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Abstract

Recently developed fast integral equation meth-
ods for computing solutions to the Stokes’ equa-
tion have proven to be a valuable tool for micro-
machined device designers. The speed of these
fast codes make it possible to simulate multiple
interacting 3-D structures, but issues associated
with the singularity of the integral form of Stokes’
equation have not been sufficiently carefully ad-
dressed to reliably perform such simulations. In
this paper we describe the issue and show a rem-
edy.
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Introduction

The recently developed precorrected-FFT ac-
celerated boundary-element technique for fast so-
lution of the Stokes equation has proved to be
a valuable tool for micromachined device design-
ers[1,2,3]. Codes based on these techniques are
capable of determining the drag force on an en-
tire comb structure in minutes, and the results
have been used to demonstrate the inaccuracies of
commonly accepted simplified analytic models(3].
The speed of these fast codes make it possible to
simulate multiple interacting structures, but is-
sues associated with the singularity of the inte-
gral form of Stokes’ equation[4,5] have not been
sufficiently carefully addressed to reliably perform
such simulations.

The partial differential equations for Stokes’
flow depends only on the gradient of pressure.
This implies that any integral formulation for Stokes
flow which directly relates forces to velocities can
not have a unique solution, and therefore the lin-
ear system generated by discretizing the integral
form will be precisely or nearly singular. If that

singularity is not treated carefully, the resulting
computed solution will be corrupted. Below we
describe several techniques for dealing with the
singularity of the discretized incompressible Stokes
equation. In order to eliminate the null space in
the linear system solution one can constrain the
type of discretization and then properly apply a
Krylov-subspace algorithm, but a more robust ap-
proach is to add a rank-one matrix to eliminate
the discretized system’s null space. Once the null-
space free solution has been computed, a second
step must be performed which introduces a pres-
sure equation and pressure boundary condition to
modify the null-space-free solution, so that the fi-
nal solution of the Stokes equation is uniquely de-
termined. Numerical examples are given to prove
the effectiveness of our methods.

Singular BEM Operators

The small feature size of micromachined de-
vices implies that the fluid flow has a very low
Reynolds number, and therefore the convective
term in the Navier-Stokes equation can be ne-
glected. The resulting simplification, the linear
Stokes equation, can be solved using integral equa-
tions. In this paper we will only consider the
steady incompressible Stokes equation, though the
approaches described herein extend to the un-
steady incompressible Stokes equation or even the
linearized compressible Stokes equation. Assum-
ing zero body force, the steady Stokes equation
is

~Vp+uViu =0 1)
Veu=0

with stress tensor and surface force vector ex-
pressed as:

03x3 = —Pl3ys + p[Vu + (Vu)T]
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f3x1 = o3x3n3x1 (2)

That only the derivative of pressure arises ex-
plicitly in the Stokes’ equation implies that any
constant pressure can be added to the solution of
the Stokes’ equation, and therefore the equation is
singular. This constant-pressure zero-velocity so-
lution is a “singular mode” which does not effect
the total force on a single rigid body, but the sin-
gularity can impact the results produced by a nu-
merical procedure. In addition, the detailed fluid
forces on the body will not be computed correctly
unless the singular mode is treated properly.

Fast solvers, such as the precorrected-FFT ac-

celerated methods[2] are applied to integral forms
of the Stokes’ equation

1
U; = —%/Gzﬂf]ds

1
P= —S—W/Pifids 3)
o by By
z,J—T’*‘ 3 pi= 73

We assume the fluid motion is generated by the
motions of rigid bodies, so the single layer poten-
tial is used in the above equations. The integral
operator whose kernel is G is a singular opera-
tor whose nullspace is the outward normal to the
body surface. That is,

/ G;jiids =0 (4)

surface

A common approach to discretizing (3) is to
use a collocation scheme in which the unknowns
are a discrete set of surface traction forces, de-
noted by the vector F', and the knowns are a dis-
crete set of collocation point velocities, denoted
by U. If the above integral formulation is used to
compute fluid forces on a problem with m mov-
ing bodies, a collocation scheme will generate a
system of equations U = GF', where G is now the
discrete form of the integral operator with an m-
dimension nullspace given by the outward-normal
vectors of the m objects in the system. The fact
that G has an m-dimensional nullspace implies

that the surface force can not be uniquely deter-
mined from U = GF system of equations alone.
If net body forces, and not detailed surface forces,
are all that are of interest, then the nullspace com-
ponents can simply be eliminated in the compu-
tation procedure. Otherwise, it is necessary to
remove the unwanted null space part and make
sure the solution is unique and correct.

Approaches

If a Krylov-subspace based method, such as
GMRES, is used to solve U = GF, the procedure
will converge to a null-space free solution under
certain conditions. In particular, the G matrix
must be symmetric, so an exact Galerkin-style
discretization would be needed, and the the right-
hand side must be perpendicular to the nullspace.
If the right-hand side is not perpendicular to the
nullspace or the discretization scheme generates
only a nearly symmetric G matrix, then the Krylov-
subspace method may fail. A more numerically
robust approach to computing a null-space free
solution is to use rank-one matrices to augment
the G matrix. For an m-object system, if F is
any solution satisfying GF = U and F* is the
null-space free solution, then G'F+ = U where

m
G' =G+ NN}, (5)
=1
N; is the normal vector of the ith object, ¢; is a
constant such chosen that the values of the rank-
one matrix elements are moderately small com-
paring with those in the G matrix. Since the G’
matrix is no longer singular, the equation can be
easily be solved and

m
(G+> aN;NI)F-=GF-=GF =U. (6)

=1

The above methods give a unique solution that
is perpendicular to the nullspace of the G matrix,
but the actual solution may contain nullspace com-
ponents. For example, consider the two plate
problem in Figure 1 below, in which a top plate

approaches a bottom plate. Assume that the nullspace

component of the force is zero, in this case the
nullspace is the plate surface normal. Then, the
normal force on the side of the moving plate fac-
ing the fixed plate must be equal in magnitude
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and opposite in sign to the force on the side of
the plate facing away from the fixed plate, and
this is clearly non-physical. If detailed plate sur-
face forces are desired, pressure must be taken
into consideration.

From the original Stokes equation, it is clear
that a pressure boundary condition is necessary
to compute a unique solution, either a Py, or a
Prertain—point- Assume Py, is given, then the pres-
sure is given by

1 |
P=-o / pifids + Poo (7)

Even though the surface force solution of U = GF
is not unique due to the nullspace of G matrix, the
solution of pressure P is unique for any solution F'
because p; has a corresponding singularity. Note
the normal direction force is f, = n’fx303x3n3x1
We use the following relation to modify the sur-
face forces solution:

oint
O0ub;

Fpoint - _ Ppoint )

- _ Ppm'nt (8)
Here FEPo"™ is the normal direction surface force
of a point on the surface. %’jf‘ = 0 since non-
slip boundary assumption is applied. If F' is the
solution F+ of the first two methods mentioned
above or any solution satisfying GF' = U, and let
C = —P — F., then

Ffina = F* + CPOM. N; (9)

is the solution which satisfies both the Stokes equa-
tion and the pressure boundary condition. Only
one PPont is needed to calculate the CPOnt for
each surface. Theoretically, C should be the same
at any point on the surface, but discretization er-
ror and other numerical error may affect the ac-
curate of C. A straight forward conclusion is that
C at points far from corners and boundary are
more accurate.

Results

Results from applying the above methods to a
two-plate problem are shown in Figures 1 and 2
below. In the two-plate example, the top plate
is moving at velocity V, = 1 while the bottom
plate is fixed. The size of the two plates are

100um x 100pm x 15um. Figure 1 shows the re-
sult of ignoring the singularity, and the second
picture shows the result of using the pressure pin-
ning method above. Although not obvious from
the figures, the first method gives the correct total
forces, but it is quite clear that only the second
one gives the correct surface force distribution.

The FastStokes simulation results from a comb
drive structure is shown in Figure 3 and 4. The
comb shuttle is moving at velocity V; = 1, the
side combs and the substrate are fixed. Figure 4
shows a reasonable detailed force distribution.

Conclusions

In this paper we noted that the singularity of
the incompressible Stokes equation has not been
sufficiently carefully addressed. By introducing
a pressure integral equation and using an appro-
priate numerical algorithm, the unique and cor-
rect solution of the system can be achieved with-
out substantial additional effort. Finally, detailed
surface force plots demonstrate the effectiveness
of the method described.
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Figure 3: Surface force distribution on a comb-
drive structure

Figure 2: Surface forces using pressure-pinning
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Figure 4: Surface forces on different objects
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