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Simulation of Semiconductor Devices Using a
Galerkin/Spherical Harmonic Expansion
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Poisson-Boltzmann System
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Abstract—This paper describes a Galerkin/spherical harmonics
approach for solving the coupled Poisson-Boltzmann system of
equations for the electron distribution function and the electric
potential, which can then be used to calculate other parameters
of interest such as current flow and electron temperature. The
Galerkin approach described here has some pragmatic advan-
tages in space-dependent problems over more commonly used
term-matching techniques for arbitrary order spherical harmonic
expansions in momentum space, but the method requires a
careful treatment of the boundary conditions and upwinded
discretization methods. Results are presented for nonuniformly
doped one-dimensional devices using up to third order spherical
harmonics to show the importance of including higher order
harmonics to accurately calculate the distribution function in
high field regions.

I. INTRODUCTION

HE DIRECT solution of the Boltzmann equation for

modeling transport in semiconductors has been pursued
for over two decades, and many ingenious techniques have
been developed for this purpose. These include an integral
equation method [1], the Monte Carlo method [2], a number
of methods using different basis function expansions [3], [4],
and direct integration [5]. The most commonly used of these
techniques is the Monte Carlo method, primarily because the
method’s flexibility allows details such as complicated band
structures and scattering mechanisms to be easily incorporated.
The main disadvantage of the Monte Carlo method is its
computational expense, especially when attempting to reduce
the statistical noise in the low density tails of the distribution
function.

As an alternative to the Monte Carlo method for the
solution of the Boltzmann equation, we shall consider
the spherical harmonic expansion method. Earlier work
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on this method has shown its viability for low order
expansions [6], [7]. Results using very high order expansions
have been reported for the homogeneous case [8], but
simulations of jnhomogeneous problems in one or two-
dimensions have used only zero- and first-order spherical
harmonic expansions. Approaches to including higher order
expansions in spatially dependent problems were described
formally in [9] and more recently in [8], but the related
implementation and associated numerical issues were not a
primary focus. In particular, computational results demon-
strating the importance of higher-order spherical harmonic
expansions for spatially dependent problems have not been
presented.

In this paper we describe a Galerkin approach to solv-
ing the coupled Poisson-Boltzmann equation with arbitrary-
order spherical harmonic expansions, and use the method
to demonstrate the importance of higher-order spherical har-
monic expansions for one-dimensional (1-D) spatially de-
pendent problems. Our specific Galerkin approach differs
somewhat from the term-matching approaches described in
[9] and [8]. In our approach, the Boltzmann equation is
first discretized in physical space using a finite-difference
method, and then the spherical harmonics expansion is used
to solve the generated large system of partial differential
equations in k-space. This approach makes it easier to im-
plement simulation programs for space-dependent problems
using arbitrary order spherical harmonic expansions, but the
approach is not without a cost. The physical-space finite-
difference discretization must be upwinded in a conserva-
tive way to insure current conservation and stability. In ad-
dition, the boundary conditions must be considered with
care.

The next section provides some background and a review
of earlier work using the spherical harmonics approach. Then
in Section III our contribution in extending this technique to
arbitrary order using a Galerkin method is explained. The
numerical difficulties encountered and their resolution for
one space dimension problems are described in Section IV.
Finally, in Section V, results using the arbitrary order approach
for the test case of an ntnn™ diode will be discussed
and compared with the results using a hydrodynamics based
model.

0278-0070/96$05.00 © 1996 IEEE
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Fig. 1. The coordinate system used in the spherical harmonic expansion.
II. THE SPHERICAL HARMONIC EXPANSION
OF THE BOLTZMANN EQUATION

Due to the spherical symmetry of the band structure and the
randomizing nature of most scattering processes, one can ex-
pect the distribution function to have some degree of spherical
symmetry in momentum space. Note also that the equilibrium
distribution, which is a Maxwellian for the nondegenerate case,
is spherically symmetric. Thus, a basis function expansion
of the distribution function should exploit this symmetry.
Consequently, a plausible choice for the basis functions are the
surface spherical harmonics denoted by Y, (0, ¢), in which
case the distribution function can be expressed as (see Fig. 1)

Fr k) = fim(r k) Yim (6, ¢) M
im

where k& = |k| is the magnitude of the momentum and fin,
are the spherical harmonic coefficients. The expansion in
(1) implies that at each real space point r, the momentum
space description of the distribution function is specified
on each sphere of radius & by a weighted sum of surface
spherical harmonics. The weight of each harmonic, Yy, is
specified by fi,,. The essence of the problem is to find these
weights on as many spheres in momentum space as desired.
Of course, this choice for the expansion will be efficient
only if few spherical harmonics are needed to accurately
represent the momentum space distribution.

It can be helpful to note that the coefficients of the low-order
spherical harmonics correspond to basic physical quantities.
The lowest order harmonic coefficient, fg o, provides informa-
tion about the isotropic part of the distribution. The integral of
fo.,0 over all momentum space yields the electron concentration
at each real space point. The first order harmonic describes
the asymmetry of the distribution in the direction of the
applied field and the integral of f; ¢, after multiplication by
the electron velocity, yields the current.

The standard approach to solving for the expansion coeffi-
cients is to first substitute (1) into the Boltzmann equation

ok r (. K) — g
= / S(r K k) f(r, KK — f(r,k)

' /S(TJG, k) dK, @
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Fig. 2. Coordinate system for the 1-D real space problem.

where v(k) is the electron velocity, £ is the applied electric
field, ¢ is the electron charge, and S(r, k', k) is the scattering
rate from momentum k' to k at real space position r. The
combined equation is then used to generate a set of coupled
partial differential equation in the expansion coefficients [4],
[9]. This set of partial differential equations is then solved by
introducing a discretization method to generate an algebraic
equation system for the desired set of coefficients fi,.

For modeling transport in one real space dimension, z,
and assuming a z-directed electric field, the associated two-
dimensional (2-D) momentum space can be represented in
polar coordinates & = |k| and § = arccos (k - kz/|k||kz|),
as shown in Fig. 2. Then, the distribution function can be
expanded in Legendre polynomials of the angle 8-

F(z,k) = falz,k)Pa(cosb) (3)

where P, is the nth order Legendre polynomial. In the sub-
sections below, we use the expansion in (3) for the distribution
function, f, in each term of the Boltzmann Transport Equation
(BTE).

A. The Diffusion Term: v(k) - Vi f(r,k)

The velocity v(k) is determined from the band structure:
v(k) = (1/h)(0FE/0k), which is assumed to be spherically
symmetric and described by a relation of the form: v(£) =
h2k2/2m* = K’k - k/2m*. This allows for a nonparabolic
band structure by using an appropriate form for y(E). Of
course, ¥(E) = F leads to the familiar parabolic band model.
Thus, v(k) is given by

29\ dE
(k) = (ml> ik = (ki @)

where i is the unit vector in the radial k direction. Note that

the magnitude of the velocity is purely a function of the energy
and its direction is always radial. Using the above expression
for the velocity, the diffusion term in one real space dimension
becomes

(k) - Vi fr, k) =0(k) - T
— (k)i - % [ e ) Paleos )i

&)

The scalar product above can be evaluated by projecting the
radial z; vector onto the z-axis which evaluates to cosf,
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whence, the diffusion term becomes:

v(k) - Ve f(r.k) = v(k)cosb {Z Ofnlz,k)

ey P, (cos 0)} .

Using the following identity for Legendre polynomials [10]:
(n+ 1)Puyi1(z) + nPr_1(z)
2n+1

the diffusion term can be written as

v(k)Vrf(r.k) =v(k) ) %ﬁ’k)

(4 1)Payi(cosf) + nls-1(cos b)
2n+1 '

xP,(z) = 7

®)

B. The Drift Term: q€(r)/h - V. f(r, k)

Again assuming one real space direction, chosen to be
z, f(r,k) can be replaced by f(z,k). In spherical coordi-
nates, the gradient of any function h(k,#) which has no ¢
dependence is

Oh(k,0) . 1 0h(k,0) .

ok Eoo0 ®
Hence, the gradient of f with respect to the k vector can be
explicitly written as

Vif(rk) =V > fulz k)P,

8nzk
3 O]

fn z,k) 0P, (cosf) .
+Z 90 ¢

(cos 6)ix

(2, k) 0P, (cosb . .
+ Z (f c(osﬁ) )(—sm¢9)>ze
(10)

i

Vih(k) =

) (cos 0)

(cos 0)iy,

where there is no ¢ dependence of the distribution function due
to its symmetry about the z-directed electric field. The scalar
product of the gradient vector with the z-directed electric field
can be determined by projecting the gradient onto the z-axis.
For any vector of the form f,ip + foio, the projection onto
the z-axis is f.cosf — fgsinf. Therefore,

E0) Gtk
= qé’fgz) [Z af"a(?k) P, (cosf)cosb
Zf”(z k) ‘9PC(§;’Z)9) sin?8|. (1)
The identity [10]
(2* — )P/ (z) = nzPy(2) — nPr_1(2) (12)

together with (7) yields
n(n + 1)Ppri(z) — n(n + 1) Po_1 ()
2n+1

(a* ~ PL(a) =
(13)
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where P, (z) is the derivative of P,(z) with respect to .
Using (13), the drift term can then be written as

q€(z) [Z Afn(z, k) ((n + 1) Pry1(z) + nPn_l(m))

h Ok 2n+1
_ fn(zvk) n(n+1)Pn+l(fE) _n(n+ I)Pn—l(m)
2 )
(14)

2n + 1

where ¢ = cos# for notational convenience. Rewriting the
above equation to factor out the Legendre polynomials gives

g€ (r)
7= Vif(rk)

q€(2) 1 Ofn(2, k) fn(2, k)

= [22n+1<" ok LT >
1

.pn_l(x)+22n+l

(22D g 2EB N p ),
(15)

C. Complete BTE Expansion in Legendre Polynomials
To rewrite (15) in terms of the energy requires the following
identity, derived from (4),

10fn(2,k) _ Ofn(2,E)
Aok~ o ')

1 (1 falz k) _ ¥
(250 =hen

where v/ = dvy/dE. The diffusion term is nearly unchanged
under this change of variables as it contains no explicit
dependence on the momentum or energy vector,

v(k) - Vrf(r.k)

(16)

a7

Ofn (2, E
=) 32
{(n + 1) Ppta(cos8) + nP,_1(cosb)
‘ . (18)
2n+1
The drift term (15) becomes
qigf') Vi k)
E@)(E {Z o+ 1
<nafn<z R
+Pre 1 + Z 2n +1
<( N 1)6fn 2, E) n(n;I)vlfn(z,EQ
. Pn+1(m)}. (19)

The sum of the above two expressions forms the left-hand
side of the Boltzmann equation. The coefficient for the nth
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Legendre polynomial is therefore given as:

n Ofarr 041 0fant
ZU(E){(Qn—l 0z Jr2n+3 0z >
B 5( n Ofpcr n+18fn
“\on-1"0E " 2m+3 OE
M1y, (D)
-1 Q_f" L 2n+3 2y f"“)}
 Pa(a). 20)

The Boltzmann equation can therefore be rewritten as
an infinite set of coupled partial differential equations for
the spherical harmonic expansion coefficients, one partial
differential equation for each order. For example, the par-
tial differential equations generated by the two lowest order
expansions are

n = 0:
e -e(FgrTa) =am(5), e

n = 1:
- v<1E> (%) .

To generate a closed system of equations, all coefficients
higher than first-order in (22) can be set to zero, resulting
in the equation

() -5
oz 7 ok ) ~ wE)\ ot ),
In [7] and [9], (21) and (23) were discretized and, after
including appropriate scattering mechanisms, solved for the
zeroth-order, fo and first order, f; coefficients. The results
obtained using this technique were satisfactory for the devices
and biases studied in [9]. One important question which
was not addressed in that earlier work is whether zero and
first order expansions are sufficiently accurate for realistic
problems. In the next section we present a method which
allows for arbitrary order expansions. .

(23)

III. ARBITRARY ORDER EXPANSION

In order to examine the impact of including higher order
spherical harmonics in the solution of the Boltzmann Equation,
it is possible to simply continue the process represented by (21)
and (23). That is, one could generate a larger system of coupled
partial differential equations, discretize those equations, and
then implement the resulting method in a new program. This
is essentially the scheme presented in [8] and [9]. A more
appealing approach, when examining higher-order effects, is to
develop a method in which the number of spherical harmonics
can be a program parameter. Use of a Galerkin technique leads
to just such a program.

In our Galerkin method, the unknown distribution function
is still assumed to be a spherical harmonic expansion with
unknown coefficients. Then, instead of generating n partial
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differential equations in the harmonic coefficients as above, we
discretize the Boltzmann equation and multiply the discretized
equation in turn by each of the conjugate harmonics and
integrate over a sphere in momentum space. This produces
a matrix equation for the coefficients of the expansion which
accounts for the coupling between spherical harmonics. And
since the intermediate step of generating and discretizing
partial differential equations for each of the spherical harmonic
coefficients is omitted, the approach generalizes easily to
arbitrary order.

To begin the Galerkin approach derivation, consider substi-
tuting the spherical harmonic expansion into the Boltzmann
Equation, multiplying by a conjugate spherical harmonic, and
then integrating over a sphere in k-space as in

[ Yit6 0tk Zflm

: /YV L 7 2 i)
Vi (0, ¢) dQ2
im

k)Y (6, ¢) dS2

where & denotes the scattering operator. In the following
discussion we develop the Galerkin method in one real space
dimension, conventionally chosen to be the z-axis, assuming
spherical but not necessarily parabolic bands.

A. The Diffusion Term

In one real space dimension, the first term in (24) is

[ Y 0,01005

Zflm 2, k: lem(e (b) zz
(25)

where v(k) is given by (4). As the projection of the unit radial
1 vector onto the z-axis is cosf, (25) can be rewritten as

0R) [ Vi (0,9) Y 00803 i (3, )1Yim () 52
Im

(26)

Now consider using a two point approximation to the space
derivative,
L+1>] (2%

k im
f im (Z ) A P

where the ¢ index denotes discretization in space and the j
index denotes discretization in energy. Combining (26) and

(27), a point (4, j) in the solution space can be written as

fl+1,g f
/Z sty (0,0)Yin(8, ¢) cos 0 dQ
(28)

@7

where dQ? = sinf df d¢. Defining

27 ki
Gl tm = / / Yyt (0, 0)Yirn (8, ) cos O sin 6§ df dp
o Jo
(29)
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then the discretized diffusion term of the BTE can be written as
Wy

where v7 is the magnitude of the velocity vector. More
compactly,

i+1,5

flm Gl’ Islm (30)

i i1,y _ pig

AU /) G
where f is the vector of coefficients and G is the matrix
defined by (29). One advantage of writing the diffusion term
in this compact form is that it clearly shows the coupling
between the different coefficients in the expansion. Note that G
represents the coupling between harmonics at a particular point
in real space whereas the approximation to 8/0z represents
the coupling between two points in real space for a particular
harmonic.

B. The Drift Term

After substituting the spherical harmonic expansion for the
distribution, performing the scalar product with the electric
field, and multiplying by the conjugate harmonics, the drift
term can be written as

z O fim (2, k
_/Yﬁmr(&?))qis );[ S d(kz )Yzm(g,d)) cosf

_ fim(2.k) 8Yin (6, ¢)
k 06

(32

9} dsd.

Moving the electric field outside the integral and reorganizing
the expression as a sum of two integrals over () yields

_qg 2) /Z [aflm Z, k Y*ljkm,(eqs)y'lm(ﬁ,qﬁ) cosf

fzm(z k) Yim (0, ¢)
k 09

We can then approximate the derivative with respect to the
magnitude of the k vector or energy as a difference

7] a
%{flm(zv k)] 8E [flm(z» )}RU(E)
e 6,5+1 fllri
i | fim (34)

where (16) was used to change variab]es from the magnitude
of the k vector to energy, and v7 denotes v(£7). With these
substitutions, and the relation in (17), the drift term is

f 1,5+l ,J+1
—q&(z »UJZ ddm __cim //Yl (8, ¢)Yim (8, b)
cosGsde@ do
+aE@w LS A / Vi (6:9)
im

Vi (6,9)

50 sin 0 sin 6 d6 d¢.

(35)
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Note that the first integral was already defined as G/y/.1p, in
(29). We denote the the second integral as

27
Hypim ~/ / Y (6, 9) BYlm(B 2) sin #sin 6 df d¢
(36)

which results in a compact form for the drift term,

~G€ TR G - f”>+q€ Hf” (37)

C. The Complete Equation

The final task is to put the above expression in a matrix
form. First we introduce some more notation to simplify the
final form. Let

i _ 9
@ =AE"
iq qu /] ;
b = —27]. v
. vl
o 38
c e (38)
and
WIJ — (_C'i,j + ai’j)G Ly g
Wz” =G
Wii = —ahiq. (39)

Then the left-hand side of the Boltzmann equation, in terms of
the spherical harmonic coefficients, can be written in matrix
form as

2% i 0,
Wi W, W,

i+1,5 i+1,7 i+1,5
Wi Wi Wi

fi,j
fi+1,j

i,5+1
fi+1,j+1

The right-hand side for the above matrix equation is generated
by the scattering terms and the distribution function boundary
conditions. Note that the matrix is very sparse—the only off-
diagonal nonzero blocks are the ones coupling neighbors in
space (W5) and energy (W3). The particular location of the
blocks depends on the ordering of the unknowns; the above
pattern is for a row ordering based on the mesh in Fig. 3.
The order of the expansion enters only through the matrices
G, H and the size of the vector f, otherwise the formulation
is the same. G and H can be calculated a priori for whatever
order is needed or they could be computed on the fly as
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Emax fo.0
1,0
o

— f 2,0

/ f 3,0
E
Energy

I dE

-

space dz

Fig. 3. Mesh used for the 1-D real space problem.

they only involve trigonometric functions which can even be
computed numerically if necessary. As an example, up to third
order G and H are given below for the 1-D problem

- 1 -
0 — 0 0
1 Vs 2
— 0 0
a—|V3 ) V15 ;
0 — 0 —
V15 X V35
0 0 — 0
L ) V35 1
0 —— 0 0
V3
3
00 -/c 0
H=
3 12
0 24> 0
5 35
6
0 0 0
L V35 |

Although we have assumed a particular form for the discrete
approximation to the derivatives in space and energy, the
development described above holds equally well for a different
discrete approximation, the only change being that the nonzero
blocks would be at a different position in the matrix. For
example if one used a backward difference for the derivative
in space instead of the forward difference used above, then
instead of having a nonzero block after the diagonal the
nonzero block would be before it.

D. The Scattering Term

We will consider acoustic and optical phonon and ionized
impurity scattering; and for all three cases we assume a single
spherical band for simplicity. The details of the scattering
mechanisms and the parameters used for each are described
in the appendix.

1) Acoustic phonon scattering: We will assume that acous-
tic phonon scattering is isotropic and completely elastic [11].
It can therefore be written as

Sac(k, k') = cacS[E(K') — E(k)] (40)
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where ¢, is the scattering rate. The net scattering term due
to acoustic phonons is

/ Suclk K)F(K)) dK' — f(K)

E(K))f(K') d°k' — f(k)cac

/ Soc(k, k) d*K

E(k) &K

9(E) (41)

= Cac

Jo,0Y0,0 — Z fimYim (6, ¢)
Ilm

where g(E) is the density of states which enters due to the
change of variables from £ to F. Using vector notation the
above scattering term up to third order can be written as

0 0 0  07[foo
Yoo Yio Yoo Y3,0}8 _(1) _(1) 8 J;;E
0 0 0 —14Llfso
“Cacg(E)
or more compactly
Cacg(B)Y T Suof

where S,. is understood to be the matrix for the acoustic
phonon scattering shown above and Y, f are the vectors of
the spherical harmonics and their coefficients, respectively.

The last step is to generate the coefficient matrix by multi-
plying the conjugate harmonics and integrating over the unit
sphere in k-space:

Cacy(E) / dAY*Y TS f

2) Optical phonon scattering: The optical phonon scatter-
ing rate is given by the expression

Sop(k, k') = Cop[Nopd (E(K') — E(k) — hw) + (Nop + 1)
S(E(K") — E(k) + hw)] 42)

where 7w is the energy of the optical phonon and N,, the
optical phonon number [11]. The net scattering rate due to
optical phonons is

[ Sl® R0 8 18 [ ) K
— e / NopSlE(K) — E(K) — hwf(K) &K + cop
/ N S[E(K) -
= Fkew [ NoBlE(K) = E(l) = ol ¥

— f(K)cop /N+5 — B(k) + hw] d°F
= CopY0,0[Nop fo,0(F — hw)g™ + N fo,0(E + hw)g™

— Nopfoo(E)gt — N foo(E)g™]

= Y funYim(8: 9)cop(Nopg™ + Njhg™)

Im 40

where g~ = g(FE — hw),g" =
states obtained from the band structure and N, j;,

B(K) + b f(K) &K

43)

g{(E + hw) are the density of
= Nyp + 1.
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In vector notation the above scattering term up to third-order
for one real space dimension is

cop[Yo,0 Y10 Yoo Yao]
L 0 0 07 [foolE+hw)
00 0 0|/foolE+hw) (Nopg™)
0 0 0 0JLfso(F+hw)
rn o o o fo’o(E)

0 10 0| fiolE) o -
00 o 0} foo(B) | (Nord ™+ Noy)
L0 0 0 1] Lfs0(E)

0 0 07 foolE —hw)
0 0 0 0O fljo(E—hw) —

Tlo 0 o o} FarolE = fus) | DVord ™)
10 0 0 O fgyo(E—hw)

(44

Note that the scattering rate for the isotropic term depends on
energies above and below the energy for which the coefficients
are written. If space and energy were discretized and the
energy step chosen such that fiw was a multiple of the energy
step then the above scattering rate would couple three different
energies, £ (with the index j), E + fiw (with the index j + 1)
and F — fiw (with the index 7 — [).

D.3 Ionized Impurity Scattering

The scattering operator for ionized impurity scattering in
the Brooks-Herring model is [11]

PH____S[E(K) - E(k)]

Seu(k.k) = oy

(45)

where  is the angle between the k and k' vectors and o =
2k2/3%. f is the inverse of the Debye length and therefore
depends on the doping concentration; cpy is the scattering rate
which depends linearly on the doping concentration. Before we
write the scattering integral, we expand the above scattering
rate in Legendre polynomials of coséd (as there is no ¢
dependence)

Seu(k, k) = Pa(cos0) sBH, §[E(K') — E(k)]  (46)

where sBH,, are the coefficients of the Legendre polynomial
expansion for the Brooks-Herring model. Then the scattering
integral can be written as

/SBH(k’,k)f(k’)d3k’ - f(k)/SBH(k,k’)d3k’

= {Z SBHlm flm)/lm(ov (b) - SBH:O,O

ilm

> fimYun(0,8) | 9(E)
lm

= g(E)YTSBHf

(47
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where Sy is the net scattering matrix for the Brooks-Herring
model, as shown below, up to third-order

SBH = ,
0 0 0 0
0 SBH1 - SBH() 0 0
0 0 sBHs — sBHyg 0
0 0 0 sBH3; — sBHj

(48)

For the first integral (the in-scattering term) we have used
the Addition Theorem for spherical harmonics [10], whereas
for the out-scattering integral the only nonzero term is from the
lowest order harmonic which is isotropic. The next step is to
multiply by the orthogonal spherical harmonics and integrate
which yields

9(E) /(Y*YTSBHf) ds2.

IV. NUMERICS

The above Galerkin approach applies spatial and energy
discretizations before introducing the spherical harmonic ex-
pansion, and therefore issues such as current conservation
and the stability of the discretization must be addressed in
a more general way. That is, the discretization must be
appropriate for the whole system, it can not be tailored for
each harmonic coefficient differential equation as in traditional
approaches. The best choice of the discrete approximation to
the differential operator should conserve current, be stable
even on coarse meshes, and fit with the specified boundary
conditions.

A. Current Conservation

The equation for the zeroth harmonic including acoustic and
optical phonon and ionized impurity scattering is

df10 _q8<0f1,o

,Y/
0. “\op * 7f17°)

= S[fo,0(E), foolE — AE), foo(E +AE)]  (49)
where the scattering operator is given by

V3

Shsl= @Cop[f(f\’ig,fo,o(E + AE) = Nop fo.o(E))

+ 97 (Nopfo,o(E — AE) — Nj foo(E))]  (50)
and gt = g(E + AE), g~ = g(E — AE) are the density of
states at the appropriate energies. [V, is the number of optical

phonons which is given by the Bose-Einstein distribution,
Nop = [e"eor/kpT — 1171 and N = Nop + 1.
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In one dimension the current is only in the z-direction and
is given as

J. =q / frot(k)v. (k) d°k
=q/ftot(k)v(/c)cosed3k
x /fl,o(k)v(k)dgk
« [ otB)(E)g(E) dE

« [ e

The only component of the distribution function that con-
tributes to the current in the z-direction is the f ¢ coefficient.
This of course follows from the orthogonality property of
the harmonics. Using this property we can write the equation
for the zeroth harmonic essentially as a current conservation

(51

equation as follows:

Jf10 df10 v
92 '(15< 9E +;f1,0)
= S[fo.0(E), foo(E — AE), foo(E + AE)]
ol in,

=S fo,0(E), foo(E — AE), foo(E + AE)]

/ (Vflo)dE 5/{ (vf1,0) }dE

- / VS oo (E), foo(E — AE),
fool E+ AE)| dE

" 9(vf1,0)
/————az o

= qg[“/(E)fLo]go
+/wEwmmw»maE—Am,

JoolE +AE)]dE. (52)

In the last equation above, the left-hand side is proportional
to the spatial derivative of the current, which follows from
(51), and therefore must be zero if current is to be conserved.
Using the boundary condition that y(E)f; o — 0 as E — oo,
which follows from the assumption that the total distribution
approaches zero “faster” than any polynomial function of
energy, the first term is zero. Hence, the integral of the
scattering term over energy must reduce to zero for current
to be conserved. From the scattering operator given in (50), it
can be easily shown that this condition is satisfied.

Thus, current conservation is inherent in the continuous case
and the discretized equation should preserve this property. To
see how this constrains the discretization method, consider the
time varying Boltzmann equation in one real-space dimension
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Fig. 4. Control volume for energy-space discretization.

which, after expansion into spherical harmonics, is

L of  o(GS) oGf) | €GN
v(E) ot Dz T oF +a 2y "y
1 [af
u(E) <E> >

Discretizing (53) using a box scheme with mesh spacing Az
in space and AFE in energy (AA = AzAFE) yields

AAOf o
i AEG i+1/2,5 _ pi—1/2,5
o (f / )

_ qugz (fi,j+l/2 _ fi)j—l/Q)
Einli AA [ Of,
i,7 — =" [2¥)
=5 (),

The terms f”l/z‘j,fi’l/Z’j,fi’j“/z.,fi*j’l/2 represent the
average ‘flux’ at the interface of the control volume as shown
in Fig. 4.

As is easily shown, using the control volume and interface
flux approach will insure current conservation by insuring
invariance in space of the integral of f; o over energy.
But to completely specify the discretization method it is
necessary to choose a representation of the ‘average’ flux
at the interface in terms of quantities at the mesh points.
For example, one approach is to everywhere use a simple
two-point discretization for the flux, f**%/27 = f*J and
fimY/%i = fi-1J and similarly for the flux in the direction
of the energy axis. In the next section, we show that issues
of stability determine exactly which representations are best.

qAA (54)

B. Upwinded Discretization

When determining expressions for the flux in terms of mesh
quantities, it must be remembered that the flux here is a vector
quantity and therefore there exists the added freedom of choos-
ing a different expression for each component of the flux vec-
tor. Hence, a large number of variations are possible even for
a two point discretization scheme when two dimensions and a
few orders (the size of the flux vector) are included. Using trial
and error, a first-order discretization that was usually effective
was found, which is denoted as a one-sided discretization in the
following discussion. This scheme uses a forward one-sided,
two-point approximation to the derivatives in space and energy



RAHMAT et al.: SIMULATION OF SEMICONDUCTOR DEVICES

i, j+1
0,0
C—Fr———)@ ., .

| i, i+1,
If(),O £0,0
|

|

|

|
O
i
|
|
|
|

®— =)
fi-1,] iy
1,0 1,0
it
"
1,0

Fig. 5. The one-sided discretization scheme, where the horizontal axis
represents real space and the vertical direction energy. The index 2 corresponds
to discretization in space and the index j to discretization in energy.
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Fig. 7. Unstable results for one-sided scheme.

of the coefficients of even harmonics fo ¢, f2,0 etc. and a back-
ward one-sided, two-point approximation in space and energy
to the derivatives of the odd harmonics fi 0, f3,0 etc. This
method is shown schematically in Fig. 5, and the results ob-
tained up to third-order using this method are shown in Fig. 6.

Although this discretization scheme is successful in most
cases, under certain circumstances it became unstable, for
example near the 7" n junction in the simulation of the ntnn™
diode [12]. An example of the instability is shown in Fig. 7.
In this figure the coefficients are plotted as a function of space,
but the oscillations are not in space, they are in energy in the
region to the left of the n™n junction. The salient fact about
this junction is that this is the only part of the device where the
electric field is positive for the bias conditions shown in Fig. 7.
We also know that the discretization shown in Fig. 5 is stable
for a homogeneous field only if it is negative everywhere but
not if it is positive. These two observations clearly imply that
the sign of the field is the key to stable discretization. To better
understand the stability issues we will use the insights from
the 1-D wave equation and use it to guide our approach.

In the time dependent case, the Boltzmann equation is a
hyperbolic equation (a wave equation). It is well known that
if the wave equation (in one-dimension)

Ui+aU, =0 (55)

is discretized using a forward Euler time marching scheme as

shown below:
At
Uik+1 - Uik = A_xa(Uﬁup - Uikfl/Q) (56)

where £ is the index for temporal discretization and 7 for
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spatial discretization, then for a stable discretization the spatial
derivative must be done either in the forward or the backward
direction depending on the sign of the velocity a [13]. This
is know as upwind differencing. Thus, upwind differencing
requires that

At
a<0—U - Uf = ‘&;a(Uz’kﬂ -Uf) 7
_ A . :
a>0— UZ‘H - Uik = A—ia(Uik - Uihwl)' (58)

Note that in the control volume sense the above equation
simply conserves the flux, that is if there is a net flux leaving
a control volume in space then at the next time step the value
of the function at the center of that control volume is reduced
commensurately. Of course the change can be an increase or
a decrease depending on the sign of the net flux.

In the Boltzmann equation, the energy derivative has a
coefficient which changes sign depending on the electric field
and therefore it is the energy derivative that must be “winded”.
Now, up to first-order the flux term in energy is given by G f
where

1 1
oo 0 7 G ?gfm
7 0 ﬁfo,o

Therefore, the flux difference in energy has two possible
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expressions: if the electric field is negative it is

w[fio— Aot
<_5 ) J+1 _ fj
0,0 0,0

otherwise it is

rpgtl fj

gi|l1o 1,0

[fé,o - fé,El]
where we have suppressed the 1/v/3 factor for clarity. Note
that the direction of the two point discretization for the even
and odd harmonics are still opposite to each other as in the one-
sided discretization but these directions flip sign depending on
the electric field direction.

The results obtained using the upwinded discretization for
the same bias conditions as in Fig. 7 are shown in Fig. 8.
Clearly the unstable oscillations introduced due to the dis-
cretization have been suppressed here. The advantage of using
the more stable winded method is most clearly seen if fq ¢ is
plotted as a function of energy in the left n* region in the
two cases (Fig. 9).

An upwind scheme was also used in [14] where the BTE
was solved by direct discretization of the distribution function
in spherical coordinates but without using an expansion in
spherical harmonics.

It is worth noting that the extensions of this scheme to
two real-space dimensions is not trivial, first because the
discretized variable is a vector and secondly the choice of the
direction of the winding is more complex in two dimensions
[15]1, [16].

C. Boundary Conditions

The Boltzmann equation has only first-order derivatives
in space whereas physically we would like to specify the
boundaries (Ohmic contacts for example) in space at both
the left and right end points. This seeming inconsistency can
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be resolved by using the fact that the Boltzmann equation
expansion in spherical harmonics is really a set of equations.
Thus, we specify the zeroth-order harmonic at both edges
but leave the first-order coefficient unspecified everywhere.
In general all even harmonics are fixed on both sides and all
odd harmonics are left floating at the edges and their values
calculated everywhere. We set the zeroth-order harmonic to be
the Maxwellian at the lattice temperature and the second and
higher harmonics to zero. For low-order spherical harmonics
these boundary conditions have a physical interpretation: spec-
ifying the zeroth- and second-order harmonics, and solving
for the first and third is equivalent to specifying the electron
concentration and the electron temperature on both edges but
solving for the electron current and the heat flux at those
points.

In the energy direction we assume that all harmonics are
zero beyond some maximum energy and also for the odd
harmonics use the fact that the odd harmonics must be zero
at zero energy. This is a necessary condition for the odd
harmonics otherwise there would be a discontinuity in the
distribution at zero energy. This can be demonstrated for
the first-order harmonic term fi o(k)cosé by considering
the distribution along the k., axis—for %k, >0,cos6 = 1
but for k, <0,cosf = —1. Therefore if f; ¢ has a nonzero
value in the neighborhood of k., = 0 then the distribution
would have a discontinuity at k£, = 0.

D. Self-Consistent Solution with Poisson’s Equation

In all the discussion up to now we have assumed that
the electric field was known or given independently. Of
course, in general the electric potential or field has to be
solved self-consistently with the distribution function. Thus,
along with the Boltzmann equation we need to discretize and
solve Poisson’s equation. Using the box-discretization method
mentioned earlier it is fairly straightforward to set up the
discretized Poisson’s equation. The only complication comes
about from the fact that in the self-consistent formulation
the system of equations becomes nonlinear: the electric field
multiplies the energy derivative of the distribution function
coefficients. Hence, this nonlinear system must be solved.

A standard way of solving nonlinear systems is Newton’s
method, which is known to converge quadratically [17]. There-
fore if a good initial guess is known, after typically five to eight
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iterations, the solution is found. The size of the matrix problem
increases only slightly as there is only one extra unknown at
each real space point (there may be 50 coefficients in energy at
each point) but the cost in the number of iterations is of course
significant. Also the sparsity of the matrix is reduced slightly
because there are many nonzero entries associated with the
extra unknown (as shown below) for a typical Jacobian matrix,
where the P matrix blocks are the coefficients in the discrete
approximation to the integral of f;,,, over energy which gives
the electron concentration at that point in real space. Using
this method, we have found no difficulty in converging from
the zero potential inital guess.

An alternate method of solving the nonlinear system is to
iteratively solve the Boltzmann and Poisson equations [18],
though the convergence of such a scheme is not assured.
Nonetheless in multiple real space dimensions such an iterative
method may be preferred as the sparsity of the discretization
matrix is degraded more severely in multiple dimensions by
the inclusion of Poisson’s equation [19].

V. SIMULATION RESULTS

In this section we present results using the arbitrary order
expansion method described in the previous sections. We
will first present results for the homogeneous problem with
no spatial variation and compare those results with bulk
Monte Carlo data which is a test of the implementation of
our scattering terms. Then results for 1-D structures such
as uniform doping and n*nn' diode are presented. All the
results presented are using a self-consistent scheme and were
obtained using a direct sparse solver on the sparse matrix
generated by the Galerkin method.

The physical model consisting of the band structure and the
scattering mechanisms are kept simple yet sufficiently rich to
provide real physical insight. The basic theory allows for the
use of more complex physical models such as nonparabolic
bands or multiple bands [20].

For the inhomogeneous simulations described below the
spatial discretization was usually 50-60 mesh lines and the
energy discretization was usually from 0 to 1 eV with 25 meV
steps. The computational complexity is therefore the same as
solving a 2000-3000 unknown sparse matrix problem for each
Newton step. The number of Newton steps needed to meet the
termination criterion, based on the norm of the residue, was
less than 10. :

Wii?j W;’j
i+1,7 1+1,7
W1+ J W2 7
P ... r 1
L P 0

o]| &

Wg’ - 5fz+1,1
W§+11] :

6fi,j+1

6fi+1,j+1

-2 1 0 §p*T

1 -2 11| syitld
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Fig. 10. Mean electron velocity in the bulk for undoped silicon as a function

of the electric field calculated using the spherical harmonic expansion method
and a Monte Carlo method along with experimental data.
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Fig. 11. The potential, electric field, normalized electron concentration and

the normalized current for a resistor obtained from the Boltzmann equation
solution up to third-order.

A. Homogeneous Problem

Here we set all spatial derivatives to zero and then solve
for the coefficients. Using results up to first-order we can
match the distribution function obtained from Monte Carlo
simulations [21] if the same scattering mechanisms and band
structure are used. In Fig. 10 the electron mean velocity
calculated using the spherical harmonic approach and the
Monte Carlo method is plotted as a function of the applied
electric field along with experimental data. The graph clearly
demonstrates that the results from the spherical harmonic
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electron energies (starting from 25 meV with 25 meV spacing in energy) for
the 0.6 pm resistor shown in the previous figure.

method and Monte Carlo are essentially the same except for
the noise in the Monte Carlo data. The experimental data is
qualitatively similar but the saturation velocity is about 20%
lower because of the simplistic band and scattering model used
in the simulation.

B. Resistor

If we simulate a uniformly doped finite region of silicon
(a resistor) with an applied bias, we expect to see a uniform
field in the bulk and some carrier heating if the field is large
enough. Figs. 11 and 12 show the first four coefficients and the
macroscopic parameters obtained from such a simulation with
an average field of 1 x 10* V/cm. There are a number of note-
worthy features even in this simplest inhomogeneous problem.

1) The magnitude of the coefficients in the uniform part
of the resistor decreases monotonically as the order is
increased.

2) The electron temperature in the bulk of the resistor is
above the lattice temperature as evinced by the com-
pression of the lines of fo o at the different energies at
the center as compared to the edges. The magnitude of
fo,0 decreases faster at the edges than at the center as a
function of energy which is equivalent to having a lower
electron temperature at the edges than the center.

3) There is a small charge buildup near both the left and
right contacts. This occurs because at the contacts we
have assumed that the isotropic part of the distribution
(fo,0) is a Maxwellian at the lattice temperature, whereas
in the center of the resistor the electron gas is at an
elevated temperature. Thus, there would be an excess
thermal current if the field were uniform all the way up
to the contacts. Hence, to maintain a constant current
the electric field deviates from its value in the bulk to
counteract these thermal currents.



RAHMAT et al.. SIMULATION OF SEMICONDUCTOR DEVICES

fo0 10
4 7 4
3 2
2 &
- 2
32 20
g 8
S ®
1 w -2
OW )
0 2 4 6 0 2 4 6
Distance em) 45 Distance (em.) 44
f20 f30
1 0.6
20 2
T c
3 3
] g
®_4 S
~2
0 2 4 6
Distance (em.) 448 Distance (cm.) 445
Fig. 13. Spherical harmonic coefficients for a 0.6 ym ntnnt diode with
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and a bias of 0.8 V. The coefficients are for different energies starting from
25 meV with 25 meV spacing in energy.
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Fig. 14. Average quantities for a 0.6 pm ntnnt diode with a doping of
2% 10" em= and 1 % 10'7em " in the nt and n regions and a bias
of 0.8 V.

4) The current is constant as was predicted in Section IV-D,
using the discretization methods described earlier.

C. Diode

Fig. 13 shows the computed spherical harmonics coeffi-
cients for an ntnnt diode as a function of position at
different energy values (separated by 25 meV). The electron
concentration and the current obtained from the calculated
distribution function along with the potential and electric field

1193

6 r .

4 \ Boltzmann:—
1

2 ! Hydro: --- ]

Electric Field (V/cm.)

|
—_
CY

? 2 4 6

Distance (cm.) X107

Fig. 15. A comparison of the electric field computed from the solution of the
Boltzmann and Poisson’s equations with that obtained from the hydrodynamic
model for a 0.6 um nTnnt diode with a doping of 2 x 10'8cm™2 and
1 x 107 cn~? in the nt and n regions and a bias of 0.8 V.
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Fig. 16. A comparison of the electron temperature computed from the solu-
tion of the Boltzmann and Poisson’s equations that obtained from the hydro-
dynamic model for a 0.6 gm ntnnt diode with a doping of 2 x 10*® cin™3
and 1 x 10" cm™3 in the n™ and n regions and a bias of 0.8 V.

obtained by the self-consistent solution of Poisson’s equation
for the same device are shown Fig. 14.

A comparison between the electric field and electron tem-
perature obtained using the hydrodynamic model [22] and
the solution of the Boltzmann equation for this particular
structure is shown in Figs. 15 and 16. Although the field
and temperature obtained using the two approaches are not
identical because the mobility model used in the hydrodynamic
corresponds to slightly different scattering parameters than
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at z = 0.3 pm and the figures on the right are at » = .0.44 um, including
the first- (top) and third-order harmonic expansions (bottom).

those used in the Boltzmann solver, the results are comparable.
Note also that the peak electric field obtained from the
Boltzmann solution is higher than that from the macroscopic
hydrodynamic model as was reported in [18].

In Fig. 17 the distribution functions obtained using different
orders of spherical harmonics are compared at two points along
the diode. The impact of including higher orders is obvious as
it tends to produce a more streamed distribution than if only
the first two orders were considered. The electron temperatures
obtained in the two cases are quite close, demonstrating the
insensitivity of temperature to details of the distribution. The
coefficients of the distribution as a function of the energy at
two positions along the diode are shown in Fig. 18. Note
that the distribution at the peak electric field point (z =
0.44 pm) shows the mixing of two carrier populations: hot
carriers from the source and cold carriers from the drain.
This can be deduced by examining the two slopes evident
in the isotropic part of the distribution (fo0): the larger slope
(lower temperature) up to 0.1 eV is due to cold carriers from
the drain and the smaller slope (higher temperature) beyond
0.1 eV is due to hot carriers from the source. This example
also demonstrates the difficulty any averaging scheme (such
as a moments method) would have in correctly estimating the
hot carrier population. For instance, the average temperature
at z = 0.44 um is almost equal to the lattice temperature
(as shown in Fig. 15) because most of the electrons are cold
electrons from the drain. Nevertheless, there is a substantial
number of hot carriers present, as can be seen in Fig. 18.

VI. CONCLUSION

We have presented a Galerkin method that allows the use
of an arbitrary order spherical harmonic expansion for the
solution of the space-dependent coupled Poisson-Boltzmann
equation. The specific Galerkin method used allows the num-
ber of spherical harmonics considered to be essentially a
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program parameter, and thus facilitates an examination of the
impact of higher order effects on device behavior. Simulation
results, up to third order, based on the Galerkin method for
1-D structures were presented. From the simulations results
obtained by self-consistently solving Poisson’s equation it was
demonstrated that spherical harmonic coefficients beyond the
the first can be significant, and neglecting them may not be
appropriate in certain cases. Also it was shown that under
high and rapidly varying fields the calculated distribution
function can differ significantly from a displaced Maxwellian
or other simple form and therefore any macroscopic method
will perform poorly at estimating the details of the distribution
function. Preliminiary work in two-real space dimensions [19]
has shown that the Galerkin method can be extended to
multiple real space dimensions.

APPENDIX

The Physical Model

For the simulation results presented in this and subsequent
chapters the following scattering mechanisms and band struc-
ture are used.

Band Model

A single parabolic band with an effective mass of 0.26 times
the electron mass is assumed

212
E:hk

2m*
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Acoustic Phonon Scattering
The scattering probability for an electron starting from an
initial momentum state & to the state &’ under acoustic phonon
scattering is [11]
2wk B TQ
E(k)]
hV

where V' is the volume, u? is the sound speed in silicon, p
is the density of silicon, &; is the deformation potential for
the lattice. As we are working in energy space we need to
convert the above scattering probability from momentum space
to energy space which is done by integrating over the 3-D k
space after appropriate scaling

v
—=4 P(E(k), E(K")k" dk'
ot [ PUE®), EW)
_ Vv
- 27('2 h3
Hence, the acoustic scattering rate becomes
21205 k Ty
7rh4ul p
The values of the parameters used are

P(k.K) = 51 S[E(K) — (59)

/ P(E,E"YE"?dE'.  (60)

P(E,E") = EX[E - E'|EV?. (61)

m* 0.26 mg

Uy 9.00 x 103 ms~!
p 2.33 x 10°kgm°
& 9.00eV

Optical Phonon Scattering

For optical phonons the scattering rate is:

m(DK)?

Pk, K) = Vo
op

o {Nop; Nop + 1}6[E(K') — E(k) F ho]

(62)

where D, K is the coupling constant, w,,, is the frequency of
the optical phonon and N,, is the number of optical phonons
using Bose statistics. Note that N, is associated with —fiw and
N,p+1 is associated with the 47w for the cases of absorption
and emission of optical phonons.

The above probability can be written in energy space to
yield

(D:K)?

PWop
S[E —

P(E,E") = f 73{ Nop; Nop + 1} EV/2
TN

E F hwl. (63)

The parameter values used in the above equation are

D.K 5.0 x 108eV cm™?

50 meV

hwep
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Ionized Impurity Scattering

For ionized impurity scattering we use the Brooks-Herring
model which is based on assuming a shielded potential (the
Yukawa potential) for the ionized impurity. The resulting
scattering probability is given as
A 2q4 N 1

‘182 + 2k2(1 — cos §)]2

[ (k') — E(k)]
where Z is the ordinality of the impurity charge, N; is the

impurity concentration, /3 is the Debye length and 6 is the
angle between the & and k' vectors.

Sk, k') =
64)
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