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Accelerated Waveform Methods for Parallel
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Abstract— Simulating transients in semiconductor devices
involves numerically solving the time-dependent drift-diffusion
equations, usually in two or three space dimensions. Because of
the computation cost of these simulations, methods that perform
careful domain decomposition so as to exploit parallel processing
have received much recent attention. In this paper, we describe
using accelerated waveform relaxation (WR) to perform parallel
device transient simulation using both clusters of workstations
and the IBM SP-2. The accelerated WR algorithms are compared
to pointwise direct and iterative methods, and it is shown that
the accelerated WR method is competitive on a single processor.
In addition, it is shown that with a domain decomposition chosen
for rapid iterative method convergence rather than parallel
efficiency, the pointwise methods parallelize poorly but the
WR method achieves near linear speedup (with respect to the
number of processors) on the IBM SP-2.

I. INTRODUCTION

HE GROWING importance and computational expense

of performing semiconductor device transient simulation
and the increasing availability of parallel computers suggest
that parallel algorithms be developed and used for this prob-
lem. Results in [1] and [2] demonstrate that SIMD type parallel
machines can be used effectively for device transient simula-
tion. However, special-purpose SIMD machines have not been
cost-effective enough (in terms of hardware or software) to
gain wide-spread use and it seems that instead, the near-term
future of parallel computing will be dominated by medium-
grain MIMD machines. One striking feature of many modern
MIMD machines is that the computing power in the nodes
is typically provided by workstation level microprocessors.
Indeed, workstation clusters are themselves a viable parallel
computing resource and with the advent of machines such as
the IBM SP-1 and SP-2, the distinction between workstation
clusters and “real” parallel machines becomes increasingly
blurred. Because the computing nodes of loosely coupled,
workstation-based parallel computers are themselves general
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purpose computers, the advantages of these parallel machines
are low-cost and high general utility. The disadvantages of
these machines, particularly of workstation clusters, are high
communication latency and limited communication bandwidth.

To obtain high parallel performance on a loosely coupled
MIMD parallel computer, it is critical that a numerical method
avoid frequent parallel synchronization [3]. For the applica-
tion of semiconductor device transient simulation, this has
been achieved by careful domain partitioning, for example
see [4]. The waveform relaxation (WR) approach to solving
time-dependent initial-value problems reduces parallel syn-
chonization using an almost orthogonal approach to careful
domain partitioning. The iterates are vector waveforms over
an interval, rather than vectors at single timepoints [5]-[7].
As with any iterative scheme, overall computational efficiency
of WR depends on rapid convergence, and there have been
several investigations into accelerating WR [5], [8], including
using multigrid [9], [10], Krylov-subspace [11], [12], and con-
volution successive overrelaxation (CSOR) techniques [13].

In this paper, we extend the results in [11]-[14] and provide
experimental results using waveform methods on two different
parallel machines (a cluster of SPARC workstations and an
IBM SP-2) for performing transient simulation on a variety
of MOS devices. The experimental results show that parallel
waveform methods are far less sensitive to domain partitioning
than parallelized versions of the standard serial approach for
performing device transient simulation. The strong implication
of the results is that, as MIMD machines (especially work-
station clusters) become more prevalent, waveform methods
will gain in importance for all areas of computational science
and engineering that require the solution of time-dependent
problems.

We want to emphasize that we are not attempting to develop
the best parallel device simulator in this paper. Rather, we
wish to carefully study a number of waveform and pointwise
methods using the same device simulator and domain par-
titioning, so as to understand the effects of different parallel
environments on pointwise versus waveform methods. Thus, to
the greatest extent possible, we are attempting to compare only
these numerical algorithms (keeping all else about the device
simulation process constant) using a simulation program that
incorporates most, but not all, of the important semiconductor
device physics. So, the waveform methodologies presented
here are general strategies for increasing the parallel perfor-
mance of time-dependent problems. In this paper, we show
the experimental results for accelerated waveform methods
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applied to a particular device simulator using particular dis-
cretization and having particular physical models. However,
the waveform approaches themselves are independent of these
and the approaches presented here would certainly be appli-
cable to, e.g., simulators with more sophisticated physics and
with unstructured meshes.

We begin in Section II by reviewing the transient simu-
lation of semiconductor devices. In Section III, we review
ordinary WR and the standard serial methods used to solve the
device equations. We then discuss two of the most effective
acceleration techniques for waveform methods, namely CSOR
and Krylov-subspace acceleration. Finally, in Section IV, we
apply the methods to device simulation on both serial and
parallel machines, and give conclusions and acknowledgments
in Sections VI and V.

II. DEVICE TRANSIENT SIMULATION

Charge transport within a semiconductor device is assumed
to be governed by the Poisson equation, and the electron and
hole continuity equations

kT
?V (eVu)+glp—n+Np—Ns)=0

op
V-J,,—I—q(at—i—R)

where u is the normalized electrostatic potential in thermal
volts, n and p are the electron and hole concentrations, J,,
and J,, are the electron and hole current densities, Np and
N, are the donor and acceptor concentrations, R is the net
generation and recombination rate, ¢ is the magnitude of
electronic charge, and ¢ is the spatially dependent dielectric
permittivity [15], [16].

The current densities J,, and J, are given by the drift-
diffusion approximations

kT
Jn = ~qpmn V(T u) +qD,Vn
q
= —kTp,nVu+¢D,Vn
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where 11, and p, are the electron and hole mobilities, and D,
and D, are the diffusion coefficients. The mobilities 1,, and
tp may be computed as nonlinear functions of the electric

field E, e.g.
3
E
fhn = lng lil + (@L)
Vsat

where v+ and 3 are constants and u.,,, is a doping-dependent
mobility [17]. The diffusion constants D, and D, are related
to the mobilities by the Einstein relations

kT

= — L
q P

—(1/8)

T
D, = % fn and D,

717

Using the Scharfetter-Gummel method [18] to spatially
discretize an N-node rectangular mesh covering a two-
dimensional slice of a MOSFET yields a sparsely coupled
differential-algebraic initial value problem (IVP) consisting of
3N equations in 3N unknowns, denoted by

F(u(t),n(1), ()) =0 u(0) =wug
dn(t) + Fa(u(t),n(t),p(t)) =0 and n(0) =mno (1)
P(O) =P

i )
5ip(t) + Fs(u(t),n(t),p(t)) =0
n(t

where ¢ € [0,7), and u(t),n(t),p(t) € RV are vectors of
normalized potential, electron concentration, and hole con-
centration. Here, F1,Fy, Fy : R — RY are specified
component-wise as
Fl{ (U'L Ty Piy “’j)

kT dijei;
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@
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The sums above are taken over the silicon nodes j adjacent
to node 7. For each node j adjacent to node i, L;; is the
distance from node 7 to node j, d;; is the length of the side
of the Voronoi box that encloses node 7 and bisects the edge
between nodes ¢ and j, and €;5, fin,,;» and p,, ; are the dielectric
permittivity, electron, and hole moblhty, respectlvely, on the
edge between nodes ¢ and j. The Bernoulli function, B(z) =
x/(e® — 1), is used to exponentially fit potential variation
to electron and hole concentration variations, and effectively
upwinds the current equations.

III. ACCELERATED WAVEFORM METHODS

The standard approach used to solve the differential-
algebraic equation (DAE) system (1) is to discretize the
system in time with a low-order implicit integration method
such as the second-order backward difference formula.
For an N-node mesh, the resulting sequence of nonlinear
algebraic systems in 3N unknowns is typically solved with
some variant of Newton’s method and/or relaxation [15],
[19]. This approach can be disadvantageous for a parallel
implementation, especially for MIMD parallel computers
having a high communication latency, since the processors
will have to synchronize repeatedly for each timestep.

A more effective approach to solving (1) with a parallel
computer is to decompose the DAE system into subsystems
before time discretization. The system is then solved itera-
tively by solving the subsystems independently, using fixed
waveforms from previous iterations for the variables from
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other subsystems. This dynamic iteration process, applying
relaxation directly to the DAE system, is known as WR [7]
or as the Picard-Lindelof iteration [5]. Applying WR to the
device simulation problem yields Algorithm 3.1 [14] at the
bottom of the page.

The WR algorithm has several computational advantages.
Since it is an iterative method, WR avoids factoring large
sparse matrices. WR can exploit multirate behavior, using
different timesteps to resolve different solution components.
Finally, WR is well suited to parallel computation, because
of a low communication/computation ratio. However, when
applied to solving the device simulation equation system
(1), the WR algorithm converges slowly, unless acceleration
techniques are applied [11], [14]. In the following two sections,
we review two of the most effective acceleration techniques
for WR, namely CSOR [13] and Krylov-subspace acceleration
[11].

CSOR

CSOR is a waveform extension of the standard linear
algebraic successive overrelaxation (SOR) technique, and has
been shown to dramatically accelerate the convergence rate of
WR for devices [13]. The CSOR algorithm is most readily
described in the context of numerically solving the linear
time-invariant initial-value problem

((jt —|»A> (t) =b(t) with =z(0) ==z )

where A € R™*"™, b(t) € R™ is given for all ¢ € [0,77], and
z(t) € R™ is to be computed.

A WR algorithm using CSOR for solving (6) is shown
in Algorithm 3.2. In iteration k£ + 1, each waveform x"’* !
is computed as in ordinary Gauss—Seidel WR, and then is
moved slightly farther in the iteration direction by convolution
with a CSOR function w(t). The motivation for this approach
is that in the frequency domain the initial-value problem is
a linear system which can be solved with SOR having an
optimal over-relaxation parameter at each frequency. This
frequency-dependent SOR in the frequency domain translates
to convolution in the time domain.

Algorithm 3.2 (Gauss—Seidel WR with CSOR Acceleration)
1) Initialize: Pick vector waveform z°(t) ¢ (R™,[0,T])
with £°(0) = .

2) Iterate: For k = 0,1, - until converged
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Solve: For scalar waveform 2 (t)
with 251(0) = o,

d+a
d Z’L

e (R,[0,7])

Z iy’

Overrelax: To generate 7 (¢) € (R, [0,7]):
¢
(1) - 2 (1) +/ W) [0t~ 7)1 = )] ar.
' ©)

In a practical implementation, the CSOR method is used
to solve a problem that has been discretized in time with a
multistep integration method. The overrelaxation convolution
integral (8) is replaced with a convolution sum

+Z

Like the standard algebraic SOR method, the practical diffi-
culty is in determining an appropriate overrelaxation parame-
ter, in this case, sequence w[m].

To determine the CSOR sequence w[m], consider the linear
IVP (6) discretized in time with the backward Euler method
and globally uniform timesteps h. This reduces the linear IVP
to a sequence of algebraic systems, one at each time point

z[m] — z[m —

1 _
3 = b[m]

where z[m] denotes the discrete approximation to z(¢) at
t = mh. Taking the unilateral z-transform of both sides of

(10) yields
< I+A>x(z) = b(2)

where z € C [20]. Using the relaxation splitting A
D — L —U, where D, L and U are the diagonal, strictly
lower triangular and strictly upper triangular pieces of A,
the Gauss—Jacobi WR iteration equation may be written as
Az (2) = Hgs(2) Ax*(z), where

Hgy(z) = (

and Azhl(2) = 2P (2) — £5(2). Clearly, the spectrum of
Hgs(z) depends on z.

z

:cl?H[

% Ak-H m

f—zkm —1]).

+ A z[m]

with  z[0] ==z¢ (7)

1—z71

1-z71

-1
I—i—D) (L+U)

Algorithm 3.1 (Gauss—Jacobi WR for Device Simulation)

1) Initialize: Pick u%, n%, p° waveforms at all nodes.
2) Iterate: For k = 0,1,--- until converged

e [Iterate: For each node i, solve for qu f“,p’“ 1 waveforms:
Fl ( 7 n; ’pf+17 ) = 0 uk'H O) = Uy,
jthi(t) + Py (uft i 1 phtt uf,nf = 0 with nkJri(O) = ng,
L)+ Fi(u H’pi suf,ph)y =0 p;(0) = po,
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In a result reminiscent of classical SOR theory [21], [22], it
can be shown that for a common, but restricted, class of matri-
ces A, the z-transform w,p¢(2) of the optimal CSOR sequence
woptm] for solving the linear IVP (10) with Algorithm 3.2
may be expressed as

2

14+ /1= (2)?

where ji(z) is the largest-magnitude eigenvalue of the
Gauss—Jacobi WR operator Hgj(z) [13]. Fortunately, the
CSOR method inherits some of the robustness of the algebraic
SOR method, and the optimal parameter formula (11) can
be successfully applied to a wider class of problems such
as (1). Like implementations of the algebraic SOR method,
the primary practical difficulty of computing wWopt[m] 18 in
computing a close approximation of the Gauss—Jacobi WR
largest-magnitude eigenvalue p;(z). This problem is made
more difficult by the eigenvalue’s z-dependence.

One successful approach is to compute wp[m] before
beginning any WR iterations. First, power iterations are used
to estimate the largest-magnitude eigenvalue p;(z) at several
specific values of 2 (e.g., z = 1,—1,00,---). Note that for
real values of z, this simply amounts to adding (1 — 271)/h
to the diagonal elements of A and computing the algebraic
Gauss—Jacobi spectral radius. These values of y1(z) are used
in formula (11) to compute values of wep(2). Next, the
computed values of w,,:(%) are fitted by a ratio of low-order
polynomials in 27+

®

wopt(z) =

M _k N
bz ™"
— Zk:o k< Ck - )

wopt(2> ~ ZkT:O akz'k Pt 1 —rpz—

Finally, the inverse z-transform is applied, yielding

\T
Wopt|M] & Z Crry
k=0

Note that because the resulting wop:[m] is a simple sum
of exponentials in time, the computational expense of the
overrelaxation convolution is reduced to that of only a few
multiplications and accumulations at each time point. A sum-
mary of the computation of wep:[m] is given in Algorithm
3.3.

Algorithm 3.3 (Approximation of wopt[m])

1) Compute p1(z) = p(Hg(2)): For several values of z

(eg,z=1-1,00,-).
2) Computeé‘ The corresponding values of wopi(2) =

L+ /1 —(2)?

3) Fit: A low-order rational function to the values of
Wopt(2).

4) Compute: The inverse z-transform wype[m] = Z7°

wopt (%) with partial fraction expansion.

Of course, because the device simulation problem is non-
linear, the CSOR theory does not directly apply. And even
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when the time-discretized problem is linearized about some
point, the linearization is time-dependent, and the resuiting
matrices, though block consistently ordered, do not necessarily
satisfy the conditions of the optimal CSOR parameter the-
ory. Nevertheless, the CSOR method is sufficiently robust in
practice so that it can successfully be applied to the device
problem. To obtain the results of Section V, the “optimal”
CSOR parameter was determined by linearizing the device
problem about the solution at time zero, and fitting Wopt(#)
with a rational function as described above. Also, to diminish
the effect of the nonlinearity, the overrelaxation convolution
was applied only to the potential variables .

Krylov-Subspace Techniques

A compact description of WR for solving (6) is shown in
Algorithm 3.4 (with the splitting A = M — N).

Algorithm 3.4 (WR for Linear Systems)

1) Initialize: Pick z°

2) Iterate: For k = 0,1, -- until converged

(4 + M)z (1) = Nz*(t) +b(2)

Solve 0) =

for £F+1 on [0,7].
The solution z to (6) is thus a fixed point of the WR
algorithm, satisfying the integral operator equation
(I-K)x=1. (10)
Here, we define (13) on the function space H =
Lyo([0,T),RY), T : H — H is the identity operator,
K : H — H is defined by

t
(Kz)(t) = / =M Ng(5)ds
0
3 € H is given by

B(t) = e Mz(0) + /0 om0 M b(s)ds.

WR for solving (13) is expressed in operator equation form
simply as
25 = Kab + 4. an
Since for any finite interval [0, T'], the operator X is a Volterra
integral operator (and thus has zero spectral radius [23]), this
process will ultimately produce iterates z¥ that converge to
the solution z of (13), or equivalently, to the solution of (6).
A more detailed analysis of convergence can be derived by
considering (13) on the interval [0, c0) in which case X has
nonzero spectral radius [5].
As shown in [12], Krylov-subspace methods can be applied
to (13) to accelerate the convergence of WR, but as K is

not self-adjoint, a variant suitable for nonself-adjoint operators
must be used. One such method is waveform GMRES (WGM-
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RES), an extension of the generalized minimum residual
algorithm (GMRES) [24] to the space H and is shown in
Algorithm 3.5.

Algorithm 3.5 (Waveform GMRES)

1) Start: Setr0 = o — (I-K)z°, o' = r°/||r°|], 8 = |||

2) Iterate: For k = 1,2,-- -, until converged:

o hjp=(I-KWkv), i=1,2 -k
o = (1 = K)ok - 8 Ry

© gy = [[0FT)
. ,Uk+1 — 'f}k+1/hk~+1,k

3) Form approximate solution:

«  zF = 20+ V', where y* minimizes ||fe; —

o'y
The two fundamental operations in Algorithm 3.5 are the

operator-function product, (I — K)p, and the inner product,
(-,-). When solving (13) in the space H, these operations are
as follows:
Operator-Function Product: To calculate w = (I — K)p:

1) Solve (£ + M)y = Np with y(0) = p, = 0 for

y(t), 1 € [0,T] to obtain y = Kp.

2) Setw =p—y

Inner Product: The inner product {(z,y) is given by

N T
(z,y) = Z/O z;(t)y: (t)dt.

Step 1 of the operator-function product is equivalent to one
step of WR, hence WGMRES has as its core the standard WR
iteration (with the concomitant parallelizability). Moreover,
the inner product can be computed by N separate integrations
of the pointwise product z;(¢)y;(¢), which can be performed
in parallel, followed by a global sum of the results.

~ Another Krylov-subspace method that is suitable for accel-

erating WR is the conjugate gradient squared algorithm (CGS)
[25]. The waveform CGS (WCGS) algorithm is a straightfor-
ward extension of CGS in which, like WGMRES, the matrix-
vector products are replaced by operator-waveform products,
and the vector inner products are replaced by waveform inner
products. Because this extension is so straightforward, the
WCGS algorithm will not be listed here, but a description
of WCGS can be found in [26].

To use the waveform Krylov-subspace methods on the
nonlinear device system (1), Newton’s method is applied to
(1), in a process sometimes referred to as the waveform
Newton method (WN) [27], to obtain the following iteration

i m m—+1
<dt +Jr(z ))x

=Jp(z™)z™ — F(z™) with z™710) =z, (12)
Here, J is the Jacobian of F'. We note that (15) is a linear
time-varying system to be solved for "', which can be
accomplished with WGMRES [which can trivially extended to
the time-varying version of (6)]. The resulting WN/WGMRES
algorithm, a member of the class of hybrid Krylov methods
[28], is given in Algorithm 3.6.

Algorithm 3.6 (Waveform Newton/WGMRES)
1) Initialize: Pick x°
2) Irerate: For m = 0,1, - until converged

*  Linearize (1) to form (15)
*  Solve (15) with WGMRES
+  Update g™+!

IV. PARALLEL IMPLEMENTATION

The following solution methods were incorporated into the
WR-based device transient simulation program pWORDS.

* Pointwise with direct methods (sparse Gaussian elimina-
tion) used to solve linear systems at each timestep (this
method was not parallelized);

* Pointwise with preconditioned conjugate gradient squared
(CGS) used to solve linear systems at each timestep;

* Waveform Relaxation (WR);

* Waveform Relaxation Newton (WRN);

* Convolution SOR Newton (CSORN);

* Waveform Newton/Waveform GMRES (WN/WGMRES);

* Waveform Newton/Waveform CGS (WN/WCGS).

The program was written in C using a message-passing single-
program mulfiple-data (SPMD) paradigm. The message-
passing was effected using the MPICH implementation
[29] (from Argonne National Labs and Mississippi State
University) of the Message Passing Interface (MPI) standard
[30]. Because the code was written in C and because
implementations of MPI exist for many different computing
platforms, the same source code can be compiled for a large
variety of environments. The same source code was used to
produce both the cluster-based results and the SP-2 results
reported here.

Partitioning

In this section, we describe the partitioning and communica-
tion patterns used for the parallel waveform solution methods
and for the iterative pointwise solution methods.

As reported in [14], the node-by-node Gauss—Jacobi WR
algorithm will typically require many hundreds (or even thou-
sands) of iterations to converge, severely limiting the effi-
ciency of WR-based device simulation. Instead of using a
node-by-node approach, it is more effective to group nodes to-
gether into blocks and to solve for the corresponding variables
simultaneously. Besides improving convergence of iterative
methods, grouping nodes together provides an appropriate
granularity for parallel processing on medium-grain MIMD
processors. The pWORDS program supports arbitrary blocking
schemes, but one blocking strategy that has been shown to
be particularly effective in accelerating the convergence of
iterative methods in MOSFET simulation [14] is to group the
nodes in each vertical line of the discretization mesh together.
Note, though such an approach best accelerates convergence,
it is not a particularly effective blocking scheme for use on
a parallel processor [4]. Alternative coarse blocking schemes
would be suitable for applications using irregular discretization
meshes.



LUMSDAINE et al.: ACCELERATED WAVEFORM METHODS

In the SPMD model of parallel computation (used by
pWORDS), identical programs are executed on all nodes (one
of which is designated to be responsible for file and terminal
I/0O). To begin a parallel WR computation, the designated /O
node program reads in the device input file that specifies the
device geometry and discretization mesh as well as the voltage
boundary conditions imposed on the device. This information
is then broadcast to the other nodes. The designated 1/O
program then partitions the device mesh into vertical-line
blocks and assigns blocks to each node (including itself). The
blocks are assigned to compute nodes so that all communica-
tion between compute nodes is between nearest neighbors. In
addition to the vertical-line blocks assigned to it, each compute
node also contains storage for the two vertical lines on either
side of the contiguous block. These “pseudolines” are used
only to store the solutions generated and communicated by
the compute nodes solving those adjacent vertical lines.

Processing

The pWORDS program offers two different types of pro-
cessing for the vertical-line blocks: Jacobi and Seidel. In our
experience, Seidel order processing (which is required at any
rate by the CSOR algorithm) always provided better perfor-
mance (in terms of computation time) so we omit discussion of
Jacobi order processing. For maximum parallelism, the Seidel
approach uses red/black ordering which produces a block
consistently ordered problem [21]. Since all of the waveform
methods share the same WR core, they can also use the same
red/black Seidel step, if desired.

With red/black Seidel, pairs of red/black vertical lines are
assigned to each processor. Once the black line solutions of the
previous iteration have been communicated to the processors
where they are needed, all of the red lines can be solved in
parallel, with no other synchronization. Similarly, once the
red lines have all been solved, and their solutions have been
communicated to the processors where they are needed, all
of the black lines can be solved in parallel, with no other
synchronization. As shown in Fig. 1, in each iteration of the
parallel algorithm, the N/2 compute nodes first solve the N/2
red lines concurrently, and then solve the N/2 black lines
concurrently. Note that the red line of compute node 7 has the
black line of compute node i — 1 as its left boundary condition.
Accordingly, the first step of the red line solution process is
for each compute node ¢ to receive the black line waveform
solution sent by compute node ¢ — 1. The black line that is the
right boundary condition of the red line of compute node 7 is
already resident within the node, so that the compute node can
now solve its red line. Once its red line is solved, each compute
node immediately sends its red line waveform solution to the
left. This completes the first half of the iteration: the solution
and communication of the red lines.

Solving the black lines in the second half of the iteration
requires a similar communication pattern. Each compute node
i receives the red line waveform solution sent from the right,
and solves its black line. Then each compute node sends
its black line waveform solution to the right, completing the
solution and communication of the black lines.
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1. Odd nodes send black to the right
2. Bven nodes receive black, odd nodes complete send
3. Even nodes send black to the right
i 4. Odd nodes receive black, even nodes complete send
i 5. 0dd nodes send red to the left
k 6. Even nodes receives red, odd nodes complete send
+ 7. Bven nodes send red to the left
J 8. Odd nodes receive red, even nodes complete send

Fig. 1. Ilustration of the communication and computation operations per-
formed by compute node ¢ during one parallel red/black Seidel waveform
relaxation step.

If fewer than N/2 compute nodes are available, then each
compute node is given multiple pairs of red/black lines that
are adjacent to each other in the device mesh. Thus, some
of the lines (both red and black) residing on a compute node
will depend only on other lines residing on that compute node
and communication and computation can be overlapped in this
case. The red lines that do not depend on solutions from other
nodes can be solved before waiting to receive the black line
solutions. Similarly, the black lines that do not depend on other
compute node solutions are solved before waiting to receive
the red line solutions. An outline of parallel red/black block
Seidel WR with overlapped communication and computation
is shown in Algorithm 4.1.

Algorithm 4.1 (Parallel Red/Black Block WR)

1) Choose: Initial guess waveforms that satisfy initial con-

ditions. :

2) Iterate:

a) Post: Nonblocking receive of the black line solution
from the left, a nonblocking receive of the red line
solution from the right, and nonblocking send of the
black line solution to the right.

b) Solve: The device equations (1) for interior red lines.

¢) Wait: For completion of receipt of black line.

d) Solve: The device equations (1) for the remaining
red line when requisite black line is received.

e) Post: Nonblocking send of the red line solution to
the left.

f) Solve: The device equations (1) for interior black
lines.

g) Wait: For completion of sends and receipt of red line.

h) Solve: The device equations (1) for the remaining
black line when requisite red line is received.

Parallel Pointwise Newton-CGS

In its pointwise approach, the pWORDS program uses a
hybrid Newton—Krylov algorithm [28], in which a precon-
ditioned iterative solver is used to solve the linear systems
arising at each Newton iteration of each timestep of an implicit
integration formula applied to (1). Stabilized variants of the
conjugate-gradient squared (CGS) algorithm [25], [31], [32]
are the most popular iterative methods for device simulation
and they have proved to be the most effective serial algorithm
(as well as the most effective parallel pointwise algorithm)
for the examples presented in this paper. To partition the
problem for a parallel implementation, the pointwise Newton-
CGS method in pWORDS uses the same vertical-line block
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Fig. 2. To partition the matrix-vector product, each processor is assigned
the block rows corresponding to a pair of vertical line blocks. The diagonal
blocks (used for preconditioning) are shown in grey.

partitioning as in the waveform methods (however, the blocks
were processed only in block Jacobi fashion). The blocking
is then used to partition the block tridiagonal matrix of the
whole problem.

First, the host assigns pairs of vertical-line blocks to the
compute nodes exactly as in the waveform method. Given a
particular block, the corresponding compute node is respon-
sible for the storage and computation of the corresponding
pieces of the matrix and CGS vectors in that “block row,”
as shown in Fig. 2. For the block tridiagonal matrix of the
whole problem, this implies that each compute node must
generate and store the appropriate block diagonal pieces of the
matrix, as well as the off-diagonal blocks for the block rows.
Once a particular block is assigned to it, each compute node
is responsible for generating the corresponding piece of the
vector resulting from the matrix-vector product. This approach
leads naturally to a block Jacobi preconditioner for CGS. That
is, the preconditioner is the block diagonal matrix represented
by the diagonal blocks on each processor. .

Unfortunately, partitioning the matrix and the vectors im-
plies that the parallel pointwise CGS algorithm requires many
communication steps, each consisting of relatively small pack-
ets. Before every Newton iteration at every timepoint, a
compute node must receive the two vectors of solutions of
the neighboring lines from the left and the right, in order to
generate the block diagonal and block off-diagonal matrices.
To accomplish the matrix-vector product for each CGS itera-
tion, a compute node must exchange pieces of the multiplicand
vector with the neighboring compute nodes. Moreover, each
CGS iteration requires three inner product calculations, each of
which requires a global sum. Although it is possible to overlap
these communication operations with local computation, a
significant amount of interprocessor synchronization is still
required. Nonblocking collective operations, such as those
proposed for MPI-2 [33], may prove helpful, however.

V. EXPERIMENTAL RESULTS

To compare the parallel performance of the accelerated
waveform methods and the pointwise Newton-CGS algo-
rithms, numerical experiments were conducted using eight
examples. Instead of plain WR, the more efficient WR Newton
(WRN) [6] variant was used. Although it is more efficient, the
WRN method is not an accelerated waveform method. That
is, its convergence rate is the same as that of WR but it takes
about 1/3 the work per iteration. Similarly, instead of applying
CSOR to plain WR, CSOR was applied to WRN (the resulting
method is denoted CSORN to distinguish it from plain CSOR).

TABLE 1
DESCRIPTION OF DEVICES SIMULATED IN NUMERICAL EXPERIMENTS
device description mesh | unknowns | interval
Idd lightly-doped drain | 15 x 20 656 51.2 psec
soi silicon-on-insulator | 18 x 24 856 51.2 psec
kar abrupt junction 19 x 31 1379 512 psec
S5v
S5v
Ov -
‘J I__ 0 psec 512 psec
 T—
2.2 microns
1
Fig. 3. Tllustration of the drain-driven karD example.

To provide an initial guess for WRN and CSORN, 16 or 32
initial plain WR iterations were used.

First, the three different MOS device models shown in
Table I were used to construct six simulation examples, each
device being subjected to either a drain voltage pulse with the
gate held high (the D-suffix examples), or a gate voltage pulse
with the drain held high (the G-suffix examples). In addition,
to observe the effect on WR convergence, two additional
gate-pulsed examples were constructed by refining the device
meshes of karG and soiG to contain 64 vertical lines. All
eight examples ranged from low to high drain current, and in
the G examples, the gate displacement current was substantial
because the applied voltage pulses changed at a rate of .2 ~ 2
V/ps. Dirichlet boundary conditions were also imposed by
ohmic contacts at the source and along the bottom of the
substrate, both held at zero volts. Neumann reflecting boundary
conditions were imposed along the left and right edges of
the meshes. The convergence criterion for all experiments
was the requirement that the maximum relative error over the
simulation interval in the value of any terminal current be less
than 10~*. The drain-driven karD test setup is illustrated in
Fig. 3.

Although pWORDS supports variable-timestep, variable-
order multirate integration (with BDF to order five), to simplify
comparisons between the different solution methods, the back-
ward Euler method using 256 fixed timesteps was used for all
experiments, on the indicated simulation intervals. Simulations
using second-order BDF are given at the end of this section
and demonstrate that the results given here are not affected by
the order of integration. The use of fixed timesteps avoids the
problem of load balancing for the parallel waveform methods,
since each vertical-line block will require nearly the same
amount of work. At the same time, using global uniform
timesteps eliminates the ability of WR to exploit multirate
behavior, one of the primary computational advantages of WR
on a serial machine. Nevertheless, as the results will show,
even without the multirate advantage, the accelerated WR
algorithms are competitive on serial machines with the best
pointwise methods. Moreover, this is one of the key points of
this paper because of their superior scalability, accelerated WR
methods are much faster than pointwise methods on parallel
processors.
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TABLE II
COMPARISON OF SERIAL CPU TIMES REQUIRED FOR POINTWISE METHODS AND WAVEFORM METHODS ON SPARCstation §
Pointwise Method Waveform Methods
Example || Direct CGS WRN iters | CSOR iters | WGMRES iters | WCGS iters
1ddD 298 408 6874 1434 | 561 100 2476 243 N/A  N/A
1ddG 315 384 3195 657 344 55 1383 144 | 2337 171
soiD 498 172 1717 284 379 50 635 63 532 53
s0iG 534 177 1307 209 359 45 778 60 538 53
karD 1718 567 5459 515 1131 92 1747 87 2480 101
karG 1786 753 4694 440 744 55 2322 113 | 2310 94
50iG64 2614 1724 29697 1885 | 2165 119 14198 228 | 4467 129
karG64 4839 3982 40782 1886 | 3461 141 20264 354 N/A N/A
TABLE III
COMPARISON OF SERIAL CPU TIMES REQUIRED FOR POINTWISE METHODS AND WAVEFORM METHODS ON RS6000/590
Pointwise Method Waveform Methods
Example || Direct CGS WRN iters | CSOR iters | WGMRES iters | WCGS iters
1ddD 65 114 2147 1434 173 100 729 243 N/A  N/A
1ddG 68 107 1000 657 107 55 410 144 668 171
soiD 114 49 525 284 115 50 187 63 159 53
s0iG 122 51 406 209 111 45 231 60 163 53
karD 405 169 1593 515 326 92 495 87 712 101
karG 422 225 1378 440 215 55 654 113 667 94
$0iG64 634 544 9168 1885 | 660 119 2626 228 1308 129
karG64 1160 1686 11961 1886 | 995 141 5456 354 N/A  N/A
8192 T T
"CGS" —
“"CSOR"
"WRN"
"WGMRES"
4096 |- WCGS"

2048

Execution Time (Wall Clock Seconds)

256

128 .

Number of Processors

Fig. 4. SPARCstation cluster execution times as a function of number of processors for pointwise and waveform methods for karD example.

As a baseline for the parallel comparisons, Tables II and
III show the serial CPU times required for solution of the
eight examples, for pointwise methods and waveform methods,
using a Sun SPARCstation 5 and an IBM RS/6000 Model
590 workstation, respectively. For the pointwise methods, the
Direct column shows the result of using direct factorization
(sparse Gaussian elimination) to solve the matrix problem
at each time point and the CGS column shows the result
of using the iterative CGS algorithm. The waveform method
columns show the result of using ordinary Gauss—Seide]l WRN,
the same algorithm accelerated with CSOR, WGMRES, and

WCGS. Note that the CSOR results are competitive with the
better pointwise results. For these results, the convolution
function w(t) was precomputed so the CSOR times do not
include the time necessary to compute w(t). The N/A in the
table for the WCGS results specifies that the method did not
converge for the indicated example.

Fig. 4 shows wall-clock execution time as a function of
number of processors for pointwise and waveform methods
for the karD example run on a cluster of SPARCstation 5
workstations. Note that because of virtual memory “thrashing”
the single processor wall-clock times can be much higher
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1024
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32
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Fig. 5.

than the single processor CPU times. Due to the high cost of
cluster-based communication, parallel speedup for the point-
wise method (CGS) is extremely limited (showing an increase
on larger numbers of processors). On the other hand, the wave-
form methods all show a remarkable scalability, achieving a
speedup of nearly a factor of six on eight processors.

Fig. 5 shows (wall-clock) execution time as a function of
number of processors for pointwise and waveform methods
for the karD example run on the IBM SP-2. In this case,
the pointwise method is able to obtain a speedup in parallel.
However, the speedup is limited as the number of processors
increases. On the other hand, the waveform methods continue
to show a nearly linear speedup up to the number of processors
that provide maximum available parallelism (16 in this case
for two lines per compute node). The qualitative results on the
cluster and the SP-2 are the same. The best pointwise method
performs well in serial and on small numbers of processors,
but speedup becomes limited due to communication costs.
On the other hand, the waveform methods easily surpass the
pointwise methods for larger numbers of processors. Note that
the problems studied here are of moderate size. Thus, when
large numbers of processors are used, the pointwise methods
do not have as favorable a computation to communication ratio
as do the waveform methods. Hence, the waveform methods
exhibit much better scalability.

Tables IV and V summarize the best timing results obtained
for each method on the SPARC cluster and on the IBM SP-2,
respectively. Note that the waveform methods, in particular,
CSOR, are fastest in every case. The superior scalability of
the waveform methods is due primarily to the communication
and computation structure inherent to the waveform approach.
(We remark again that all of the waveform approaches share
the same waveform computational core.) Since communication
is infrequent and takes place in large packets, the waveform
methods are much better able to tolerate latency. Of the

4
Number of Processors

IBM SP-2 execution times as a function of number of processors for pointwise and waveform methods for karD example.

TABLE 1V
SUMMARY OF THE BEST TIMING RESULTS FOR
EacH METHOD ON THE SPARC CLUSTER

Pointwise Waveform

Example | CGS | procs || WRN | CSOR | WGMRES | WCGS | procs
1ddD 414 1 1838 146 560 N/A 10
1ddG 387 1 842 73 348 575 10
soiD 173 1 400 75 150 129 12
s0iG 179 1 317 72 171 131 12
karD 488 2 1143 231 390 550 8
karG 663 2 966 152 513 510 8

soiG64 || 1301 2 5384 | 383 1577 796 8

karG64 || 3969 4 7090 | 583 2908 N/A 8

TABLE V
SUMMARY OF THE BEST TIMING RESULTS FOR EACH METHOD ON THE IBM SP-2

Example || CGS | procs | WRN | CSOR | WGMRES | WCGS | procs
1ddD 70 10 261 21 89 N/A 10
1ddG 77 10 122 12 50 85 10
soiD 30 12 56 12 20 18 12
s0iG 30 12 43 12 24 17 12
karD 64 16 128 26 40 57 16
karG 87 16 109 17 52 53 16

s0iG64 121 16 380 27 117 52 32

karG64 345 16 471 39 220 N/A 32

waveform methods, the CSOR approach typically offers the
best performance. This is due to two factors. First, the CSOR
method requires much less work per iteration than do the
Krylov-subspace approaches. Second, since the method is
designed to give essentially optimal convergence at each
temporal frequency, CSOR tends to have faster convergenge
than the Krylov-subspace methods. On the other hand, CSOR
may not be as widely applicable as the Krylov-subspace
methods, but the applicability of the CSOR approach is still
an open question.

Finally, to demonstrate that the acceleration properties of the
accelerated waveform methods are independent of the order
of integration, Table VI shows serial CPU times required for
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. TABLE VI
COMPARISON OF SERIAL CPU TIMES REQUIRED FOR POINTWISE METHODS AND WAVEFORM METHODS ON RS6000/590 USING SECOND-ORDER BDF
Pointwise Method Waveform Methods
Example || Direct CGS WRN  iters | CSOR iters | WGMRES iters | WCGS iters
1ddG 568 121 1139 662 233 66 429 144 642 139
soiD 1037 55 590 284 272 52 346 72 381 68
soiG 1039 56 522 208 281 45 330 52 358 54
karD 3612 198 1689 517 463 92 856 97 1364 113
karG 3613 232 1689 441 471 55 915 129 N/A N/A
karG64 4918 1693 13767 1873 | 1858 143 9873 479 N/A N/A
2048 T— T T
"CGS" —
"CSOR" -----
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- "WGMRES" - |
1024 WOGS" -
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32t T J
16 1 1. 1

4 8

Number of Processors

Fig. 6. IBM SP-2 execution times
ond-order BDF integration.

solution of the eight examples using second-order BDF on
an IBM RS/6000 Model 590 workstation. As with first-order
BDF, the CSOR results are reasonably competitive with the
better pointwise results.

Fig. 6 shows (wall-clock) execution time as a function of
number of processors for pointwise and waveform methods for
the karD example run on the IBM SP-2 using second-order
BDF. The results are similar to those obtained with first-order
BDF, shown in Fig. 5.

VI. CONCLUSION

For the examples studied in this paper, the comparison of
accelerated WR algorithms to pointwise methods showed that
accelerated waveform methods are competitive with standard
pointwise methods on serial machines and that for line-
block domain partitionings, accelerated waveform methods are
significantly faster on commonly available loosely coupled
MIMD machines. In the hostile communication environment
of a university workstation cluster, waveform methods were
able to achieve significant parallel speedup. On a dedicated
parallel machine, the IBM SP-2, the waveform methods were
able to achieve nearly linear speedup. On the other hand,
parallel versions of standard pointwise methods exhibited

as a function of number of processors for pointwise and waveform methods for karD cxample, using sec-

only limited parallel speedup in either parallel environment,
though a more careful domain partitioning could improve those
results. WR can be viewed as a technique for organizing
communication and computation in a parallel environment.
Waveform methods perform more computation per number
of communication operations than do the pointwise methods
and are thus better able to tolerate communication latency.
In this sense, WR methods can be viewed as an orthogonal
strategy to careful domain partitioning in that they provide
another degree of freedom with which to improve parallel
efficiency.

The waveform methodologies presented here are general
strategies for increasing the parallel performance of time-
dependent problems. The results in this paper are a preliminary
indication that, as MIMD machines and cluster-based comput-
ing become more prevalent, accelerated waveform methods
should be seriously considered for those areas of simulation
requiring the solution of IVP’s. Defining the classes of prob-
lems for which waveform methods are most appropriate is
an open question (and one which we hope to answer with
subsequent studies in this area). Of particular interest is a
study of the performance of accelerated waveform methods for
device simulations having more sophisticated physics and/or
unstructured meshes.
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