE WIRES’ SPACING
One design consideration for interconnect busses is the trade-off

between:�
wider spacing to reduce propagation delays and crosstalk�
narrower spacing to reduce area and therefore cost.

In this example we have used a multi-parameter model order re-
duction approach to construct a low-order model of an intercon-
nect bus, parametrized by the wire spacing. The model can be effi-
ciently constructed “on the fly” during the design and can account
for the topology of the surrounding interconnect already present in
the design. Once produced, the model can be simply evaluated for
different values of the main parameter, the wire spacing, in order
to determine propagation delay, crosstalk or even detailed step re-
sponses.

Our example problem is the bus in Fig. 1 which consists of N �
16 parallel wires, with thickness h � 1 � 2µm, and width w � 1µm.
The total length of each wire is l � 1mm. Above and below our bus
we assumed a random collection of interconnect at several layout
levels ranging from a distance of 1µm to 5µm. We have subdi-
vided each wire into 20 equal sections delimited by n � 21 nodes.
Each section has been modeled with a resistor. Each node has a
“grounded capacitor” representing the interaction with upper and
lower interconnect levels. In addition, each node has two coupling
capacitors to the adjacent wires on the bus. The value of the capaci-
tors was determined using simple parallel plate formulas. Standard
frequency domain nodal analysis leads to a system of equations of
the form

s � Cg � Cs

d � v � s �4� Gv � s � � Bvin � s � (8)

vout � s � � Cv � s � � (9)

where s is the Laplace Transform variable, d is the spacing between
wires, G is the n � n nodal conductance matrix, The n � n matrix Cg
is the diagonal nodal matrix associated with the grounded capaci-
tors, and Cs is the sparse nodal matrix associated with the adjacent

coupling capacitors. B is the n � m matrix relating m input voltages
vin to the n internal node potentials v, C is a m � n matrix relating
node potentials v to the m output voltages vout . For simplicity in
this example we assumed all wires are driven by sources having the
same impedance rd � 1 ) gd . In general when gd is small compared
to the wire conductance, all the capacitors in the different sections
of each wire appear as lumped, and the detailed model presented
here is not necessary. A more interesting case is observed when
instead gd is large. In such case the wires charge up slowly from
the input side of the bus and continue to charge up along the length
of the bus. In order to observe this more interesting effect we chose
gd � g where g is the conductance of each of the 20 sections in
each wire. All the wires are left open on the other side.

7.1 Crosstalk from one input to all outputs
To determine the crosstalk generated on all the outputs from a

transition on a single input, the input matrix becomes a unit vector,

B � b � �
0 ����� 0 gd 0 ����� 0 � T �

and the output matrix becomes a set of m unit vectors

C �
	���� ����� 010 ����� ����� 010 �*���
. . . ���*� 01


 ����
The system in (8) can be reduced in the form (1) shown above in
Section 5 by defining

s1 � s

s2 � s
d

The problem is better parameterized using the change of variables
γ � 1 ) d and then using a Taylor series expansion around a nominal
spacing value d0

γ � γ0 � ∆γ � 1
d0 � ∆d

� 1
d

so that (8) becomes

s �Cg � Cs � γ0 � ∆γ ��� v � Gv � bvin

or �
s � Cg � Csγ0 �4� s∆γCs � G � v � bvin

which can be reorganized to the form in (1) using

E1 � Cg � Csγ0

E2 � Cs

A � � G

s1 � s

s2 � s∆γ

The original system for this example has order 336 (16 wires �
21 nodes each). We performed a model order reduction procedure
as described in Section 5 and obtained a small model capturing the
transfer functions from one input to all outputs.�

I � s � M̂1 : r � ∆γM̂2 : r � � v̂ � b̂vin (10)

vout � Ĉv̂ � (11)
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Figure 2: Responses at the end of wire 4 when a step is ap-
plied at the beginning of the same wire. Continuous lines are
the response of the original system (order 336). Small crosses
are the response of the reduced model, order 3 on the left, and
order 6 on the right. The model was constructed using a nom-
inal wire spacing d0 � 1um and responses are shown here eval-
uating it at spacings (from the lowest curves to the highest)
d � d0 � ∆d � 0 � 5µm � 1µm � 10µm.

where

M̂1 : r � V T M1V � V T A � 1E1V � � V T G � 1 � Cg � Csγ0 � V
M̂2 : r � V T M2V � V T A � 1E2V � � V T G � 1CsV

b̂ � V T A � 1b

Ĉ � VC �
The step response at the output at the end of the input wire is
shown in Fig 2.a comparing the step responses of the original sys-
tem (continuous lines) and a reduced model of order three (small
crosses) when the spacing distance assumes the values d � d0 �
∆d � 0 � 5µm � 1µm � 10µm. The model was constructed using a nomi-
nal spacing d0 � 1µm, hence the error is smallest for d 
 d0 � 1µm.
Figure 2.b shows the same comparison with a reduced model of or-
der six. One can notice that the reduced model can be easily and
accurately used to evaluate the step response and propagation delay
for any value of parameter d by simply calculating

∆γ � 1
d � 1

d0

and then plugging into the reduced model (10). From the reduced
model (10) we have readily available not only step responses on
the same wire, but also crosstalk step responses from one wire to
all the other wires. Fig. 3.a shows for instance step responses from
the input of wire 4 to the output of wires 4, 5, 6 and 7. In this figure
we compare again the response of the original system order 336
(continues curves) with the response of a reduced model order 10
(small crosses) constructed at nominal spacing d0 � 1µm, but eval-
uated in this particular figure at spacing d � 0 � 5µm. Note that the
model produced by our procedure is parametrized in the wire spac-
ing, hence any of such crosstalk responses can be evaluated at any
spacing. For instance we show in Fig. 3.b the response at the output
of wire 5 when a step waveform is applied at the input of wire 4 for
different spacing values, d � d0 � ∆d � 0 � 5µm � 1µm � 10µm.
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Figure 3: On the left: responses at the end of wires (from high-
est to lowest curve) 4, 5, 6 and 7 when a step is applied at the
beginning of wire 4. Continuous lines are the response of the
original system (order 336). Small crosses are the response of
the reduced model (order 10). The model was constructed us-
ing a nominal wire spacing d0 � 1um and responses are shown
here evaluating it at spacing d � 0 � 5µm. On the right: crosstalk
responses at the end of wire 5 when a step is applied at the be-
ginning of wire 4, for different values of spacing (from highest
to lowest curve) d � d0 � ∆d � 0 � 5µm � 1µm � 10µm.

7.2 Exploiting the adjoint method for crosstalk
from all inputs to one output

It is possible to construct with the same amount of calculation a
model that provides the susceptibility of one output to all inputs.
In order to do this we can use an adjoint method and start from an
original system which swaps positions of C and B and transposes
all system matrices�

I � � s1MT
1 � s2MT

2 ��� v � � cT v �in (12)

v �out � BT
Mv � � (13)

In this case the columns of the projection operator V will span the
Krylov subspace

V � � colspan ! cT � MT
1 cT � MT

2 cT � MT
1 MT

1 cT �� MT
1 MT

2 � MT
2 MT

1 � cT � MT
2 MT

2 cT � ����� "
or generally

V � � colspan # nq$
m � 0 % m$

k � 0

Fm
k � MT

1 � MT
2 � cT &(' �

In Fig. 4 we show the responses at the end of wire 4 when a step
is applied at the beginning of wires 4, 5, 6 and 7. The model was
constructed using a nominal wire spacing d0 � 1um. Responses in
Fig. 4.a are for d � 0 � 25µm. Responses in Fig. 4.b are for d � 2µm.

8. EXAMPLE: BUS MODEL PARAMETRI-
ZED IN BOTH WIRE WIDTH AND SEP-
ARATION

Often when designing an interconnect bus, one would like to
quickly evaluate design trade-offs originating not only from differ-
ent wire spacings, but also for different wire widths. Wider wires
have lower resistances but use more area and have higher capaci-
tance. The higher capacitance to ground however helps improving
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Figure 4: Responses at the end of wire 4 when a step is applied
at the beginning of wires 4, 5, 6 and 7 (from highest to lowest
curve). Continuous lines are the response of the original sys-
tem (order 336). Small crosses are the response of the reduced
model (order 10). The model was constructed using d0 � 1um.
Responses on the left are for d � 0 � 25µm, and on the right for
d � 2µm.

crosstalk immunity. We show here a procedure that produces small
models that can be easily evaluated with respect to propagation de-
lays and crosstalk performance for different values of the two pa-
rameters: wire spacing d � 1 ) γ, and wire width W . As in the case
of wire spacing, we constructed models for a given nominal wire
width W0, and then we parametrized in terms of perturbations ∆W .
Considering the same bus example with N parallel wires described
in Section 7, we can write the equations for the original large para-
metrized linear system

s
�
C �g � W0 � ∆W �4� Cs � γ0 � ∆γ � � v � G � � W0 � ∆W � v � Bvin

vout � Cv

where C �g � Cg ) W0, G � � G ) W0 , and Cg and G are as described in
Section 7. After some algebraic manipulation one can recognize
a parametrized linear system as in (5) with p � 4 parameters by
defining

E1 � C �gW0 � Csγ0 s1 � s
E2 � Cs s2 � s∆γ
E3 � C �g s3 � s∆W
E4 � G � s4 � ∆W
A � � G � W0 �

One can then follow the procedure in Section 6 and construct a
projection operator V . Finally the produced reduced order model is�

I � s � M̂1 : r � ∆γM̂2 : r � ∆W M̂3 � � ∆W M̂4 � v̂ � b̂vin (14)

vout � Ĉv̂ � (15)

where

M̂1 : r � V T M1V � V T A � 1E1V � � V T � G � W0 � � 1 � C �gW0 � Csγ0 � V
M̂2 : r � V T M2V � V T A � 1E1V � � V T � G � W0 � � 1CsV

M̂3 : r � V T M3V � V T A � 1E1V � � V T � G � W0 � � 1C �gV

M̂4 : r � V T M4V � V T A � 1E1V � � V T � G � W0 � � 1G � V � � I
W0

b̂ � V T A � 1b � � V T � G � W0 � � 1b

Ĉ � VC

In Fig. 5 we compare the step and crosstalk responses of the orig-
inal system compared to the reduced and parametrized model ob-
tained using a Krylov subspace of order q � 15 (nq � 2). The model

was constructed using a nominal spacing d0 � 1µm and nominal
wire width W0 � 1µm. The key point is that this parameterized
model can be rapidly evaluated for any value of spacing and wire
width, for instance for a fast and accurate trade-off design opti-
mization procedure.

9. CONCLUSIONS
In this paper we described an approach for generating geomet-

rically - parameterized integrated-circuit interconnect models that
are efficient enough for use in interconnect synthesis. The model
generation approach presented is automatic, and is based on a multi-
parameter model-reduction algorithm. The effectiveness of the tech-
nique was tested using a multi-line bus example, where both wire
spacing and wire width are considered as geometric parameters.
Experimental results demonstrate that the generated models accu-
rately predict both delay and cross-talk effects over a wide range of
spacing and width variation, even when a very low order model is
used.

There are many issues still left to address. The multi-parameter
method was tested using only resistor-capacitor interconnect mod-
els, and accuracy issues may arise when inductance is included. We
also did not investigate using multipoint moment-matching, which
seems like a natural choice given the range of the parameters is
often known a-priori. In addition, the multi-parameter reduction
method can become quite expensive when the model has a large
number of parameters, so the method would not generate a very ef-
ficient model if each wire pair spacing in a 16 wire bus was treated
individually. Finally, there are some interesting error bounds in [5],
and these results could be applied to automatically select the reduc-
tion order.
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Figure 5: Original system (continuous curves) versus 15th or-
der reduced model (small crosses) using both spacing and width
parameters. The nominal wire spacing was d0 � 1µm and the
nominal wire width was W � 1µm. Responses at the end of
wire 4 due to a step at the beginning of the same wire are
show in a) for different widths (from highest to lowest curve)
W � � 25µm � 2µm � 4µm � 8µm and for spacing d � � 25µm. In b)
we show the same responses but for spacing d � 2µm. In c) we
show the crosstalk response at the end of wire 5 due to a step
at the beginning of wire 4. Curves correspond to widths (from
highest curve to lowest) W � � 25µm � 2µm � 4µm � 8µm and spacing
is d � � 25µm. In d) we show the same crosstalk responses but
for spacing d � 2µm.
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