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Accelerating Relaxation Algorithms for Circuit
Simulation Using Waveform-Newton and
Step-Size Refinement

RESVE A. SALEH, MEMBER, IEEE, AND JACOB K. WHITE, MEMBER, IEEE

Abstract—A new relaxation algorithm for circuit simulation that
combines the advantages of iterated timing analysis (ITA) and wave-
form relaxation (WR) is described. The method is based on using an
iterative stepsize refinement strategy with a waveform-relaxation-New-
ton (WRN) algorithm. All three relaxation techniques, ITA, WR, and
WRN, are compared and experimental results that indicate the
strengths and weaknesses of the methods are presented. In addition, a
new convergence proof for the waveform-Newton (WN) method for
systems with nonlinear capacitors is provided. Finally, it is shown that
the step-refined WRN algorithm can be implemented on a parallel pro-
cessor in such a way that different subsystems can be processed in par-
allel and the solution at different timepoints of the same subsystem can
also be computed in parallel.

1. INTRODUCTION

HE IMPLICIT multistep integration algorithms used

in general-purpose circuit simulation programs, like
SPICE2 [1] and ASTAP (2], have proven to be reliable
but are computationally expensive when applied to large
systems. This is because each step of the numerical inte-
gration requires the implicit solution of a large nonlinear
algebraic system. If the circuit simulation program is in-
tended for the simulation of mostly MOS digital circuits,
then it is possible to exploit the properties of these types
of circuits to improve the simulator’s efficiency. In par-
ticular, the fact that MOS digital circuits can be parti-
tioned into loosely or unidirectionally coupled subsystems
can be exploited by using iterative decomposition algo-
rithms, and the fact that the different nodes in MOS digital
circuits often change at very different rates can be ex-
ploited by using multirate integration techniques [3]-[5].
One common approach to exploiting the unidirectional-
ity and multirate behavior of MOS circuits is to use some
kind of relaxation technique (for a comprehensive list of
references see [5]). Historically, the first use of relaxation
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in circuit transient analysis was as a substitute for New-
ton’s method to solve the nonlinear algebraic systems
generated by implicit integration methods. Early pro-
grams based on this approach [6], [7] attempted only to
produce approximate results, and performed only one re-
laxation iteration for each timestep. The techniques used
in these programs were referred to as ‘‘timing analysis,”
and when the relaxation iteration was carried to conver-
gence to produce accurate results, the algorithm was re-
ferred to as iterated timing analysis (ITA) [5]. A second
approach to using relaxation for circuit transient analysis
is to apply the relaxation directly to the differential equa-
tion system, replacing the solution of a large differential
equation system with the solution of a collection of small
differential equation subsystems [8], [9]. This second ap-
proach is referred to as waveform relaxation (WR) be-
cause the iterates are functions, or waveforms, over the
simulation interval.

The ITA algorithm, because it is a relaxation applied
after discretization, cannot exploit multirate behavior as
easily as the WR algorithm [10]. However, ITA is more
efficient in many cases than standard WR. This is partly
because typical ITA-based programs use a relaxation-
Newton scheme, in which the nonlinear relaxation itera-
tion equations are solved only approximately with a single
Newton iteration [11]. In each iteration of WR, the non-
linear differential equations are solved accurately, and this
is computationally expensive. Perhaps the next obvious
step is to try a relaxation-Newton approach within the WR
algorithm. That is, use a single iteration of some kind of
waveform-Newton algorithm to approximately solve the
WR iteration equations. This approach is the main focus
of this paper.

It is reasonably straightforward to derive the waveform-
Newton (WN) and waveform-relaxation-Newton (WRN)
algorithms [12]-[14], and show that WRN has similar
convergence properties to standard WR. In addition, the
iteration equations for WRN are time-varying linear dif-
ferential equations and are easier to solve than the nonlin-
ear differential iteration equations of WR. However, WRN
does not prove to be much more efficient than WR when
simulating most digital circuit examples, because WR
typically converges in fewer than five iterations whereas
WRN may take many more.
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The fact that the WRN algorithm may take many iter-
ations to converge makes it possible to improve the effi-
ciency of the algorithm by solving the iteration equations
crudely at first, and then increasing the accuracy with each
iteration [15]. With WRN, it is particularly efficient to use
coarse timesteps in the early iterations, and then refine the
step sizes as the iterations approach convergence. Note
that such a technique is not so helpful with WR because
WR usually converges so rapidly that there are not enough
iterations to do meaningful refinement. Also, the Newton
method used at each timestep in the WR iterations may
not converge if very large timesteps are used.

In this paper, we describe the WRN algorithm in detail
and provide simulation results of an implementation of
WRN with iterative stepsize refinement in the SPLAX
program. We begin in the next section by presenting the
WN algorithm [16] and describing some of its limitations,
as well as presenting the WRN algorithm. In Section III,
the WRN algorithm with iterative timestep refinement
strategy is described, and its suitability for parallel com-
putation is mentioned. In Section IV, we compare the
WRN algorithm in our SPLAX program with the ITA
method used in the SPLICE program [10], [17] and the
WR algorithm used in the RELAX2 program [8], [18].
Experimental results that indicate the strengths and weak-
nesses of the three techniques are presented.

II. WAVEFORM-RELAXATION NEWTON (WRN)

The differential equations that describe a typical MOS
digital circuit can be constructed using nodal analysis
[19], and such an approach leads to a system of n equa-
tions of the form:

Gale0.u(0) = g0, u) (1)

where g(v(t), u(t))eR" is the vector of sums of capac-
itive charges at each node, g (v (t), u(1))eR" is the vec-
tor of sums of resistive currents at each node, u(t)eR" is
the vector of input voltages, v(¢)eR" is the vector of un-
known node voltages, and 7 is the number of circuit nodes
excluding the reference node.

A function-space iterative Newton method [16] can be
used to solve (1). The idea is that the differential equation
is linearized about an initial guess waveform whose value
at time zero matches the given initial condition. Then, the
guess waveform is updated by solving the resulting lin-
earized differential equation (with the same initial condi-
tions at time zero). The original differential equation is
then relinearized about the updated guess, and the process
is repeated until convergence is achieved. In particular,
solving (1) can be thought of as finding a waveform v (¢)
such that

(F))(t) = 4 a(v(0), u(0)) = g(v(0) = 0. (2)

The Jacobian of F(v), Jp(v), is then given by the Frechet
derivative as

d [0q(v(1), u(1))
(Jr(2)8) (1) = [T 5(1)}
_ Bg(v(;)v, u(r)) ). (3)
This leads to an iteration update differential equation given
by
dq (' (1), u
d%[q(vk(t), o) + 2L 10) «s"*'m}

dg (f (1), u
= g(f(2), u(r)) + WW‘(:) (4)

where 8*'(r) = v**'(¢r) — v*(r) [18]. Note that if
v¥(0) = vy then 6(0) = 0.

As WN is just the function-space extension of the clas-
sical Newton-Raphson algorithm, it will converge quad-
ratically when the iterated value is close to the correct
solution [16]. The WN algorithm also has the attractive
property that it converges globally when applied to equa-
tions of the form of (1), given mild assumptions about the
behavior of the charge and current functions, g(v) and
g(v), and provided that the initial guess waveforms match
the initial conditions for the differential equations. In par-
ticular, we have the following theorem about the conver-
gence of the WN algorithm, the proof of which is outlined
in the appendix.

Theorem 1: If a system is of the form of (1) in which
dq/dv is differentiable, Lipschitz continuous, and has a
uniformly bounded inverse with respect to v for all u; g
is differentiable and Lipschitz continuous; and vo(t) is a
continuous, differentiable function such that v°(0) = v;
then the sequence of waveforms, {v*}, generated by the
WN algorithm converges uniformly to the solution of
(n N

Proof 1: See Appendix A.

2.1. Limitations of WN

The iteration equations for the WN algorithm are time-
varying linear differential equations that are easier to solve
numerically than the original system of nonlinear differ-
ential equations. For example, if the WN iteration equa-
tions are solved with the same discretization techniques
as used for the classical direct method, then since the
equations are linear, only a single matrix solution need be
performed at each timepoint. Also, linear time-varying
systems can be solved with a variety of efficient numerical
techniques other than the standard discretization methods,
such as collocation and spectral methods [12].

Note that the discretized WN algorithm is as ill-suited
to the simulation of large problems as the classical direct
methods, because it still requires the solution of large lin-
ear equation systems, and cannot easily exploit multirate
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behavior. However, as the discretized WN algorithm and
the classical direct methods are of such a similar nature,
it is perhaps useful to compare their relative efficiencies.
Clearly, for linear problems, the classical direct and the
discretized WN methods are identical. However, the dis-
cretized WN can be much less efficient than classical di-
rect methods when used to simulate circuits containing
highly nonlinear elements such as diodes. This is due to
the difference in how the classical and WN methods ob-
tain the initial guesses for their respective Newton meth-
ods. In the classical approach, generating an initial guess
for the Newton method implies projecting the behavior of
the system forward by one timestep. In WN, one projects
the behavior of the system forward for an entire wave-
form. Therefore, in the classical method the initial guess
is almost certainly in or near the region of quadratic con-
vergence for the Newton method, whereas that would
rarely be true for WN.

To demonstrate this difficulty with WN, consider the
problem illustrated in Fig. 1, a simple resistor-diode cir-
cuit with a grounded capacitor. Fig. 2 shows the wave-
form iterations obtained using WN to solve the circuit,
given an initial guess of %(7) = 0 for all 7€ [0, 1]. Note
that the first computed waveform v'(1) is quite far from
the correct solution, and subsequent iterations move very
slowly back to the correct solution. This slow conver-
gence is common when applying Newton methods to ex-
ponential nonlinearities, given a poor initial guess. In this
case, over 50 iterations are necessary to achieve satisfac-
tory convergence.

A wide variety of limiting techniques can be used to
improve the convergence of WN in these situations. For
example, the change in the waveform from one iteration
to the next could be limited, in a way analogous to step
limiting in the standard algebraic Newton method [1].
There is a well-known strategy that is particularly useful
for MOS circuits, where the only diodes in the circuit are
associated with the source-to-substrate and drain-to-sub-
strate junctions, and are usually reverse-biased. Instead
of using the correct derivative of the diode current with
respect to the voltage across the diode, the derivative can
be approximated by the diode current divided by the volt-
age across the diode, an approximation known as *‘line-
through-the-origin.’” Since only the Jacobian is altered,
if the so created pseudo-Newton method converges, it
converges to the correct result. The danger is that if the
diode is substantially forward biased, an unlikely event
for MOS circuits, this pseudo-Newton method may not
converge no matter how close the initial guess.

2.2. The WRN Algorithm

One useful application of the WN algorithm, and the
main focus in this paper, is to combine it with the WR
algorithm to construct the waveform extension of the re-
laxation-Newton algorithm, as shown in Algorithm 1.

Algorithm I - (WRN Gauss-Seidel Algorithm)
The superscript k denotes the iteration count, the sub-

Vdd
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Fig. 1. A simple resistor-diode example.
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Fig. 2. WN iterations for resistor-diode example.
script ie{1, * - - , N} denotes the component index of
a vector, ¢ is a small positive number, and
k+1,i k+1 .. k+t k. ... kqT
v ,=[vi > " > Ui—1, Ujs 9Un]'k<-0'

Guess waveform 2°(f); re[0, T] such that °0) = v,
(for example, set °(0) = vy, te[0, T1;
repeat {
k—k+1
for all (i in N) {
solve

d )
- lg:(@" " @), u®) +

aqi(vk:'i(t——)’ 4O i+ 1) — vhe)

L@t 0, un) +

6g,-(v“;~'(r), W@ iy — k)] = 0
for (vf*! (z)lf te[0, T], with the initial condition
vf T 10) = vy

Yuntil (|[2%7" = 5 < o).

Note that, in the above WRN algorithm, the WR iter-
ation equations are solved approximately by performing
one step of the WN method with each waveform relaxa-
tion iteration. This is analogous to the single Newton it-
eration strategy of the nonlinear relaxation methods used
in ITA. Also, like the WR algorithm, each equation in
Algorithm 1 is a differential equation in one unknown var-
iable v¥ but, in this case, the nonlinear differential itera-
tion equations have been replaced by simpler time-vary-
ing linear differential equations.

Given the global convergence properties of both the
original WR and the WN algorithms, it is not surprising
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that the WRN algorithm has global convergence proper-
ties. The proof for this is quite similar to the proof of the
WR and WN convergence theorems and is not included
here.

Theorem 2: If the assumptions in Theorem 1 are sat-
isfied, then the sequence {v*} generated by the WRN
algorithm converges to the solution of (1) on any bounded
interval [0, T]. n

ITI. TIMESTEP CONTROL STRATEGY FOR WRN

As mentioned above, the amount of computation per-
formed in the early iterations of the WRN can be reduced
by using coarse numerical integration timesteps to solve
the differential relaxation equations initially, and then re-
fining the timesteps as the iterations progress. Specifi-
cally, the first relaxation iteration is computed with a user-
supplied maximum allowed numerical integration times-
tep. For subsequent relaxation iterations, the integration
timesteps are chosen to be the same as those in the pre-
vious iteration unless the a posteriori local truncation er-
ror estimate for the timestep from the previous iteration
is too large. In that case, half the previous iteration time-
step is used.

To demonstrate this idea, consider the sequence of
waveforms in Fig. 3. For the first iteration the maximum
timestep is used and this produces the waveform shown
in Fig. 3(a). In this case, the computed LTE at T is too
large and, therefore, on the second iteration, the window
interval is divided in half and two time-steps are taken,
as shown in Fig. 3(b). In the second iteration, the LTE is
too large at time point 7/2 but acceptable at time point
T. Therefore, on the third iteration, only the first half in-
terval is divided, as shown in Fig. 3(c).

The iterative refinement strategy has the advantage that,
in general, the timesteps will be placed more efficiently
to control the truncation error than if the standard pre-
dicted truncation error criteria is used. This is because the
timestep selection is based only on more accurate a pos-
teriori error estimates available from previous relaxation
iterations. However, there are situations where too many
time points will be placed. In particular, if, in some re-
gion of time, a ‘‘wavefront’” moves through the interval
as the iterations progress, many timesteps will be placed
in the wavefront’s path. This behavior is illustrated in Fig.
4 where the waveform for a particular node in a small
circuit is shown after three different iterations. During the
early iterations, the steps near the beginning of the win-
dow interval are refined due to the transition. The rest of
the interval is not adjusted since a large step is appropriate
when the waveform is latent. However, on subsequent it-
erations, the transition moves ahead in time, and there-
fore, the timesteps are refined locally to capture it. Un-
fortunately, the points placed near the beginning of the
window are still recomputed. This problem gets progres-
sively worse as the transition proceeds to the end of the
window, as shown in the third graph. One way to over-
come this problem is to remove time points on subsequent
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Fig. 3. WRN time-step control.
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Fig. 4. Wavefront propagation during iterations.

iterations if the LTE is very small at a particular time
point. This is not a trivial optimization as such an ap-’
proach can be unstable. That is, time points which are
added on one iteration may be removed on the next iter-
ation, and then added again on the third iteration, etc.
However, a careful implementation of this approach
would reduce the overall computation in these situations.

3.1. Parallelizing WRN with Timestep Refinement

The WRN algorithm combined with the timestep re-
finement strategy also has several advantages that make it
appropriate for use on parallel processors [20]. For any
decomposition method, the decomposed subsystems can
be solved independently on parallel processors [14]. Also,
as with any waveform relaxation method, solving the de-
composed subsystems is a significant computation involv-
ing numerically integrating the independent differential
equations over some interval of time. The WRN algo-
rithm has an additional advantage for parallel computa-
tion. Since the discretizations times are selected by a
timestep refinement strategy, they are, therefore, known
a priori (i.e., before beginning the calculation of the next
iteration waveform). Once the discretization times are
known, the linearized system at each of the discrete times
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can be computed in parallel since the iteration update
equations for WRN are based on linearization about a pre-
vious iteration waveform, once the discretization times
are known, the linearized system at each of the discrete
times can be computed in parallel. The result is that not
only can the decomposed subsystems be computed in par-
allel, but most of the computation for each of the time-
steps for each of the decomposed subsystems can be com-
puted in parallel.

In order to see how the timestep parallelism can be ex-
ploited, consider using WN to solve the simple equation

x(2) = f(x(1)) x(0) = xo (5)
where x(1) € R", and m:R" — R". The WN iteration
equation is then

af (x*
P = (M) + w (x**1(1) = x*(1))

x*71(0) = x*(0) = x, (6)

where x*(#) is the kth Newton iterate. Discretizing (6)
with backward-Euler leads to a sequence of M linear
equations, where M is the number of timesteps. The equa-
tion that must be solved to compute x**'
the time of the jth timestep, is given by

- 11‘_] (xk+l(7_j) - Xk+l(Tj_|))
of (x*(7;
= f(x*(1)) + w (x** (7)) — x*(7))).
(7)
Reorganizing (7) leads to
IF(x ()| o)
[T] 17,_] = (ax )il ("1 (7))
= ) A (s()
of(x* () ,
T Y (@) (8)

where I is the identity matrix in R". The parallelism that
can be exploited by simultaneously evaluating M time-
steps can be seen by examining (8). Clearly, the evalua-
tion and LU decomposition of the matrix on the left-hand
side of (8), and the computation of all the terms on the
right-hand side of (8) except the (1/7, — 7;_, yxk ! (1-1)
term can be performed for all M timesteps simulta-
neously.

Once the parallelizable portion of (8) is complete, there
is still some computation that must be performed serially
to update the x"“(rj) values. This serial computation
involves a matrix backsolve to compute x**!(7,), which
is then used to complete the right-hand side for the equa-
tion for x** ' (7,), from which x**'(r,) can be computed
with a matrix backsolve, which is then used to complete
the right-hand side of the equation for x**'(73), etc. In

7;), where 7; is
J h J

total, this serial section involves M matrix backsolves and
M — 1 multiplication and additions to complete the right-
hand sides. However, the backsolves are by far the small-
est part of the timestep calculation, so this serial section
is not too computationally expensive, and therefore, pro-
cessing timesteps in parallel can be effective. The initial
results of an implementation of this approach are quite
promising and the interested reader may obtain further in-
formation in [20].

IV. PROGRAM IMPLEMENTATION AND SIMULATION
RESULTS

In this section, we compare the basic algorithms used
in the three programs, SPLICE3 [10], based on ITA,
RELAX2 [18], based on waveform relaxation, and a new
program, SPLAX [14], based on WRN with iterative
timestep refinement. In order to make meaningful com-
parisons of the effectiveness of the three algorithms, we
tried to keep the algorithms used in the programs as close
to each other as possible. All three programs are written
in C, and use the same algorithms to first partition a large
problem into loosely coupled subcircuits, and then order
the subcircuits for the relaxation process.

There are some unavoidable differences. Both SPLAX
and RELAX2 use waveform relaxation-based algorithms
and, because of the nonuniform way in which WR con-
verges, it is much more efficient if the simulation interval
[0, T] is broken into subintervals, or windows, [0, #;],
[t, t21, * - -, [t,, T]. It is difficult to determine a good
window size a priori, and the two programs do not use
the same strategy for picking these windows. In RELAX?2,
an adaptive windowing algorithm is used, as the interac-
tion between window size and converge speed is reason-
ably well understood for WR. However, in the case of
WRN, a good window size tends to be a function of the
equation nonlinearities rather than the differential equa-
tion dynamics. To minimize convergence problems due
to equation nonlinearities, the SPLAX program uses rel-
atively small window sizes compared to RELAX2. The
selection of optimal window sizes is still an ‘‘open’’ re-
search area, although the heuristics used in SPLAX work
well in practice.

Also, the SPLAX program uses the second-order back-
ward difference formula rather than the trapezoidal rule to
numerically integrate the iteration equations. This is be-
cause the iterative timestep refinement technique used in
SPLAX can use very large timesteps for early WRN it-
erations, and if the trapezoidal method were used, it would
produce spurious oscillatory solutions (see [1]). Although
the timestep refinement would eventually remove the spu-
rious oscillation, it may occasionally cost a few extra re-
laxation iterations. This would seem to put the SPLAX
program at a slight_disadvantage, as the second-order
backward difference method does have larger truncation
error than the trapezoidal method, and would normally
require more timesteps for comparable accuracy. This
does not seem to be the case however, perhaps because
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the backward-difference method is being used in combi-
nation with the a posteriori LTE control described above.

4.1. Simulation Results

In Table I, the classical direct methods and the ITA,
standard WR, and WRN methods are compared using a
number of example circuits. The examples are: a critical
path from a microprocessor control circuit, Microc, the
logic for a successive approximation register, Scdac, a
dynamic memory cross section, Dram, a static memory
cross section, Sram, and a digital filter, Digfi. In Microc,
the waveforms exhibit multirate behavior, mainly in the
form of latency, and the tradeoffs in WR and ITA balance
to produce similar run times, but WRN is slightly faster
than either method since it exploits multirate behavior
completely using relatively inexpensive iterations. The
circuit is too small for relaxation methods to be of signif-
icant benefit though, and the classical direct method per-
forms best. The circuits Scdac and Dram exhibit latency
and are coupled, and therefore, ITA is faster than WR,
but WRN with its combined benefits is again faster than
either. The WR algorithm is fastest for the circuit Digfi,
because the partitioner breaks the circuit into completely
unidirectional blocks, and therefore, WR converges in one
iteration. Note that for Digfi, WRN is six times slower
than WR, and WRN proved to be even slower than direct
methods! In Sram, WR is again the fastest, because al-
though there is some localized coupling due to the gate—
source and gate-drain capacitance (which are not in-
cluded in the Digfi example), Sram is essentially unidi-
rectional.

The above results imply that, while WRN is faster for
realistic MOS circuits with local bidirectional coupling,
it is not very effective when used to simulate idealized
MQOS circuits which ignore gate-source and gate-drain
capacitances. To provide stronger evidence of this behav-
ior, Sram was simulated a number of times with a range
of gate-source and gate-drain capacitances, as controlled
by the thin-oxide thickness, tox, values. As Table II dem-
onstrates, as the value of zox increases, and therefore, the
gate-source and gate-drain capacitance decreases, the ra-
tio of the runtime of WRN to WR also increases.

An area of future work suggested by these results is to
consider an algorithm which combines both the standard
WR and WRN methods into one simulator. The choice of
which method to use for a given circuit would then be
based on the unidirectionality and linearity characteristics
of the subcircuits that comprise the circuit. The portions
of the circuit that contain elements with highly nonlinear
device characteristics or exhibit predominantly unidirec-
tional signal flow could be solved using WR while the
remaining portions that feature moderate coupling or
weakly nonlinear device characteristics could be solved
using WRN. This modified WR method is expected to be
even more effective as it exploits the advantages of stan-
dard WR and WRN. However, such an approach will re-
quire a method to automatically select the appropriate al-

TABLE 1
DiRecT VERSUS SPLICE3 VErRsUs RELAX2 VERsus SPLAX

name | Nodes | Direct | . ITA | WR | WRN
Microc 56 31.3 471 | 477 | 418
Scdac 150 290.1 | 302.1 | 355.8 | 278.5
Dram 300 | 650.2 | 582.3 | 861.7 [ 535.9
Sram 129 333.9 | 238.7 | 178.8 | 331.3
Digfi 318 641.1 | 323.8 | 167.0 | 749.5

TABLE I1
RUNTIME RATIOs OF SPLAX TO RELAX2 As fox VARIES

| toz | 1254 | 2504 | 5004 | 10004 | o |
[ Splaz/Relaz2 | 17 [ 185 | 23 | 24 [89]

gorithm for each portion of the circuit and this will likely
be the key research activity for this composite algorithm.

V. CONCLUSIONS

A new circuit simulation algorithm, based on combin-
ing WRN with an iterative step-size refinement scheme,
has been described and implemented in the SPLAX pro-
gram. In addition, a new convergence proof for the WN
has been presented. It has been shown experimentally that
the new algorithm is more effective than the standard WR
method when simulating realistic MOS digital circuits,
and it out performs ITA when simulating moderately cou-
pled, multirate circuits. However, it is not as well suited
to the simulation of unidirectional circuits, for which the
standard WR is more appropriate, and has difficulty on
certain highly nonlinear problems. The results presented
in this paper also identify the key strengths and weak-
nesses of each of the three relaxation-based methods and
the classical direct methods. One area of future research
is to choose the most appropriate method for the simula-
tion of a given circuit based on static information pro-
vided by the partitioner, such as the number of subcir-
cuits, their sizes, and the degree of coupling between
them, and dynamic information, such as the amount of
latency and multirate behavior exhibited over previous
runs and the nature of the device nonlinearities in the cir-
cuit. This is one of the key activities in our current re-
search work. Secondly, the WRN algorithm has certain
features that can be exploited on parallel processors and
this aspect provides an additional advantage over other
methods. Our preliminary results using this approach are
very encouraging and the effective use of parallel proces-
sors to further speedup circuit simulation is another area
of focus in our ongoing research on parallel relaxation-
based circuit simulation.

APPENDIX
PrROOF OF THEOREM 1

The detailed proof of Theorem 1 is somewhat compli-
cated. To avoid an unnecessarily lengthy presentation, but
still convey where the necessary conditions stem from,
several not quite obvious lemmas will presented without
proof.
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The following norm on the space of functions that map
[0, T] — R" will be used throughout the proof.

Definition 1: The B norm on a function v: [0, T] — ["
is defined as max, (o rje~?" |l v (¢) || where B is some pos-
itive number. The 8 norm is denoted by | v ||

Note that the 8 norm is really a continuous family of
norms, one for each positive number B. On the space of
continuous differentiable functions that map [0, T] — ",
all B norms are equivalent

Lemma I: If f:R" — " has a derivative J;: " — 1" ™",
which is Lipschitz continuous with some Lipschitz con-
stant [, then

2
I£G) = £ = H G =] < gllx =y (9)
Lemma 1 can be thought of as a remainder theorem for
the Taylor series.

Lemma 2: Given F(v) as in (2) and Jz(v) as in (3), it
follows that

H )(r) = F())(1) = Jr(y)(x = y)(7) dr |,

(z ) et

for any x, y in the space of continuous differentiable func-
tions that map [0, 7] — R", where I, is the Lipschitz
constant for dq/dv and /, is the LlpSChllZ constant for
ag/av.

Lemma 2 can be derived by exploiting properties of the
B norm [8], and applying Lemma 1.

(10)

Lemma 3: Let v*, v¥*! be two iterates generated by
(4), and F(v) be as given in (2), then

k+1

[ P

< 1,,_,<1 + %) H SO F(0*)(r) dr

where I, _, is the bound on (dq/dv)~"

(11)

Lemma 3 can also be shown using 8 norm properties.
To prove the theorem, let v*, and v**' be the k and
k + 1st WN iterates. Then

], rernin

= F(o)(1) = Je(@") ("7 = o¥)(7) dr |,

<1 +Z>|\v

ol

(12)

by Lemma 2. By definition of the WN algorithm

F(v!)(r) = Jr(0") (0" = 0")(7) = (13)
and therefore, (12) can be reduced to
” Sl F(l]k+l)(T) dr
0
Tl,
<1 + F> [o*+" - v"]lz. (14)
By Lemma 3
1 Tlg ”Uk+2 _ Uk+lHB
lq—l (1 + ?>
< ” SOF(uk)(T) drll, (15)

Substituting into (14) leads to

v,
(1) o

The theorem follows by noticing that the 8 norm of || v
— v*||5 can be made as small as desired by increasing B,
because v¥*'(0) — v¥(0) = 0. The result is that by
picking a B large enough, (16) can be written as

H vk+2 _

T,
21 o

(16)

k+1

k+2 __ (17)
where v < 1 and is a functlon of B, I, _y, I, I, and T.
It, therefore, follows that ¢* is a cauchy sequence, and
therefore, converges.

lof2 = oty < yflott = o
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