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ACCELERATING DYNAMIC ITERATION METHODS WITH APPLICATION TO
PARALLEL SEMICONDUCTOR DEVICE SIMULATION*
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Abstract. In this paper we apply a Galerkin method to solving the system of second-kind Volterra integral
equations that characterize waveform relaxation, or dynamic iteration, methods for solving linear time-varying
initial-value problems. It is shown that the Galerkin approximations can be computed iteratively using Krylov-
subspace algorithms. The resulting iterative methods are combined with an operator Newton method and applied
to solving the nonlinear differential-algebraic system generated by spatial discretization of the time-dependent
semiconductor device equations. Experimental results are included to demonstrate that waveform Krylov-subspace
methods converge significantly faster than classical waveform relaxation, and are better able to exploit the parallelism
available in loosely coupled parallel machines than parallel versions of standard point-wise iterative schemes.
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1. Introduction. Consider the problem of numerically solving the linear time-varying initial-
value problem (IVP),

(7 +AM)=(t) = b(t)

(1.1) di

z(0) = =,
where A(t) € RY*N, b(t) € RV is a given right-hand side, and (¢) € RV is the unknown
vector to be computed over the simulation interval ¢ € [0, T']. There are several approaches to
solving the IVP. The traditional numerical approach is to begin by discretizing (1.1) in time with
an implicit integration rule (since large dynamical systems are typically stiff) and then solving the
resulting matrix problem at each time step. This pointwise approach can be disadvantageous for a
parallel implementation, especially for MIMD parallel computers having a high communication
latency, since the processors will have to synchronize repeatedly for each timestep.

A more suitable approach to solving the IVP with a parallel computer is to decompose the
problem at the differential equation level. That is, the large system is decomposed into smaller
subsystems, each of which is assigned to a single processor. The IVP is solved iteratively by
solving the smaller IVPs for each subsystem, using fixed values from previous iterations for the
variables from other subsystems. This dynamic iteration process is known as waveform relaxation
(WR) or sometimes as the Picard-Lindelof iteration.

Since the WR algorithm was first introduced as an efficient technique for solving the large
sparsely-coupled differential equation systems generated by simulation of integrated circuits [10],
its properties have been under substantial theoretical and practical investigation. The precise
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nature of the loose-coupling in integrated circuits, which was responsible for WR’s rapid conver-
gence for those examples, was first made clear in [22]. The more formal theory for WR applied to
linear time-invariant systems in normal form is described in [16], and theoretical aspects which
arise when WR is applied to the more general form (C% + A)z(t) = b(t) are examined in [21].
Since the WR method decomposes before time-discretization, it has been used as a tool for exam-
ining the stability properties of multirate integration methods [35]. Though WR’s major practical
success has been in accelerating the simulation of integrated circuits [36, 23], it has also been
examined for the certain specific problems. For example, the effects of time interval selection has
been examined for RC circuit problems [9], and the method has been applied to semiconductor
device simulation [27].

As the above body of work makes clear, for WR to be a computational competitor to pointwise
methods, its convergence must be accelerated. Approaches to accelerating the convergence of
WR include multigrid [12, 33], SOR [16], convolution SOR [25], Krylov-subspace methods [13],
and adaptive window size selection [8]. In this paper, we describe primarily practical aspects of
using Krylov-subspace techniques to accelerate WR convergence.

In the next section, we begin by describing the system of second-kind Volterra integral
equations obtained by applying a “dynamic preconditioner” to (1.1). A Galerkin method for
solving an operator equation formulation of the integral equation system over a Krylov space is
then described and a convergence result given. Itis noted that certain Krylov-subspace techniques
applied to the integral equation system iteratively generate the Galerkin approximations. One
such method, the waveform GMRES method, is described. In Section 3, we combine the
waveform GMRES method with an operator-Newton algorithm to create a hybrid scheme for
solving nonlinear initial-value problems. In Section 4, we briefly describe how to apply the
hybrid WR and WGMRES algorithms to solving the time-dependent drift-diffusion equations
used to describe transient phenomena in semiconductors, and experiment results on serial and
parallel computers are given in Section 5. Finally, our conclusions and suggestions for future
work are contained in Section 6.

2. Waveform Krylov-Subspace Methods. In (1.1),let A(¢) = M (t) — N(t) be a splitting
of A(t). The waveform relaxation algorithm based on this splitting is expressed as
Algorithm 2.1 (Waveform Relaxation for Linear Systems).
1. Initialize: Pick x°
2. Iterate: Fork =0.1,...
Solve (4 + M)z**!' = Nzt + f
z(0) = =
for z*+! on [0, 7).
The solution @ to (1.1) is thus a fixed point of the WR algorithm, satisfying the Volterra
integral operator equation

@.1) (I-K)z = 1.

Here, (2.1) is defined on the space H = L,([0,7],RY), I : H — H is the identity operator,
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K : H — H is defined by

(Kz)(t) = fotéM(z.,.s)N(s)a:(s)d.q.,

v € His given by

(1) = Bur(1,0)2(0) + [ Bu(t,)F(5)ds,

and @ ) is the state transition matrix [3] associated with M (¢).
The following are standard results (see, e.g., [5, 7]) which will be used in subsequent
discussions of (2.1).

Lemma 2.1. If M and IN are piecewise continuous with respect to ¢, then K : H — H is
compact, has a spectral radius of zero, and K*, the adjoint operator for K, is given by

(Krz)(t) = /,I [Br(s,t)N ()] 2(s)ds,

where superscript T denotes algebraic transposition.
It should be apparent from Lemma 2.1 that, in general, K is not self adjoint. We therefore

restrict our attention to those Krylov-subspace methods which are appropriate for non-self-adjoint
operators.

2.1. Classical Dynamic Iteration Methods. The classical dynamic iteration is obtained by
applying the Richardson iteration to the problem (2.1):

(2.2) "t = Kk + 4.

This approach is known as the method of successive approximations, waveform relaxation, or the
Picard-Lindeldf iteration [1, 7, 11, 16, 37].

Example. Let M (t) be the diagonal part of A(¢). Then (2.2) becomes the Jacobi WR
algorithm in which we solve the following IVP at each iteration k for each zF+!(¢):

(2 + ai(t)) 25 (1) + 3 ayi(t)zh(1) = bi(t)
J#
:12‘,'(0] = Ip;-

As K has zero spectral radius, a straightforward convergence result can be stated.

Theorem 2.2. Under the assumptions of Lemma 2.1, the method of successive approxima-
tions, defined in (2.2), converges.

A more detailed analysis of convergence can be derived by considering cases for which X is
defined as 7' — oo, in which case K has nonzero spectral radius [16].
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2.2. The Galerkin Method. Anotherapproach to solving (2.1) is to apply a Galerkin method
to solving a variational formulation of the problem. This approach leads directly to the Krylov-
subspace methods. Galerkin methods have been well studied for second-kind Fredholm integral
equations [1, 7], of which second-kind Volterra equations are a special case, but infrequently
studied for second-kind Volterra equations in particular (see, however, [14]). With the Krylov-
subspace approach, instead of applying the Galerkin method over a space of polynomials or
splines, as is typical, one applies the Galerkin method over a Krylov space generated by (I — K).
The use of a Galerkin method over a Krylov space generated by (I — K) is discussed in [17]
and [24] where the approach is called the method of moments (see also [34]).

Let X and Y be Hilbert spaces and consider the operator equation

2.3) Az =b

where z € X,b € Yand A: X — Y is a bounded injective operator.

By a Galerkin method, we mean any scheme by which the solution @ in (2.3) is computed
by solving the problem in a sequence of finite-dimensional subspaces via the use of orthogonal
projections. That is, we take the subspaces X™ C X and Y" C Y with dim X" = dim Y" = n and
require the Galerkin approximation " to satisfy

(2.4) (b—Az",y) =0 VyeY"

In general, it is sufficient to satisfy (2.4) over some basis of Y". That is, we define X" =
span{u’,u',... , u""'} and Y" = span{v®,v',...,v""'}, so that the solution " must satisfy
(2.5) (b—Az",v') =0 j=0,1,...,n—1.

If we take =" to be
n—-1
" = Z 71,“1
=0
then (2.5) generates a linear system of equations for {7'}:

n—1
(A y'u',v’) = (b,v7).
i=0
The particular Galerkin method in which Y = X and Y™ = X" is often called the Bubnov-
Galerkin method. If A is positive definite in addition to being bounded and injective, it is well
known that the Bubnov-Galerkin method is convergent for (2.3) [18]. Furthermore, if A is self-
adjoint, the Galerkin approximations can be computed iteratively with the conjugate-gradient
method (appropriately extended from R" to X, of course) [7].
For our particular problem, the operator (I — K) is not self-adjoint, yet we still seek a Krylov-
subspace method appropriate for solving (2.1). Such methods can be derived by considering the
Galerkin method where Y = A(X)and Y" = A(X"). That is, we require " to satisfy

(b—Az", Au') =0 j=0,1,...,n—1.

4
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We have the following convergence result for such Galerkin methods, and we refer the reader
to [13] for the proof.

Theorem 2.3. Let X be a Hilbert space and let A : X — X be a bounded bijective linear
operator. Let X" C X be a finite-dimensional subspace with X" C X"*! foralln € N. If z is in
the closure of S = U2, X", then the Galerkin method for (2.3) is convergent. Moreover, there
exists the estimate

|z —2"|| < C|lb — A=z"||

for some constant C' depending only on A.

Corollary 2 4. The Galerkin method described in Theorem 2.3 is convergent for (I — K)z =
% in the space H, with finite-dimensional subspaces H* = {4, K,... K" !4} forall n € N.

We again refer to [13] for the proof of the corollary. However, note that to show & € clS,
we need only realize that

z=(I-K)"'¢ =ix:f¢

where the Neumann series for (I — K)~! converges, since the spectral radius of K is zero.

2.3. Iterative Algorithms. Various iterative algorithms exist which can be used to imple-
ment the Galerkin method described in Corollary 2.4. For example, the generalized minimum
residual algorithm (GMRES) [28] can be adapted quite readily to the space H instead of R,

Algorithm 2.2 (Waveform GMRES).
1. Start: Set v = ¢ — (I — K)z°, v' = 7°/||7°
2. Iterate: For k = 1,2,..., until satisfied do:
o hip=(I—-K)v*v)),j=12...k
o ot = (I - K)ok — Zfﬂ h; kv’
o hipri = |65
e pFt! — f’kH/hk-!-].k
3. Form approximate solution:
o ¥ = 2 + VFyk, where y* minimizes ||3e; — H y*||
The two fundamental operations in Algorithm 2.2 are the operator-function product, (I —K)p,
and the inner product, (-, -). When solving (2.1) in the space H, these operations are as follows:
Operator-Function Product: To calculate w = (I — K)p:
1. Solve the IVP

(% +M(t)y(t) = N(t)p(t)
y(0)

I
S

I
fam]

for y(t), t € [0, T; this gives us y = Kp.
2. Setw=p—1y
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Inner Product: The inner product («, y) is given by

A &
(a:,y) = Z_/n Ii(t)yi(t)di-
i=l

Step 1 of the operator-function product is equivalent to one step of the classical dynamic
iteration, hence WGMRES can be considered as a scheme for accelerating the convergence of
dynamic iterations. This also implies that computing the operator-function product in the Krylov-
subspace based methods is as amenable to parallel implementation as classical dynamic iteration
methods. Also, the inner products required by the WGMRES algorithm can be computed by
N separate integrations of the pointwise product z;(¢)y;(t), which can be performed in parallel,
followed by a global sum of the results.

3. Hybrid Methods for Nonlinear Systems. Consider the problem of numerically solving
the nonlinear IVP:

La(t)+ F(z(t),t) = 0
z(0) = =o.
To solve (3.1), we apply Newton’s method directly to the nonlinear ODE system (in a process

sometimes referred to as the waveform Newton method (WN) [29]) to obtain the following
iteration:

(3.1

(4 + Ip(zm™)) ™! = Jp(z™)z™ — F(z™)
g™t (0) = =o.

Here, J is the Jacobian of F'. We note that (3.2) is a linear time-varying IVP to be solved
for £™+!, which can be accomplished with a waveform Krylov-subspace method. The resulting
operator Newton/Krylov-subspace algorithm, a member of the class of hybrid Krylov methods [4],
is shown below.

Algorithm 3.1 (Waveform Newton/WGMRES).
1. Initialize: Pick x°
2. Iterate: For m = 0,1, ... until converged
e Linearize (3.1) to form (3.2)
e Solve (3.2) with WGMRES
¢ Update z™*!
For the WGMRES algorithm applied to solving (3.2), the required operator-function product
can be computed using the formulas in Section 2.3, with the substitution

M(t) - N(t) = Jp(™(1)).

3.2)

It is also possible to use a Jacobian-free approach, but the nature of the linearization in the
operator-Newton algorithm makes that approach somewhat unreliable [13].

Because of the preconditioning, the initial residual for the WGMRES algorithm must be
computed, and this computation must be performed for every operator-Newton iteration. If the
initial guess for z™*! in the WGMRES part of the hybrid algorithm, denoted ™+, is given by
@™, then the initial residual for the WGMRES algorithm, denoted »™*+!, can be computed using
a two-step approach as follows:
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1. Solve the IVP

(& +M(1)y(t) = M(t)a™(t) — F(z™(t))
y(0) = =o

for y(t), 1t € [0, T]
2. Setrmtl0 = 4

4. Device Transient Simulation. A device is assumed to be governed by the Poisson equa-
tion, and the electron and hole continuity equations:

ekT
TVZU+Q(P—H+NJJ—NA)—U

)
V—Jn—q(d—T-i-R):O

0
V-Jp-i—q(a—T-FR) =0

where u is the normalized electrostatic potential, » and p are the electron and hole concentrations,
J, and J, are the electron and hole current densities, Np and N4 are the donor and acceptor
concentrations, R is the net generation and recombination rate, ¢ is the magnitude of electronic
charge, and ¢ is the dielectric permittivity [2, 31].

The current densities J,, and J, are given by the drift-diffusion approximations:

J.=—¢D,(n Vu—Vn)
Jy=—qD,(pVu+ Vp)

where D, and D, are the diffusion coefficients, which are assumed here to be related to the
electron and hole mobilities by the Einstein relations, that is D = %,u.. J . and J,, are typically
eliminated from the continuity equations using the drift-diffusion approximations, leaving a
differential-algebraic system of three equations in three unknowns, u, n, and p.

Given a rectangular mesh that covers a two-dimensional slice of a MOSFET, a common
approach to spatially discretizing the device equations is to use a finite-difference formula to
discretize the Poisson equation, and an exponentially-fit finite-difference formula to discretize the
continuity equations (the Scharfetter-Gummel method) [30]. On an N-node rectangular mesh,
the spatial discretization yields a differential-algebraic system of 3V equations in 3N unknowns
denoted by

(4.1) filu (e c))=
(4.2) £ (ul n(t (t)) = Zmn(t
(4.3) fa(u(t),n(t),p(t)) = £p(1)

where ¢ € [0,77], and u(t),n(t),p(t) € R" are vectors of normalized potential, electron con-
centration, and hole concentration, respectively. Here, f,, f,, f3 : R¥® — R are specified

7
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component-wise as

KT <~ d
q 5L

D, 0’;
fa(uiyng, uj,n;) = A Z J[ﬂf?,_jB(uJ u;) — n,-B(u,-—uj)]—Rg

fri(uiy i, piyuj) = L(uj—u;) — qA; (pi —ni + Np — N4)

f3:(wi, piy uj, p;) = 21 Z [ — piB(u;— ] - R;.

‘.?
The sums above are taken over the four nodes adjacent to node 7 (north, south, east, and west), L;;
is the distance from node ¢ to node j, d;; is the length of the side of the Voronoi box that encloses
node z and bisects the edge between nodes : and j, and B(v) = v/(e” — 1) is the Bernoulli
function, used to exponentially fit potential variation to electron concentration variation.

The standard approach used to solve the differential-algebraic system generated by spatial
discretization of the device equations is to discretize the d/dt terms with a low-order implicit
integration method such as the second-order backward difference formula. The resultis a sequence
of nonlinear algebraic systems in 3N unknowns, each of which can be solved with some variant
of Newton’s method and/or relaxation [15]. Another approach is to apply relaxation directly to
the differential-algebraic equation system with a WR algorithm [10, 26].

Algorithm 4.1 (WR for Device Simulation).

1. Initialize: Guess u°, n°, p° waveforms at all nodes
2. Iterate: For k = 0, 1,. .. until converged
e For each node ¢

solve for u! n* M waveforms:
fi.('”?“ane api ,u‘?) = 0

fo, (ut .f‘H,uf,nf) = denf-H
Sa(uft pft uk pby = Lp

In our approach, we apply the hybrid Krylov method described in Section 3 to solving (4.1)—
(4.3). Therefore we use the WGMRES algorithm to solve the following IVP on each operator
Newton iteration m:

4 0m+l an J!tz 'Ifls u::]l
d.—dt‘n " + Jf:n an szs nm+]
wP" Jm I Iy p
[ T JTp I u” fi(uw™,n™ pm)
= 'IfZI 'Ifzz sza n™ | — fz (u™,mn™,p™)
s ‘If31 J fy J.fss p" F3(u™,n™, p™)
u™*(0) [ uo
n41(0) | = | no
p"(0) L Po

5. Experimental Results. Numerical experiments were conducted to compare the per-
formance of classical waveform relaxation methods with Krylov-subspace methods. WR,

8
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TABLE 5.1
Comparison of WR, WRN, WGMRES, and WCGS. CPU times shown are for an IBM RS/6000 model 540.

Example Method FEvals CPU sec

kD WR 1.22 x10° 1526
WRN 3.94 x10° 559
WGMRES | 9.03 x 10* 280
WCGS 9.92 x 10* 214

kG WR 1.43 x10° 1756
WRN 4.09 x 10° 578
WGMRES | 1.03x10° 316
WCGS Non-Convergence

WN/WGMRES (Algorithm 3.1), and WN/WCGS [32] were implemented using the WR based
device simulation programs WORDS [26] and a parallel variant, pWORDS. In addition, the
waveform-relaxation-Newton (WRN) algorithm [37] was also implemented in the WORDS and
pWORDS programs. The WORDS program uses a red/black vertical line Gauss-Seidel scheme,
and our Krylov-subspace implementations use the corresponding preconditioner.

5.1. Serial Results. For performance comparison on a serial computer, experiments were
conducted using a two-dimensional n-channel MOS transistor model discretized with a 19 x 31
mesh. Two examples were used to compare the performance of the relaxation and Krylov-
subspace waveform methods:

KG: 2.2 um channel-length; 50 psec, 0-5V ramp on the gate with the drain at SV.

kD: 2.2 um channel-length; 50 psec, 0-5V ramp on the drain with the gate at 5V.
The parameters used with the Krylov-subspace methods were: ¢ = 0.1, » = /0.1, and ¢ =
1 x 10~'%. To simplify comparisons, 32 equally-spaced timesteps were used in all experiments.

Table 5.1 shows the number of function evaluations and the CPU time required for each of
the waveform methods to reduce the max-norm of the drain terminal current error below 0.01%
of the max-norm of the drain terminal current. Figure 5.1 compares the convergence of WR,
WRN, WGMRES, and WCGS for the kD example. In the graphs, the terminal current error
versus number of function evaluations is plotted, and clearly demonstrates the rapid convergence
of the conjugate-direction methods.

As Table 5.1 indicates, Krylov-subspace methods significantly reduced the number of func-
tion evaluations and CPU time over WR and WRN. In a manner analogous to the algebraic case,
WN/WCGS performs very well on most problems, but can also exhibit convergence difficulty on
others. Note that the CPU time reductions are not as large as the function evaluation reduction,
and this is partly due to the cost of inner product computations required for each iteration of
the Krylov-subspace methods. The difference is especially apparent with WGMRES, because
the number of inner products which must be computed on each iteration grows linearly with the
number of iterations. On the other hand, WCGS requires constant work per iteration but can
become unstable and fail to converge. For this reason, we are currently investigating generalizing
the recently developed QMR algorithm [6].
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FIG. 5.1. Convergence comparison between WR (dotted), WRN (dashed), WGMRES (solid), and WCGS (dash-
dotted) for kKD example. The max-norm of the relative drain terminal current error is plotted against the number of
Sfunction evaluations.

5.2. Example Analysis. It was suggested in [20] that the Krylov-subspace methods will not
converge significantly faster than WR methods, because the associated operator has a continuous
spectrum with substantial volume in the complex plane. However, the above experimental results
are not consistent with such a conclusion. To try to reconcile this inconsistency, we will analyze
a specific example problem, the discretized heat equation, using techniques described in [19, 25].

Consider the finite-difference discretized one-dimensional heat equation with Dirichlet bound-
ary conditions,

(5.1) )+ (I - N)x(t)=0 2(0)= =0,

az
where 2(t) € RY, I, N € RV*N, and the only nonzero entries in N are N;,,; = 0.5, for
i € {lI,..,N—1}and N;;_y = 0.5, for: € {2,..., N}. Applying a backward-Euler time
discretization yields the discrete-time equation

1

(5.2) 7

(zlj] —=[i - 1)+ I - N)z[j] = 0.

where £ is the discretization timestep. Solving (5.2) with a discrete-time WR algorithm results
in the discrete-time iteration equation

(5.3 ] - 91— 1) + 9] - Nyl =0,

where k is the waveform iteration index, y**![j] = **![j] — «*[j], and therefore y*[0] = 0.
When considering (5.3) on the semi-infinite interval, that is for all integers j > 0, the

10
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FIG. 5.2. The spectrum of T in (5.4) for the case of N = 20 and h = 0.1. Note, the spectrum is the union of the
regions bounded by the depicted circles.

waveform iterates satisfy

] [
y (2] v (2
i vHBl | | 98|

where T is the inverse of a semi-infinite block Toeplitz matrix, and T"’s symbol is given by

Alternatively, x(z) can be derived by computing the z-transform of (5.3). The spectrum of T,
A(T), is then given by [38]

MT) = {x(z) | |2| < 1}.

Now consider the specific example where n = 20. In Figure 5.2, the spectrum of T for
h = 0.1 is given. In this case, the timestep is significantly smaller than the time constant
associated with the fastest mode of (5.1). Note that A\(7") covers a significant fraction of a disc of
radius two centered at one. This implies that relaxation, whose associated iteration polynomial
has all its zeros at precisely one, is reasonably close to optimal. Therefore, Krylov-subspace
based approaches will be of limited additional advantage. This is demonstrated experimentally
in Figure 5.3, where the convergence rates of WR and WGMRES are compared.

11
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FIG. 5.3. The normalized residuals as a function of iteration for WR (dashed line) and WGMRES (solid line)
applied to solving (5.3) with N = 20 and h = 0.1. The waveforms were computed using 500 timesteps.

Systems like the spatially discretized heat equation are stiff, with both rapidly and very
slowly decaying modes. If a stiffly-stable time-integration formula like backward-Euler is used
to solve (5.1), then most of the timesteps will be selected to accurately capture the slowest modes.
In particular, for the discretized heat equation example with N = 20, a more practical case to
analyze is when h = 10, rather than the ~ = 0.1 case above, as this larger timestep will still insure
the slower modes are accurately computed. In Figure 5.4, the spectrum of T for A = 10 is given.
As is clear from the figure, the spectrum of T tightly hugs the real axis, much more so than in the
h = 0.1 case. Since this spectrum covers a small fraction of the radius two disc centered at one,
Krylov-subspace based approaches should have a significant advantage over WR. That is is the
case is made clear in the comparisons in Figure 5.5.

5.3. Parallel Results. Parallel numerical experiments were conducted to compare the prac-
tical efficiency of the waveform methods with the best known serial methods (as well as with
parallel versions of the best known serial methods). The experiments were conducted using a
two-dimensional n-channel MOS transistor model discretized with a 19 x 31 mesh. The experi-
ments simulated the effect of a 5 volt pulse applied to the drain terminal with the gate terminal
held at a constant 5 volts.

The experimental parallel computing environment consisted of eight IBM RS/6000 worksta-
tions — five model 320s, one model 320H, and two model 540s — and one Sun SparcStation 2.
The Sun SparcStation 2 was used as the Master for all experiments and the IBM RS/6000 ma-
chines were used as the Slaves. To make the parallel results as meaningful as possible, serial
results were obtained on a single model 320, results with two and four processors were obtained
on two and four model 320 Slaves, respectively, and results with eight processors were obtained
with all eight machines. The mesh was divided as evenly as possible among the Slave processors
— no load balancing was attempted.

12
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FIG. 5.5. The normalized residuals as a function of iteration for WR (dashed line) and WGMRES (solid line)
applied to solving (5.3) with N = 20 and h = 10. The waveforms were computed using 500 timesteps.

Table 5.2 shows a comparison of the execution times (measured in elapsed wall clock seconds)
required to complete a transient simulation of the test device using WRN and WN/WGMRES.
For all experiments, first order BDF and 256 fixed timesteps were used over a simulation inter-
val of 51.2x 107" seconds. To establish a uniform measure for purposes of comparison, the
convergence criterion for all experiments was the requirement that the maximum error over the
simulation interval in the value of any terminal current be less than one part in 1x107%. To
provide an initial guess for WRN and for WN/WGMRES, 16 and 8 initial WR iterations were
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Method # Procs Time
WRN 1 | 8230.23
WRN 2 | 4469.91
WRN 412712.58
WRN 8| 1571.92
WN/WGMRES 1 *
WN/WGMRES 2 *
WN/WGMRES 4| 925.60
WN/WGMRES 8| 504.50
Pointwise (Direct) 1 | 2462.48
Pointwise (GMRES) 1] 1221.98
Pointwise (GMRES) 2| 6931.86
TABLE 5.2

Execution times (measured in elapsed wall clock seconds) required to complete a transient simulation of the test
device using WRN, WN/WGMRES, and point at a time methods. A * indicates that the experiment was not able to be
run because of memory restrictions.

performed, respectively, after which WRN and WN/WGMRES required 499 and 75 iterations to
converge, respectively.

In addition, Table 5.2 shows the execution times required to perform traditional point at a time
simulation of the test device, using direct and vertical-line preconditioned GMRES (PGMRES)
linear system solvers. Parallel runs with the PGMRES point at a time method were conducted, but
as is shown in the table, execution time increased — a result of the large number of communication
and synchronization steps required by PGMRES at each timestep and the high latency of PVM
and standard Ethernet communication. Note that we did not try to parallelize direct factorization.

As can be seen from the table, the WN/WGMRES method has very good parallel performance
(although because of its large memory requirements, it could not be accommodated by the smaller
model 320 machines for runs on just one or two machines). Because it is necessarily more
synchronous, WN/WGMRES might appear to be at a disadvantage (when compared to WR or
WRN) in a parallel implementation, however its vastly superior convergence rate makes it the
clear overall winner.

6. Conclusion. Inthis paper we presented some new dynamic iterative methods to accelerate
the convergence of the WR algorithm. The methods are based on the application of the Galerkin
method to an operator equation formulation of the linear time-varying initial-value problem.
Experimental results demonstrated that this acceleration significantly reduces the computation
time for device transient simulation.

Future work is primarily focused on improving the theoretical results about the convergence
of linear and nonlinear hybrid Krylov-subspace methods for differential-algebraic systems of
equations. In addition, the effect of using multirate integration must also be examined. Finally,
we are investigating function-space generalizations of the QMR algorithm.

Acknowledgments. The authors would like to thank Ibrahim Elfadel and Mark Reichelt for
many valuable discussions. In addition, the authors would like to acknowledge F. Odeh for his
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