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A Mixed Frequency Time Approach
for Distortion Analysis of Switching
Filter Circuits
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Abstract —Designers of switching filter circuits are often interested in
steady-state distortion due to both static effects, such as nonlinearities in
the capacitors, and dynamic effects, such as the charge injection during
MOS transistor switching or slow operational-amplifier settling. Steady-
state distortion can be computed using the circuit simulation program
SPICE, but this approach is computationally very expensive. Specialized
programs for switched-capacitor filters can be used to rapidly compute
steady-state distortion, but do not consider dynamic effects. In this paper
we present a new mixed frequency-time approach for computing both
forms of steady-state distortion. The method is computationally efficient
and includes both static and dynamic distortion sources. The method has
been implemented in a C program, Nitswit, and results from several
examples are presented.

1. INTRODUCTION

N GENERAL, analog circuit designers rely heavily

on circuit simulation programs like SPICE [1] or
ASTAP [2] to insure the correctness and the performance
of their designs. These programs simulate a circuit by first
constructing a system of differential equations that de-
scribes the circuit and then solving the system numerically
with a time discretization method such as backward-Euler.
When applied to simulating switching filter circuits, such
as the switched-capacitor filters used in integrated circuits
or the switching converters used in high-power applica-
tions, the classical circuit simulation algorithms become
extraordinarily computationally expensive. This is because
the period of the clock is usually orders of magnitude
smaller than the time interval of interest to a designer. The
nature of the calculations used in a circuit simulator im-
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plies that an accurate solution must be computed for every
cycle of the clock in the interval of interest, and this can
involve thousands of cycles.

The most common approach to reducing the computa-
tional burden of switching filter simulation is to first break
the circuit up into functional blocks such as operational
amplifiers and switches. Each functional block is simu-
lated, using a traditional circuit simulator, for some short
period. The simulations of the functional blocks are used
to construct extremely simple macromodels, which replace
the functional blocks in the circuit. The result is a much
simplified circuit that can be simulated easily. This simphi-
fied circuit is then simulated for the thousands of clocks
cycles necessary to construct a solution meaningful enough
to verify the design.

In programs specifically for switched-capacitor filters,
like Diana (3] and Switcap [4], the simulation efficiency is
enormously increased by the use of the “slow-clock™ ap-
proximation. After each clock transition, every node in the
circuit is assumed to reach its equilibrium point before
another transition occurs. This assumption, along with the
use of algebraic macromodels, allows the filter to be treated
as a discrete-time system with one time point per clock
transition. A set of difference equations is then used to
describe the filter.

Specialized simulation programs are extremely efficient
for determining frequency- and time-domain response of
switching filters, but macromodels in general, as well as
the “slow clock” approximation, tend to ignore second-
order effects that can change distortion characteristics. In
particular, as switching filters are being pushed to operate
at ever higher frequencies, the assumption that signals
reach equilibrium between clock transitions is often vio-
lated. Also, since signals between clock transitions are not
computed, it is possible to miss events that occur in these
intervals that might interfere with proper operation and
contribute to distortion (e.g., clock feedthrough spikes
causing an operational amplifier to saturate). Lastly, it is
not possible to capture the effects of dynamic distortion
processes, such as the important effect of the channel
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conductance on charge redistribution when a transistor
switch turns off.

In this paper we present another approach to the simula-
tion of switching filter circuits that is efficient for calculat-
ing steady-state distortion, but does not depend on macro-
models or the slow clock approximation. The method
exploits the property of switching filter circuits that node
voltage waveforms over a given high-frequency clock cycle
are similar, but not exact duplicates, of the node voltages
waveforms in preceding or following cycles. This suggests
that it is possible to construct a solution accurate over
many high-frequency clock cycles by calculating the solu-
tion accurately for a few selected cycles.

In the next section we begin by describing our assump-
tions about switching filter circuits and presenting the
mixed frequency-time method. In Section III, we discuss
some of the computations involved in the method. In
Section IV we briefly describe our program, Nitswit, and
present comparison and application results. Finally, in
Section V, we present our conclusions.

II. THE MIXEDp FREQUENCY-TIME METHOD

Very little can be assumed about the behavior of the
node voltage waveforms in a switching filter circuit over a
given clock cycle, because the circuits involved are very
nonlinear and are usually switching rapidly. However, the
node voltage waveforms over a whole clock cycle usually
vary slowly from one cycle to the next, as controlled by the
input signal. This implies that if the input is periodic, and
the switching filter circuit is in steady state, then the
sequence formed by sampling the node voltages at the
beginning of each clock cycle is periodic (Fig. 1). We
derive our method by assuming this to be true, and further
assuming that the periodic function that describes the
sequence of initial points in each clock cycle can be
accurately represented as a truncated Fourier series using
few terms.

If the sequence of initial points of each clock cycle can
be described by a Fourier series with J terms, then once J
initial points are known, all the initial points are known.
This implies that given our Fourier assumption, to com-
pute the steady-state behavior of a switching filter circuit
we need only find the initial points of J clock cycles (a
similar idea in a different context was presented in [5]).

In the next two subsections we describe two relations
that can be exploited to construct a nonlinear algebraic
system of J equations in J initial points (solving this
system is discussed in Section III). The first relation,
described in Section II-A, is derived from the Fourier
series assumption, and is a linear relationship between the
initial points of an evenly distributed set of J cycles and
the initial points of the corresponding J cycles that imme-
diately follow (Fig. 2). The second relation is derived from
solving the differential equation system that describes the
analog circuit, for the time interval of one clock cycle, J
times, each time using one of the distributed set of J initial
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points as an initial condition. This results is another set of
values for the initial points of the following J cycles.
Insisting that this set match the set resulting from the
Fourier relation yields a nonlinear algebraic system in J
unknowns, which can be solved for the J initial points,
and this is described in Section II-B.

A. The Delay Operator

Consider the sequence of initial points of each clock
cycle at some circuit node #n, and denote the sequence by
0,(1),0,(7,),- -+, v,(7s) where S is the number of clock
cycles in an input period (Fig. 1). If it is assumed that this
sequence can be accurately approximated by a truncated
Fourier series, then

K
v(1) =Vo+ ¥ (VEcoskwr, + Vsinkwr,)
k=1

(1)

where  is the fundamental frequency of the input signal,
K is the number of harmonics, and J=2K +1 is the
number of unknown coefficients. Given (1), there is a
linear relation between any collection of J initial points
and any other collection of J initial points. However, as
mentioned above, we are most interested in the linear
operator that maps a collection v,(7, ), -, 0,(T,) into
v, (7 +T),"*+,0,(7, +T) where T is the clock period and
{m, - -,m,} is a subset of {1,---, S} (Fig. 2). This linear
operator will be referred to as the delay matrix.

Deriving the delay matrix is a two-stage process. First,
the J points v(7,),---,v(7, ) are used to calculate the
Fourier coefficients. Then the Fourier series (using these
coefficients) is evaluated at the J times, T+ 1,1, ;T T.
The Fourier coefficients are then eliminated to yield the
desired direct relation. To compute the Fourier coeffi-
cients, write (1) as a system of J linear equations in J
unknowns [6]:

TR .
0
VC Un(Tnl)
1 v (
VS n\’'n,y
-1 1 _ ( ) (2
I | =ulm, )
< :
VS Un(T'qj)
LK ] - N
where I'"' € ®7/*/ is given by
1 coswT,  sinwT, cos Kwr, sinKwr,
1 coswT, SINwT, cosKr.wr,,Z smKw'rle
1 COswT,  SINWT, cos Kwr, ~ sin KoT,
_1 coswT,  SINWT, cosKw*rm sin K‘M”u
(3)
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Fig. 1. Response of a switching filter circuit to a periodic function, with the initial point of cach cvele denoted.
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Fig. 2. Discrete waveform that is constructed by sampling the response of a circuit at the initial point of cach clock cvcle.
Also shown are the J cycles that calculated in detail.
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The matrix I'"! maps the Fourier coefficients to a
sequence and is referred to as the inverse discrete Fourier
transform. If the times Ty "> Ty, AI€ reasonably evenly
distributed over one period of the input signal, then I' ! is
invertible (for example, see [5]). Its inverse, the forward
discrete Fourier transform, is denoted by T'. We can also
write

[ T - -
Yo | Toln+1)
v,
Vls Un(7n2+ T)
Y1) ' =] o5, +T) (4
ve :
_Vlf_ ﬂv,,('r,"+T)7

where I'"}(T) € ®/*/ is given by

1 COSw(Tm+T)
1 cosw(r, +T)
1 cosw(, +T)

1 cosw('rm +T)

Given a sequence, a delayed version is computed by apply-
ing I' to the sequence to compute the Fourier coefficients,
and then multiplying the vector of coefficients by I'"Y(T'):

v,,('rm+T) v,,('rm)
o7, +T _ v, (T,
Rl T R T
u,,('rm+T) Un(Tn;)
Thus, the delay matrix 2(T) < R7*/ is defined as
2(T)=r"YT)r (7)
As the delay matrix is a function only of w, K,
{7y "7, }, and T it can be computed once and used for
every node.

B. The Differential Equation Relation

We assumed that any switching filter circuit to be simu-
lated can be described by a system of differential equa-
tions of the form

d

—a(v(1),u(1))+i(v(1), u(1)) =0 (8)

where v(r) € R¥ is the vector of node voltages, u(z) € RM

sinw('r,h+ T)
sinw (7, +T)
Sinw('rn3+ T)

sinw (7, +T)
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is the vector of input sources, q(v(1),u(z))€R" is
the vector of sums of charges at each node, and
i(v(2), u(t)) ERY is the vector of sums of currents enter-
ing each node. If the node voltages are known at some
time t,, it is possible to solve (8) and compute the node
voltages at some later time #,. In general, one can write

v(ty) =¢(v(10).1.1,) (9)

where ¢ is referred to as the state transition function for
the differential equation and can be expanded as

o1(v(ty). 10, 11)

¢(v(1), 20, 1,) = : (10)
oy (v(10), 19, 11)
where ¢,: RV*1*1 5 R for all nodes n € {1,---, N }.
sian(frm—FT)_
sian('rnz+ T)
Sian(TTl3+ T) (5)

sin Kw(‘rm +T)

Now reconsider the J initial points at some circuit node

n, v,(7, ), -, v,(7, ) (Fig. 2). For each j & {1,---,J} and
each n E {1 -, N'} we can write
v"(Tm-i-T) ( (1' ), o> T, +T) (11)

where T is the clock period. Note that v (T, +T) is the
initial point of the cycle immediately followmg the cycle
beginning at Tor Also, the node voltages at 7, can be
related to the node voltages at T, t T by the delay matrix
2(T). That is,

Un(Tnl)

Un(Tnl'f‘T)

I

2(T) (12)

0,(,)

Un(Tnj + T)

It is possible to use (11) to eliminate the v, ( 7, + T) terms
from (12), which yields

(7,
am)| |-
(7))

( (T ) Tor Ty +T)
: (13)
<l’n(U(TTIJ)’TTU

o Ty, T T)
foreach ne {1,---, N }.
The collection of equations given in (13) is a system of

NJ equations in NJ unknowns, in which the unknowns are
the N vectors of node voltages at the beginnings of J
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v
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Fig. 3. Simple switched-capacitor RC low-pass filter.

cycles. Note that since this system of equations was con-
structed assuming the truncated Fourier series in (1) was
exact, the computed initial points will only approximate
the exact steady-state solution. Finally, note also that once
the J initial points are computed, the Fourier coefficients
in (1) can be found easily by multiplication by T, and
therefore distortion harmonics are directly available.

C. A Simple Example

As a simple example of the mixed frequency-time algo-
rithm, consider the simple switched-capacitor RC one-pole
filter shown in Fig. 3. It is easy to show that

Clvm ( Ts ) + C2U ( s )

¢I(U(TS')*TY7Ts+T)= C.+C
1 2

(14)

Since the circuit is linear, it is only necessary to consider
dc and the fundamental in the solution, and so only three
samples are needed. Assume the fundamental is 1 Hz and
the clock is 6 Hz, and choose the samples to be taken at
1={0,4,%). Then

1 cosO  sin0 |
I'=|1 cos® sin3 (15)
|1 cos¥ sin?
[1 cos?  sin% |
L'T)=|1 cosm sinw (16)
|1 cos’ sin |

and D(T)=T"YT)I. Substituting into (13)

U(To)
D(T){ v(r)

()

Croiu(m0) + Coo(1y)
C]Uin(TZ) + CZU(TZ) .
CIUIII(T4) + C2U(T4)

1
G+ G,

(17)

By giving values for €, C,, and v,,(7,) for s =0,2,4,
this linear equation is easily solved for v(1,).
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III.  SoLUTION BY NEWTON—RAPHSON

The collection of equations given in (13) can be reorga-
nized into a system of NJ equations in NJ unknowns as

Ul(Tm) Ul(Tm)
on(m,) on ()
F =2y(T) :
Ul("n,) Ul(’rm)
on(r,) ou(n,)
(i)l(U(Tm),Tm,'rm+T)
¢/V(l)(7ﬂ1)’TW1'TU1+T)
- 5 (18)
¢1(U(TW./)'TTU’T'7/+T)
_¢VV(U(TTI.7)’TTII'T71J+T) ]
and
v(r,)
F =0 (19)
o(r,,)
where F: ¥ > R and 2, € RV >V is given by
dyly dijly
Du(T)=1| : (20)
dydy dyly

where d,, € R is the jjth element of the delay matrix
9(T), and I, € RVXV is the identity matrix.

Applying Newton’s method to (18) leads to the iteration
equation

13 [+1 (D W
oD (n ) [ 00, ) = o, ) o ()
Jr =-F :
U(l)(TTU) UU*I)(TTU)_U(/)(TW./) l‘(l)(TﬂJ)
(21)

where / is the iteration number and J, € RY*" is the
Frechet derivative of F given by

3(1)(0(1',“),7"1,7"] + T)
60([,“) ’
- 3¢(U(Tﬂj)’7n/’Tn/ +T)
’ Elv(tm)

There are two important pieces to the computation of
one Newton iteration: factoring the matrix J,, which is
sparse, and evaluating Jr and F. which involves comput-
ing the state transition function ¢(z(r, ). T Ty, T T) and

9, (T)—diag

(22)
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its derivative for each j € {1,---, J}. The state transition
functions can be evaluated by numerically integrating (8)
over the J periods. The derivatives of the state transition
functions, referred to as the sensitivity matrices, can be
computed with a small amount of additional work during
the numerical integration [7].

To show how the computation of the state transition
function and its derivative fit together, consider numeri-
cally integrating (8) with backward Euler, which we chose
for simplicity and because it appears to be one of the best
formulas for switching filter circuits. Given some initial
time ¢, and some initial condition v(z,), applying back-
ward-Euler to (8) results in the following algebraic equa-
tion:

£l + 1), 0(10)) = (a0t + 1) = a(0(10))
+i(v(tyg+h))=0 (23)

where h € R is the time step. Note that we have dropped
explicitly denoting the dependence of ¢ and i on the input
u for simplicity.

Equation (23) is usually solved with Newton—Raphson,
for which the iteration equation is

J(0D (19 + ) (00D (1 + h) = vP(14+ b))
== f(0P(1o+ k), 00 (t5)) (24)

where / is the iteration index and J;(v(¢)) € R¥*V is the
Frechet derivative of the nonlinear equation in (23) and is
given by

af(v(1),0(ty)) 1 dg(v(1)) di(v(1))
) =0 "% e )
(25)

Solving (23) yields an approximation to v(¢,+h)=
d(v(ty), tg, to + h). Implicitly differentiating (23) for
v(ty+ h) with respect to v(z,) yields

dv(ty+h) 1 aq(v(ty)) dv(t,)

J(v(1+ h)) (26)

du(t))  h du(ry) do(zy)
Note here that
dv(ty) .
dv(t,)
is the identity matrix and in general
dv(ty+h) R
dv(ty)

is not the identity.

Given v(ty), (23) can be repeatedly applied to find
v(to+T)=¢(v(2y), 1y, to+ T), and (26) can be repeatedly
applied to find the sensitivity matrix dv (¢, + T')/dv(t,y) =
dp(v(ty), tg, 1o+ T)/3v(ty). Note that J, is required in
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both (24) and (26), and thus the sensitivity matrix update
can be made more efficient by factoring J; once and using
it for both computations. However, the sensitivity matrix is
still expensive to compute, because it is an N X N full
matrix. We return to this point at the end of Section IV.

IV. IMPLEMENTATION IN Nitswit

Both the classical direct methods and the mixed fre-
quency-time methods have been implemented in the simu-
lation program Nitswit, which is written in the computer
language “C.” Nitswit takes as input a file with a SPICE-
like description of the circuit, that is, a list of elements
(MOS transistors, resistors, capacitors, etc.) with their node
connections, and a list of options to select among methods.
If the mixed frequency—time method is used, a switching
clock period and an input frequency, along with a number
of harmonics, must be specified. The program produces
output waveforms as in Fig. 1 for direct methods, and
waveforms as in Fig. 2 and Fourier coefficients for the
sampled waveforms with the mixed frequency—time algo-
rithm.

The details of the steps used in Nitswit program are
described above, and a summary of the steps is given in
the following algorithm:

Nitswit Algorithm for Steady State
The superscript | is the iteration count and ¢ is a small
positive number.
1< 0.
Select J clock cycles.
Guess v°(1, ), -, 0%(,).
repeat {
le<1+1.
foreach (j € {1---J}){
Numerically integrate cycle j with
the initial condition v/~ (7, ) to
compute v/} 7,,+T) and ‘the sensitivity matrix.

}
If max [[v'" Y, + T) = D(T)v' (1)l <e,
je{l, -, J} J J
leave.
Compute
i i -1 1-1
v(.'rm),”-,v('r,“)fromu (79,)s " 550 (Tn,)
as in (17).
)
A. Application Examples
Nitswit is particularly efficient when simulating

switched-capacitor filters. One reason is that switched-
capacitor filter are usually followed by a sampler, and so
only the initial point of each cycle is needed. Also, the
circuits are generally designed to exhibit little distortion,
so if driven by a sinusoid, only a few harmonics of the
sequence of initial points are significant and only a few
full clock cycles need to be computed. Finally, the state
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Fig. 4. Fully differential switched-capacitor sample-and-hold amplifier {8].
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transition function for a switched-capacitor filter over a
clock cycle is nearly affine (linear plus a constant), and
therefore the Newton method in (21) converges in just a
few iterations.

To demonstrate the effectiveness and versatility of the
algorithms used in Nitswir, we consider analyzing the
distortion of an unusual switched-capacitor circuit. Fig. 4
shows a high-speed fully differential switched-capacitor
sample-and-hold amplifier [8]. This circuit precedes an
analog-to-digital converter and has all three characteristics
mentioned above. To measure the distortion of this circuit
a sine wave is applied to the input and a periodic clock is
applied to the sample/hold input. The output signal is
then sampled at the end of each hold interval and a
Fourier series is constructed from the sampled signal.
Sampling of the output at the end of the hold interval is
appropriate and eliminates settling effects resulting from
transitions of the sample/hold signal that are ignored by
the analog-to-digital converter.

Fig. 5 shows the operational amplifier used in the sam-
ple and hold of Fig. 4. The combined circuit contains 65
nodes. The distortion of this circuit was measured with
Nitswit versus the amplitude of the input signal (Fig. 6)

7

b

CMBIAS

Operational amplifier used in the sample-and-hold amplifier of Fig. 4 [8].

and versus the sample/hold clock frequency (Fig. 7). Of
particular interest to the designer is the distortion versus
clock rate. This is a quantity that cannot be determined
except with a circuit-level simulator such as Nitswit or by
measuring the actual circuit.

The Fourier series (1) for the sampled signal was trun-
cated after three harmonics. For the case where the input
was a 2-V differential 500-kHz sine wave and the
sample /hold clock rate was 10 MHz, this gave results that
were identical to direct methods to within the truncation
error of the integration method.

As another example of the capability of Nitswir, a
single-pole switched-capacitor low-pass active filter with a
clock of 500 kHz, a bandwidth of 30 kHz, and an input
frequency of 20 kHz was simulated. Tables 1 and II show
the distortion that results as a function of nonlinearities in
the capacitor and the finite rise and fall time of the clock
waveforms. To simulate the effect of nonlinear filter capac-
itance on distortion, the filter capacitors are assumed to be
first order voltage-controlled nonlinear capacitors with ca-
pacitance ¢ = ¢y(1+ av,). In Table 1. the distortion, specif-
ically the magnitude of the second and third harmonics. is
given for several different values of a. The distortion for
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Fig. 6. Distortion of the sample-and-hold amplifier as a function of
input signal amplitude. The input signal frequency is 500 kHz and the
sample /hold clock rate was 10 MHz.

i Fundamental 7

0dB 4
04| Third Harmonic |

40 dB} 1

- Second Harmonic

60 dB [ b
80dB | 1

1 1 L
5.0 MHz 10.0 MHz 20.0 MHz
Fig. 7. Distortion of the sample-and-hold amplifier as a function of

sample /hold clock frequency. The amplitude of the input signal is
1.25-V differential and its frequency is 500 kHz.

TABLE 1
Nitswit RELATIVE DISTORTION RESULTS FOR A SWITCHED-CAPACITOR
Low-Pass FILTER AS A FUNCTION OF INCREASING
FILTER CAPACITOR NONLINEARITY

a — Second Harmonic — | — Third Harmonic —
0.001 0.00057 0.00010
0.01 0.0014 0.00007
0.1 0.0101 0.00024
TABLE 11

Nitswit DISTORTION RESULTS FOR A SWITCHED-CAPACITOR
Low-Pass FILTER AS A FUNCTION OF INCREASING
Crock RiISE AND FaLL TIME

Rise/Fall Time | — Second Harmonic — | — Third Harmonic —
Ins 0.000020 5.99e-7
10ns 0.00020 0.000037
100ns 0.0018 0.000054

the same low-pass filter circuit with linear filter capacitors
is given as a function of the clock rise and fall time in
Table II.

B. Comparison to Direct Methods

The program Nitswit contains two algorithms capable of
finding the steady-state response of a circuit. The first is
simply a transient analysis that is continued until a steady
state is achieved. The second, of course, is the mixed
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T T T T T
10000 s | J
Direct
1000 s | 4
MFTA
100s + ]
L L L ) ; 5
10.0 kHz 100.0 kHz 1.0 MHz

Fig. 8. Time required for simulation of sample-and-hold amplifier to
steady state versus input frequency using direct methods and the mixed
frequency—-time algorithm (MFTA). These times were measured on a
HP9000,/370 with a floating-point accelerator.

TABLE III
Nitswit RESULTS FROM A VAX 8650 RUNNING ULTRIX 2.0
circuit direct mixed frequency-time

name nodes cycles/ | time | harmonics, Newton time

period | (sec) iterations  (sec)
sclpf 2 33 245 3 3 43
scop 13 100 522 3 6 90
mizer 34 1000 7132 3 4 161
Jrog 77 1000 | 12,987 3 6 1228

frequency-time algorithm. Coding both algorithms into
the same simulator provides a fair evaluation of the
mixed-frequency approach.

Fig. 8 shows the time required to compute the steady
state of the sample and hold of Fig. 4 as a function of the
input signal frequency for both direct methods and for the
mixed frequency—time algorithm. The amplitude of the
input signal is 1.25-V differential. The sample/hold clock
is fixed at 5 MHz and three harmonics of the sampled
signal are computed. This figure shows that the time
required for the mixed frequency-time algorithm is roughly
independent of the frequency of the input signal whereas
the time required for direct methods is proportional to the
ratio of the clock frequency to the input frequency.

Results for four circuits are given in Table III. The first,
sclpf, is an RC one-pole SC filter. The second, scop, is a
one-pole active CMOS low-pass filter. The circuit mixer is
a double-balanced switching mixer with a 1.001-MHz RF
input signal and a 1-MHz LO signal. This circuit shows
that Nitswit is not limited to switched-capacitor circuits.
The last circuit, frog, is a five-pole Chebyshev active
CMOS leapfrog filter with 0.1-dB ripple. This circuit is
driven with a 1-MHz clock, has a 20-kHz bandwidth, and
is being driven with a 1-kHz test signal to measure its
distortion.

Examination of the results above indicates as much as
an order of magnitude speed increase over traditional
methods, but this is not as much as one would expect. One
of the reasons is that these simulations were performed
with a SPICE level 1 MOS model modified to conserve
charge. This model was chosen simply because it was easy
to implement. However, it is generally considered to be too
inaccurate to be suitable for analog circuits. Since the
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mixed frequency—time algorithm has extra overhead that
tends to hide the time required for model evaluation, it is
expected that the algorithm should do better with respect
to direct methods when a more accurate (and therefore a
more complicated) model is used. Also much of the CPU
time for large circuits, such as frog, is spent calculating the
dense sensitivity matrix and factoring the Jacobian in (22).
It does turn out, however, that almost all the entries of the
sensitivity matrix are near zero, and this suggests signifi-
cant speed improvements can be achieved by ignoring
those terms.

V. CONCLUSION

A new efficient mixed frequency-time approach to com-
puting steady-state and intermodulation distortion of
switching filters without resorting to macromodeling or the
slow-clock approach has been presented. The method works
by computing the solution to the differential equation
system associated with a circuit for only J clock cycles,
where J is the number of coefficients needed in the Fourier
series to represent accurately the sequence of initial points
in each clock cycle. Thus, this method is particularly
efficient when the number of coefficients in the Fourier
series is many fewer than the number of clock cycles in
one input signal period.

Since our approach finds the steady-state solution di-
rectly and performs a circuit-level simulation, it is capable
of accurately predicting distortion performance. This mixed
frequency—time approach can also be used when the input
consists of the sum of two periodic signals at unrelated
frequencies. Thus, the intermodulation distortion can be
directly computed, which is particularly useful for band-
pass filters. Also, the fact that steady state is computed
directly implies an additional advantage over transient
methods when high-Q filters are simulated. One final
point: the mixed frequency-time method can also be
adapted to the macromodeling approach used in other
switching filter simulators, accelerating those methods as
well when the steady-state solution is desired.

Future work on this method will be to adapt it to other
traditionally hard-to-simulate circuits like switching power
supplies and phase-locked loops. Another important aspect
of this algorithm is that, upon examination of (18), it is
clear that the J integrations of the differential equation to
compute the J ¢’s and their derivatives are independent.
Therefore, the mixed frequency-time algorithm is ex-
tremely well suited to implementation on a parallel proces-
sor.
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