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OPTIMAL CONVOLUTION SOR ACCELERATION OF WAVEFORM
RELAXATION WITH APPLICATION TO PARALLEL SIMULATION OF
SEMICONDUCTOR DEVICES*

MARK W. REICHELT', JACOB K. WHITE}, AND JONATHAN ALLEN?

Abstract. In this paper we describe a novel generalized successive overrelaxation (SOR) algorithm for acceler-
ating the convergence of the dynamic iteration method known as waveform relaxation. A new waveform convolution
SOR algorithm is presented, along with a theorem for determining the optimal convolution SOR parameter. Both
analytic and experimental results are given to demonstrate that the convergence of the waveform convolution SOR
algorithm is substantially faster than that of the more obvious ordinary waveform SOR algorithm. Finally, to demon-
strate the general applicability of this new method, it is used to solve the differential-algebraic system generated by
spatial discretization of the time-dependent semiconductor device equations. Results from experiments on serial and
parallel machines are presented to indicate a dramatic speedup over a more conventional method such as pointwise
GMRES.
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1. Introduction. To achieve highest performance on a parallel computer, a numerical
method must avoid frequent parallel synchronization [1]. The waveform relaxation (WR)
approach to solving time-dependent initial-value problems is just such a method, as the iterates
are vector waveforms over an interval, rather than vectors at single timepoints [10], [28], [7].
Like any relaxation scheme, efficiency depends on rapid convergence, and there have been
several investigations into how to accelerate waveform relaxation [10], [23], including using
multigrid [8], [26] and conjugate direction techniques [9].

In this paper, we investigate using successive overrelaxation (SOR) to accelerate WR
convergence. In particular, we show that the pessimistic results about waveform SOR (WSOR)
derived in [10] can be substantially improved by replacing multiplication with a fixed SOR
parameter by convolution with an SOR kernel. A formula for the optimal SOR kernel is
derived and is used to demonstrate the effectiveness of the convolution SOR (CSOR) by
applying the approach to a model parabolic problem. Then, the general applicability of CSOR
is demonstrated by using the method to solve the nonlinear time-dependent drift-diffusion
equations associated with modeling semiconductor devices. Finally, results from experiments
on serial and parallel machines are presented. These results indicate that on serial machines
CSOR is competitive with conventional methods, such as pointwise GMRES, but that on
parallel machines CSOR can have a dramatic advantage.

We begin in §2 by reviewing WSOR, and in §3 we relate the algorithm to pointwise SOR, to
demonstrate the difficulty in accelerating WR with a fixed SOR parameter. In §4, we motivate
the use of CSOR by examining the WSOR operator using simple Fourier analysis techniques.
It is shown that on the infinite interval, the iteration operators associated with fixed parameter
WSOR magnify errors in certain frequencies, even when the SOR parameter is in the range
[0, 2]. The Fourier analysis in §4 easily leads to the correct conclusion that WR convergence is
better accelerated using a frequency-dependent SOR parameter. However, the analysis is not
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directly applicable to the case of solving time-discretized initial-value problems. Instead, in
§5, we use the connection between the z-transform and the spectrum of semi-infinite Toeplitz
matrices to derive and to prove the optimality of a convolution SOR sequence. In §6, we bricfly
describe some aspects of implementing the CSOR algorithm, including the natural relaxation-
Newton extension for solving nonlinear problems. We apply the method to device simulation
on both serial and parallel machines in §7, and give conclusions and acknowledgments in §8.

2. Waveform SOR. In this section, we consider applying waveform relaxation methods
to the model linear initial-value problem

M) (4 +A)x(r) =b(r) with x(0) = xo,

where A € R*™", b(t) € R" is given for all r € [0, T'], and x(¢) € R" is to be computed.
Consider the standard relaxation splitting A = D — L — U, where D, L, and U are

the diagonal, strictly lower triangular, and strictly upper triangular pieces of A [27], [29].

Subtracting successive waveform relaxation iterations, the waveform Gauss—Jacobi (WGIJ)

and waveform Gauss—Seidel (WGS) iteration equations, respectively, may be written as

) (4 +D) Ax* (1) = (L + U) ax*(),

dt

A3) (4 +D - L) Ax*' (1) = U Ax* (1),

where Ax* (1) = x*1 (1) — x*(1).

The WSOR method for acceleration of WGS 1s a simple extension of algebraic SOR. To
derive the WSOR iteration equation, compute a waveform £ (1) on ¢ € [0, T, solving an
initial value problem as in WGS:

d y i1 n
(a +) 0 =bi0) = Y a0 = 3 ayxf )
= J

f=i+1

4)

#H(0) = xo,,

and then update xf (¢) in the iteration direction by multiplication with an overrelaxation pa-
rameter w,

(5) () =) + o [ff.‘*" (:)—x,."(r)].

Combining equations (4) and (5) yields

d H
(d_f +ﬂ,‘,‘) x:‘ ](I)

d i—1 n
= (1 -w) [(E +an') xf(f)] +w [bs(f) — 'Zl:ﬂfjxf*](f) = Z aijx;(t):l ;
= j

j=i+1
which, after subtracting successive waveform relaxation iterations, leads to
(6) (G +D—oL) A (1) = [(1 - 0)(F +D) + U] Ax*(1),

where Ax*" (1) = x* (1) — x*(1).

Note that deleting the % terms in equations (2), (3), and (6) results in precisely the
standard algebraic relaxation and SOR iteration equations. Also note that WSOR as defined
by (6) is not the same as the dynamic SOR iteration considered in [10] because of the derivative

term on the right-hand side.
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In this paper, we will consider the effect of replacing the overrelaxation multiplication
in (5) by an overrelaxation convolution with a causal time-dependent SOR kernel w (z). In the
continuous time case, the overrelaxation equation becomes

1
(7) x @y = xk@) +f w(t) - [.ff“ (t —1)—xF(t - r)} dr,
0

and the iteration equation for the resulting method is

(5 +D) A () = L f w(t) A — 1) dr
dt A

-2 ! uif & ' k(p _
= (dt +D) Ax (r)+[U (dr +D):| L w(t) Ax*(t — 1) d=.

3. Relation to pointwise SOR. Discretizing (1) in time using a multistep integration
method [4] yields

(I + hpoA) x[m]

(8)

) :
= hpoblm] + Y _ {hp; (blm — j1 — Ax[m — j]) — a;x[m — j1},

j=1
where «; and B; are the coefficients of the multistep method, and x[m] denotes the discrete
approximation tox(¢) att = mh. We now compare the convergence rate of the WSOR method
to the convergence rate of pointwise SOR, in which algebraic SOR is used to solve the matrix
problem at each timepoint.
The pointwise SOR iteration equations are derived by applying the relaxation splitting
A = D — L — U to equation (9) and taking the difference between the (k + 1)st and kth
iterations. More precisely, the pointwise SOR iteration equation applied to solve (9) for
Ax* N m] = x¥ [ m] — x*[m] is

[ + hBoD) — whpfyL] Ax'[m]

(10) ;
= [(1 = @) T + hpoD) + whPoU] Ax‘m],

where w is the SOR parameter. It follows that the spectral radius of the iteration matrix
generated by pointwise SOR at the mth timestep is

(11) p ([ + hBoD) — whBoL] ' [(1 — w) (I + hBD) + whBeU]) .

If WSOR is used to solve the model problem (1), and a multistep method is used to solve
iteration equation (6), then Ax*"[m] satisfies
Zaj[Ax“*‘{m = §] = 1 — o) Ax*[m — j]]
az
=1 ) B - @ - wl) e~ j1+10 - 0) D + 0Vl Ax'Tm - 1.
j=0
This can be rewritten as the discrete-time analogue of (6):
s
Y (I + hp;D) — whBLIAX* [m — j)
j:{}

(13) :
=Y _[(1 — @) (51 + hB;D) + whp; U1 Ax* [m — j).
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As the similarities of equations (10) and (13) suggest, if the time interval is finite, i.e., the
number of timesteps is some finite L, then for a given timestep A and a given SOR parameter o,
the time-discretized WSOR method has the same asymptotic convergence rate as the pointwise
SOR method.

THEOREM 3.1. On a finite simulation interval, the iterations defined by (10) and (13) have
the same asymptotic convergence rate.

Proof. Lety* denote the large vector consisting of the concatenation of vectors Ax*[m] at
all L discrete timepoints; i.e., y* = [Ax*[1]7, ..., Ax‘[L]T]T. Collecting the equations (13)
generated at each timepoint into onc large matrix equation in terms of vectors y**1 and y*
yields MAy*™! = NAy*, where M, N € R""*" are block lower triangular banded matrices,
with blocks of size n x n, and with block bandwidth s. It is then easily seen that M 'Nis
block lower triangular, and therefore has eigenvalues given by the cigenvalues of its diagonal
blocks, which are

(14) [(I + hBoD) — whpoL] ' [(1 — w) (I + hfoD) + whBoU].
Therefore, p(M 'N) is given by (11), implying that the iterations defined by (10) and (13)
have identical asymptotic convergence rates. d

Theorem 3.1 suggests that parameter w for WSOR should be chosen to be precisely equal
to the optimum parameter for the pointwise SOR method. However, this does not necessarily
lead to fastest convergence, as the following example illustrates.

Example 3.1. Lett € [0, 2048],x(0) = 0, and let matrix A € R32%32 and time-dependent
input vector b(t) € R*? of the model problem (1) be given by

2 -1 -|
A= ™ L and
-1
-1 2
(15) = . J
by (1)
2t y
b(r) = e where by (1) = 1 —cos (Ef;) ift < 256,
0 otherwise.
et s il

Consider the four problems generated by discretizing in time with the first-order backward
difference formula, using 64, 128, 256, and 512 uniform timesteps of size & = 32, 16, 8, and
4, respectively.

Since the tridiagonal matrix A is symmetric and is consistently ordered [29], [27], the
matrix (I + hBoA) of the pointwise time-discretized model problem (9) is also consistently
ordered and the optimum pointwise SOR parameter wy is given by

2
(16) Wopt = —F7——
14 /1 —pu?
where pt; = p(Hg,) is the spectral radius of the pointwise Gauss—Jacobi iteration matrix

Hg; = (I + hBoD) ' (hByL + hByU). For the four problems with 64, 128, 256, and 512
timesteps, the optimum pointwise parameters wy are approximately 1.669, 1.586, 1 482, and
1.364, respectively.
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FIG. 1. Convergence of WSOR using the pointwise optimal parameter (PT) compared with WR and CSOR, with
64, 128, 256, and 512 timesteps. Note that the four CSOR experiments have the same convergence rate.
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Fic. 2. Effect on convergence of the 256-timestep WSOR example of varying the SOR parameter from the
pointwise optimum wop = 1.482.

Curves PT64, PT128, PT256, and PT512 of Fig. 1 show convergence versus iteration
of the WSOR method for the four problems with their optimum pointwise SOR parameters
wep. Note that as the total number of timesteps is increased, the initial convergence rate
slows, approaching a limiting value of the convergence rate of the unaccelerated Gauss—
Seidel WR algorithm (shown as WR in Fig. 1). In each case, the convergence rate of WSOR
eventually approaches the expected asymptotic value of wyy — 1. Note that if the iteration is
terminated when the error is less than a reasonable tolerance, for example 108, the asymptotic
convergence rate is never reached. For comparison, Fig. 1 also shows four convergence plots of
the new CSOR method to be introduced in the following sections. The four CSOR experiments
have the same convergence rate, independent of the number of timesteps, so the four separate
plots appear as one line in Fig. 1.

To illustrate the effect of choosing a different SOR parameter w, Fig. 2 shows the con-
vergence versus iteration of the 256-timestep example for WSOR with values of the SOR
parameter @ not equal to the pointwise optimum wep = 1.482. When @ = 1.30 < woy,
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FiG. 3. Delta waveform Axf: (1) = xf;' (1) — xfa(') versus time dfter iterations 250 and 500, for the 256-
timestep WSOR method using w = 1.70, showing the growth and translation of an oscillating region. Note that the
vertical scales on the axes differ by two orders of magnitude.

the convergence curve lies between the pointwise optimum curve and the WR convergence
curve; i.e., both initial and asymptotic convergence rates are slower. By increasing the SOR
parameter to @ = 1.63 > wop, the initial convergence rate can be made faster at the expense
of slowing down the asymptotic convergence rate. But as the @ = 1.70 curve shows, once the
SOR parameter is increased beyond some point, the WSOR method may appear to diverge
before eventually converging. The intermediate solutions produced by the w = 1.70 example
contain spurious oscillations, as shown in Fig. 3. Note both the growth and translation of the
oscillating region with iteration.

In general, the optimum pointwise SOR parameter wy, does not dramatically improve the
convergence rate of WSOR because the matrix M~ 'N which describes WSOR convergence
is far from normal. Note that this is the case even if D~'(L + U) is normal. This suggests
that although the spectral radius of the iteration matrix determines the asymptotic convergence
rate of WSOR, it does not determine the effective observable convergence rate. The effective
convergence rate could be characterized, for example, by computing the pseudoeigenvalues
of the WSOR iteration matrix [25]. In the following section, we take an alternate approach,
based on results in [13] and [14].

4. Frequency-dependent SOR. The seemingly spontaneous appearance of spurious os-
cillations in the fixed-parameter WSOR iterates, as shown in Fig. 3, is most easily explained
by examining the behavior of iterates on the semi-infinite interval, ¢ € [0, oo), which contain
primarily a single Fourier component. Specifically, suppose that

AxXF (1) = Axk(iQ)e ™ + B (1)
where lim,_, o, B¥(t) = 0. Then, if the eigenvalues of D lie in the open left half plane,
AT Q) = H(IQ) AX (i) + B (1)
where lim, , o, B¥'!(t) = 0. For the WG], WGS, and WSOR methods, H(i Q) is given by

(17) Hg(iQ) = D' (L + U),
(18) Hgs(iQ) = (Dg — L) 'U,
(19) Hsor(iQ) = (Dg — wL) '[(1 — w)Dg + oU],
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FIG. 4. The spectral radii as functions of frequency Q2 of the WGJ, WGS (dashed) and WSOR iteration matrices
for the 32 x 32 version of the continuous-time problem of Example 3.1, with @ = 1.70 for WSOR. For comparison,
the plot also shows the spectral radius versus frequency for the CSOR method using the optimal CSOR sequence.

respectively, where Do = il + D. An interpretation of equations (17)—(19) is that when
examining convergence on the semi-infinite interval, and ignoring behavior which decays to
zero for large t, the spectral radius p (H(i$2)) gives the asymptotic convergence rate for errors
in Fourier component £2.

Figure 4 is a plot of the spectral radii of Hgy(i$2), Hgs(i$2), and Hsogr (i2) for the
32 x 32 continuous-time problem given in Example 3.1, using @ = 1.70 for Hgor (i$2). For
comparison, the plot also shows the spectral radius versus frequency for the CSOR method
using the optimal CSOR sequence, as will be described in the next section. For the 32 x 32
problem, the WGJ and WGS spectral radii are only slightly less than unity for low frequencies,
and high frequency components of the error are damped much more quickly than low frequency
components. However, the spectral radius p (Hsor (i€2)) is greater than unity over a range of
frequencies, and therefore the WSOR iteration magnifies errors in this higher frequency range.
This aspect of WR convergence is also predicted by the more formal treatment in [10], and
explains the appearance and growth, but not the time-translation, of the spurious oscillations
seen in Figs. 2 and 3.

As is clear from the above, the growth in errors at higher frequencies is caused by selecting
a fixed SOR parameter based on insuring rapid decay of low frequency errors. Then, at the
higher frequencies, where unaccelerated relaxation is already reducing errors rapidly, this
SOR parameter is too large. Therefore, it is clear that this growth in high frequency errors
can be eliminated without slowing low frequency convergence by simply allowing the SOR
parameter to vary with frequency. That is, if (1) = XX (i Q)e ¥, then equation (5) can be
generalized to

(20) £(1Q) = x4(iQ) + 0(iQ) - [ff“ (i) —xk (m)],

where w (i ) is the frequency-dependent SOR parameter. The resulting frequency-dependent
SOR operator is given by

(21) H(iQ) = [Dg — 0(iQ) L] '[(1 — @(iQ))Dg + 0(iQ) V),

where Dq = iU + D, as before.
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One approach to deriving an improved SOR algorithm is to determine, for each €, the
w (i£2) that minimizes the spectral radius of H¢ (i€2) in (21). From such a frequency-domain
description, an w(f) can be determined. Then, this derived w(¢) can be convolved with
iterate differences to perform CSOR acceleration. Such an approach, though simple and
intuitively appealing, is difficult both to implement and to analyze precisely when considering
initial-value problems over finite intervals. Instead, in the next section we take a more direct
approach.

5. Discrete-time analysis. CSOR applied to the discrete-time system (9) can be derived
and analyzed precisely with the aid of the z-transform. For a sequence y[m], the unilateral
z-transform y(z) = Z y[m] is defined by

(22) y@) =) ylmlz " = Z yim],

m=()

where z € C [15]. Using the transform representation, the WGJ, WGS, and ordinary WSOR
methods applied to the discrete-time problem (9) are of the form Ax*!(z) = H(z) Ax*(z),
where

(23) Hg(z) =D, (L4 U),
(24) Hgs(z) = (D. - L)'V,
(25) Hsor(z) = (D, — wL) '[(1 = ©)D; + wU].

For a general multistep method with uniform timestep A, the diagonal matrix D, is

Ej:u 7’

Ak > j=oBiz™!

Like equations (17)—(19), these operators correspond to standard relaxation and SOR matrices
with D replaced by the diagonal matrix D,. Note that Hsor(z) in (25) can be obtained by
applying the z-transform to (13).

To derive the iteration equation for discrete-time CSOR, let overrelaxation equation (5)
be replaced by a convolution sum with sequence w[m],

(26) D I+ D.

(27) xfm] = xf[m] + )" wle] - (£ [m — £]—xf[m — £)) .
£=0

The z-transform of this convolution equation is
(28) (@) = 3k + 0@ [#1@ -1 @)

where w(z) is the z-transform of the sequence w|[m]. The z-transform of the resulting discrete-
time CSOR operator is given by

(29) He(z) = D, — w(z) L] '[(1 — 0(2))D, + o(z) U],

with w(z) = Z w|m] and D, given by (26) above.

The CSOR operator on sequences is derived by combining the convolution equation (27)
with the discrete-time problem (9) and subtracting successive iterations. The resulting CSOR
iteration equation for a general multistep method is given by
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k)

Z (o;1 + hB;D) AX*'[m — j)

=0

5 m—j
— Y RBLY  wlt] A m — j ]

.

J=0 £=0
(30)
=Y (oI + hp;D) Ax*[m — j)
j=0
§ m—Jj
+ Y hBU — (I + hBD)] Y wlt] Axk[m — j — €],
j=0 £=0

Though lengthy, this is precisely the same as the WSOR iteration equation (13), with overre-
laxation multiplication replaced by a convolution sum.

Let K denote the CSOR operator mapping from sequence Ax*[m] to Ax**'[m], defined
by

(31) A m) = KAaxkm) = )  hel€) Ax*[m — €],
=0

where h¢o[m] € R"*" is derived from equation (30). Concatenating the vectors Ax[m] at all
timepoints, the operator K may be written in block matrix form as

M, AxkHI1] N, Ax*[1]
M; M, Ax*t1[2] N, N, Ax*[2]
(32) M; M, M, Axkt13] [ =| N3 N2 N, Axk[3]

From this, it is easily seen that the CSOR operator K is a block Toeplitz operator [17],
corresponding to the semi-infinite, block lower triangular matrix M~ !N specified by (30).
This leads to the following lemma.

LEMMA 5.1. On the infinite interval, the spectral radius of the operator K defined in (31)
is determined by the spectral radius of the matrix Hc(z) given by (29),

(33) p(K) = max p(Hc(2)).

z|>1

Proof. Because operator K is a block lower triangular semi-infinite Toeplitz operator, the
spectrum of K equals the spectrum of the matrix-valued symbol f(z) of the Toeplitz operator,
where z ranges over the exterior of the unit disk [11]. The symbol of the Toeplitz operator K
is precisely the matrix He (2). |

Thus, minimizing the spectral radius of the CSOR operator on sequences is the same
as minimizing the maximum over |z| > 1 of the spectral radius of the matrix Hc(z) given
by (29). This leads to the following theorem, the main result of this paper.

THEOREM 5.2. Consider the time-discretized model problem (9), where A is consistently
ordered. If, at a particular z € C, the spectrum (1(z) of Hg;(z) lies on a line segment
[—p1(z), m1(2)], with u(z) € C and |puy(z)| < 1, then the spectral radius of Hc(z) is
minimized by the unique optimum wepx(2) € C given by

2

Wy I(Z) —
’ 1+ 1= i (2)?

(34)
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where /- denotes the root with the positive real part. Furthermore, the sequence woptlm] =
iz 'w,,m(z) is optimal in the sense that it minimizes the spectral radius of the operator K.

Proof. For brevity, the argument (z) will be omitted in the following; i.e., w will denote
w(z) and Hc will denote the CSOR operator (evaluated at z) computed using CSOR parameter
w(z2).

Let u; = ripy, wherer; € [—1, 1], denote each eigenvalue of Hg; given by (23). Classical
SOR theory [29], [27] guarantees that for each u; = r;jt;, there is an eigenvalue A; of H¢
which satisfies

(35) A —oripv/Ai + (@—1) =0,

and therefore, from the quadratic formula,

(36) " i i +\/(mu1w)2 .

2 2

Let w be the conjectured optimal wyp. Combining equation (34) with (36) yields

(37) VIAil = |3 i@ [nﬂ/rf—l]‘:I%mwopi\.
r +‘|I'?"-2— 1‘ =1 forr,- € [—l,l] And

where the last equality follows from the fact that

as (37) holds for all i, with parameter @ = @y,

(38) p(He) = M| =

(3r1000)’| = |eop — 1.

Equation (38) implies that p(H¢) cannot be decreased by picking a value of w such that
o — 1| > |w(,pt — l‘. This follows from the fact that

(39) pHc) > |w— 1]

for any w [29], [27].
To show that p (H¢) also cannot be decreased by choosing a value of w such that | — 1| <

‘w(,m — 1|, consider the cigenvalue A; corresponding to p:
Hw #fwz
(40) \/_;=f+{w)=7+ S i

and note that f, : C — C, given by equation (40), is a single-valued, continuous function
that is analytic except at

2
1:&,!1—;@'

Since [p| < 1, points w; and w, lie in the interior and exterior, respectively, of the circle

(41) wy, W =

o — 1| = 1 in the complex w-plane. Note that w, equals the conjectured Wep from equa-
tion (34).
Let D denote the interior of the curve given by the perimeter of the circle |w — 1| = 1

with a cut along the line defined by the circle’s center and w;. The cut follows the line from
the perimeter down to w,, and then back up the other side to the perimeter, as shown in Fig. 5.
The function f. is nonzero everywhere within D, since equation (40) implies that a zero can
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FIG. 5. The region D and branch cuts in the complex w-plane.
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FiG. 6. The optimal CSOR parameter theorem requires the spectrum p(z) to lie on a line segment
[—pi(z), m1(2)], with pi(z) € Cand |p1(z)| < 1.

occuronly atew = 1,and f. (1) = p;. Therefore, the minimum modulus theorem [20] implies
that | f, (w)| attains its minimum value somewhere on the boundary of D. Finally, the lower
bound in (39) implies that w1 = wey in (34) is the only point on D which can achieve as low
a p(H¢) as given in (38), completing the proof. 0

Note that when the eigenvalues u lie on a real line segment, this theorem contains the
classic SOR theorem [29], [27] as a special case, and extends the theorem to a limited class
of complex matrices [3], [29]. Whereas the classic SOR theorem requires the spectrum p
of the Gauss—Jacobi matrix Hg; to lie on the real line segment [— ¢y, jt1] with |g,| < 1, the
CSOR theorem requires the spectrum j(z) of Hg;(z) to lie on a line segment [ —z¢;(2), 11 (2)],
with 11(z) € Cand |u:(z)| < 1, as shown in Fig. 6. For the discrete-time problem (9), this
requirement is satisfied, for example, by the class of diagonally dominant symmetric matrices
A with constant diagonal D = dl, since the spectrum p.(z) of the Hg;(z) for such matrices is

dh Y _, Biz 7
42) O > L L
Yo lejz™7 +dhpizi]

where po denotes the eigenvalues of D (L +U). For any particular z, the real line segment
Mo 1s mapped to a rotated line segment.

Theorem 5.2 leads immediately to the following corollary.

COROLLARY 5.3. If wop(z) given by (34) is analytic, then the corresponding sequence
Weplm] = = wopi(2) is optimal for discrete-time convolution SOR, i.e., it minimizes p(K),
the spectral radius of the operator on sequences. In addition, the following is true.
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I. Sequence woy[m] = 27 wop(2) is real.

2. Initial value wop[0] equals wop of pointwise SOR.

3. Asymptotic convergence on a finite interval equals that of optimal pointwise SOR.

Proof. Since w(z) minimizes the spectral radius of Hc (z) for any z, Lemma 5.1 proves
that convolution with the inverse z-transform woy[m] = Z~ ! Wopt (2) optimally minimizes the
spectral radius of operator K.

I. The diagonal matrix D, given by (26) is a conjugate-symmetric function of z, so
that Hg;(z) defined in (23), and Hg;(z)'s largest-magnitude eigenvalue u,(z) are
also conjugate-symmetric functions of z. This implies that wyy (z) is conjugate-
symmetric, and the inverse z-transform is real.

2. The initial value theorem for the z-transform [6] implies that

2

1+ ‘/1 e (lim m(z))“
2—00

In the limit z — oo, the matrix Hg;(z) reduces precisely to the pointwise Gauss—
Jacobi iteration matrix used to solve (9), since

Wopt [0] = z}ﬂ‘go Wopt (2) =

| 1
lim DJ'(L+U) = — I+D) (L +U).
P09 U hpo
3. Referring to the block matrix expression of CSOR operator K (32), it is easily seen
that on a finite simulation interval, the spectrum of the block lower triangular operator
K is equal to the spectrum of its block diagonal M{lNl where

M, = [(I + hD) — wqx[0]hL],
N1 = [(1 = wopn[0D) (T + hD) + wop[0]RU].

Since w[0] equals the optimal wy; of pointwise SOR, the matrix MI_'N, 1s precisely
equal to the iteration matrix of optimal pointwise SOR. 0
Note that the result that the asymptotic convergence of optimal CSOR on a finite interval
equals that of optimal pointwise SOR is nearly irrelevant, since the operator K is so far from
normal. As Example 3.1 and Fig. 1 showed for WSOR, the asymptotic convergence rate given
by the spectral radius of M 'N may have little to do with the convergence rate observed in
practice.

6. Implementation of convolution SOR. In practice, standard SOR algorithms use the
results of several Gauss—Jacobi iterations to estimate the optimal SOR parameter [5], but
it is not yet clear how to apply this approach to CSOR. One might first try to estimate the
largest-magnitude eigenvalue jt;(z) by computing the transforms of successive WR iterates
Ax**1[m]. Then an adaptive scheme might be used to approximate wept[m]. Of course, one
difficulty is that it is the complex value of j1;(z) that is required, not the magnitude |x,(z)|. In
addition, since the iterates are not known for m greater than some finite L, it is not possible,
in general, to compute the transform of the iterates. A more successful approach has been
to consider the spectrum of the SOR operator and use a power method to estimate y(z) and
Wop[m].

For the Poisson problem in Example 3.1 and Figs. 1 and 2, the optimal CSOR sequence
wepi[m] can be computed analytically. The largest-magnitude eigenvalue u; = p(D ' (L+U))
for the Poisson matrix is easily calculated, and then Theorem 5.2 implies that the z-transform
of the optimal CSOR sequence is given by
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2

pdh 2
1 1-]
+\/ (I—z“+dh)

Finally, series expansion can be used to invert the z-transform and obtain woplm].

There are a variety of alternative approaches to extending the CSOR algorithm to problems
with nonlinearities. We used a waveform extension of relaxation-Newton (WRN) methods
for solving nonlinear algebraic problems [16]. For example, consider the nonlinear problem
of the form

(43) wopi(z) =

(44) 4 x(t) + F(x(t),1) = 0,

where F : R" — R”. The iteration update equation for the ith component of x in a CSOR-
Newton algorithm is then given by

d 3 F; (x*
(45) 9 ey + O iy kn) + Fiot).0) =0,
dt ax;
followed by
(46) Xy = xk@) +f w(t) - [if“(r — 1) —xf(t — r)] dr.
0

7. Application to semiconductor device simulation. In this section, the robustness of
the CSOR method is demonstrated by using it to solve a practical problem for which the theory
does not precisely apply, in particular, the transient simulation of semiconductor devices [2],
(22], [18]. We begin in §7.1 with a brief review of the problem of semiconductor device
simulation. Then in §7.2, experimental results arc presented, comparing the performance on a
serial machine of the WRN method with and without CSOR acceleration with that of standard
pointwise solution methods. Finally, simulation results on a parallel machine are presented in
§7.3.

7.1. Background for semiconductor device simulation. A key component of modern
VLSI circuits is a semiconductor device known as a MOSFET (metal-oxide semiconductor
field effect transistor). Although a MOSFET is a three-dimensional structure consisting of
several different regions of silicon, oxide, and metal, a MOSFET may be modeled by a two-
dimensional slice of the device, as shown in Fig. 7. Here, thick lines represent metal contacts
to the drain, source, substrate, and gate oxide regions, to which external voltage boundary
conditions are applied.

Charge transport within a semiconductor device can be described by a two-carrier model
of electrons and holes and is governed by the electrostatic potential # normalized in thermal
volts and the electron and hole concentrations n and p. These three unknowns are computed
at each point in a device by solving the Poisson equation, and the electron and hole continuity
cquations:

47) eV,\Vu+qg(p—n+N)=0,
3
(48) D, V*n — pn Vi (VaVu +n Vi) = a_’:
2 2 ap
(49) D,V?p + u,V, (VpVu + p Vu) = —

or’
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FIG. 7. A two-dimensional slice of a MOSFET device.

where N is a known background concentration typically ranging from —10'® cm 3 to 10%
ecm™3, V, = 0.026 V is the thermal voltage constant, ¢ = 1.60x 107" C is the magnitude
of electronic charge, D, and D, are the electron and hole diffusion constants, and j,, and j,,
are the electron and hole mobilities. The diffusion constants D, and D, are related to the
mobilities by the Einstein relations D, = V;u,, and D, = V;,. The mobilities p, and ., are
used to model many physical mechanisms. One standard approach is to model the mobilities
as nonlinear functions of the electric field E; i.e.,

—(1/8)

Uny E 4 "
Hn = WUn, 14| ——
Usm‘

where vy,, and B are constants and p,, is a doping-dependent mobility [12]. Typical mobility
and diffusivity values are p, = 550, u, = 180, D, = 14.3, and D, = 4.68.

A common approach to spatially discretizing the two-dimensional device equations (47)—
(49) 1s to use a finite-difference formula to discretize the Poisson equation, and an exponentially
fit finite-difference formula to discretize the continuity equations [22]. For each node i of an
N-node rectangular mesh, the spatial discretization yields

(50) Vv, Id"i_f_“" [u,-—uﬂ] —qA; (pi —n; + N;) =0,
i Y
ij Ju-nu d"l
(51) pas Z{ [n: B(u; —u;) — n; Bu;— u()I}
(52) i Z il up”[ B(u;j—u;) — pi B(ui—u;)] dp,“
Pi J i) ! ) dr

The summations are taken over the silicon nodes j adjacent to node i. As shown in Fig. 8, for
each node j adjacent to node i, L;; is the distance from node i to node j, d;; is the length of the
side of the Voronoi box that encloses node i and bisects the edge between nodes i and j, and
A is the area of the Voronoi box. Similarly, the quantities €;;, i, and u,, are the dielectric
permittivity, electron, and hole mobility, respectively, on the edge between nodes i and j.
The Bernoulli function B(x) = x/(e* — 1) is used to exponentially fit potential variation to
electron and hole concentration variations, and effectively upwinds the current equations.
Figure 9 illustrates a typical MOSFET simulation, showing a two-dimensional slice of the
silicon device along with the external boundary conditions on the potentials « at the terminals.
Here, the potentials at the source and substrate terminals are held at 0, the potential u at the gate
terminal is held at 200, and there is a short pulse at the drain terminal. The concentrations » and
p at each terminal are held constant at an equilibrium value determined by the background
doping concentration at that terminal. For all MOSFET simulations, Dirichlet boundary
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FIG. 9. IHlustration of the drain-driven karD example and the Dirichlet boundary conditions on the terminal
potentials u (normalized in thermal volts).

conditions on the variables u, n, and p are imposed at the source, drain, gate, and substrate
terminals, and Neumann reflecting boundary conditions are imposed along the left and right
edges of the device.

In the following experiments, the three different MOS devices of Table 1 were used to
construct six simulation examples, each device being subjected to either a drain voltage pulse
with the gate held high (the D examples), or a gate voltage pulse with the drain held high (the
G examples). To observe the effect on WR convergence, two additional gate-pulsed examples
were constructed by refining the device meshes of karG and soiG to contain 64 vertical lines.

7.2. Results on a serial machine. The waveform methods used for experiments below
are based on red/black block Gauss—Seidel WR, where the blocks correspond to vertical mesh
lines. To generate a good initial guess, 16 or 32 iterations of standard WR were performed,
and either the WRN method or WRN with CSOR acceleration was used. In each block cor-
responding to a vertical line, the sequence of implicit nonlinear algebraic systems generated
by the backward difference formula were solved with Newton’s method, and the linear equa-
tion systems in each block generated by Newton’s method were solved with sparse Gaussian
elimination. For CSOR acceleration, the CSOR sequence w[m] was determined by lineariz-
ing the device equations (47)—(49) about the initial condition solution, fitting wopt(2) with a
rational function, and inverse transforming. To diminish the effect of the nonlinearity, the
overrelaxation convolution was applied only to the potential variables u.

For the pointwise methods, the device equation system of the entire mesh was generated
successively at each timepoint, with each vertical line block contributing the equations of that
mesh line. The nonlinear algebraic system resulting from the backward difference formula was
solved at each timepoint with Newton’s method, and the linear equation system generated by
Newton’s method was solved with either sparse Gaussian elimination or the vertical line block
preconditioned generalized minimal residual (GMRES) conjugate direction algorithm [19].
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TABLE 1
Description of MOS devices.

Device Description Mesh Unknowns
kar abrupt junction 19 x 31 1379
1dd lightly-doped drain | 15 x 20 656
soi silicon-on-insulator | 18 x 24 856

To simplify comparisons between the different solution methods, the backward Euler
method using 256 equal timesteps was used for most experiments, with a simulation interval of
51.20or 512 picoseconds. Some experiments were performed using the second-order backward-
difference method, to show that the selection of integration method has limited impact on the
results. The convergence criterion for all experiments and all methods was the requirement
that the maximum error over the simulation interval in the value of any terminal current be
less than one part in 10*. The current entering a terminal is the sum of the electron and hole
current fluxes (the left-hand sides of equations (51) and (52)) on all of the mesh line segments
touching the terminal. Note that using global uniform timesteps climinates the ability of WR
to exploit multirate behavior, one of the primary computational advantages of WR on a serial
machine. Nevertheless. as the results will show, even without this multirate advantage, the
accelerated WRN algorithm is competitive on a serial machine with the best known pointwise
methods.

Figure 10 shows the convergence of the eight examples as a function of iteration for the
ordinary WRN method and the same method accelerated with CSOR. Despite the nonlinearity
of the semiconductor equations, the CSOR algorithm converged substantially faster than the
WRN method, demonstrating the robustness of the approach.

Table 2 shows the CPU times in seconds required for solution of the eight examples, for
pointwise methods and waveform methods. The serial experiments were performed on an
IBM RS/6000 Model 540 workstation, with 256 MB of memory. For the pointwise methods,
the sparse elim column shows the result of using direct factorization to solve the matrix
problem at each timepoint, compared with the vertical line block preconditioned GMRES
algorithm. The waveform method columns show the result of using ordinary Gauss—Seidel
WRN, and the same algorithm accelerated with CSOR. The results show that on a serial
machine, CSOR is competitive with pointwise Newton-GMRES—in fact, CSOR is slightly
faster than the pointwise Newton-GMRES method for five of the eight examples. This is
especially encouraging since, as noted above, the fixed timestep simulations do not allow the
waveform method to take advantage of multirate behavior.

TABLE 2
Comparison of serial times required for pointwise methods and waveform methods. Serial experiments were
conducted on an IBM RS/6000 Model 540 workstation.

Pointwise methods Waveform methods
Example || Sparseelim | GMRES WRN (Iters) | Conv SOR  (lters)
1ddD 231.65 620.00 732724 (1434) 584.81 (100)
1ddG 244.46 505.92 3404.19 (657) 360.15 (55)
soiD 401.95 188.53 1832.21 (284) 388.62 (50)
s0iG 430.80 205.28 1377.21 (209) 369.16 (45)
karD 1401.60 673.81 5451.02 (515) 1088.41 (92)
karG 1460.38 794.01 4672.49 (440) 712.74 (55)
s01G64 214405 2249.01 31399.19  (1885) 2239.39 (119)
karG64 3833.04 5205.89 40246.82  (1885) 3328.85 (141)




OPTIMAL CONVOLUTION SOR

1153

07, karD N - karG .
1<) I = |
= L = b= E\ i
E E 102 |
S 100 ¢ 3 E
f: 1§ 103
_2! \ A ‘B F
E 102 - S 104
® F ® g :
10-5 - - 1 10-5 L
200 400 600 0 500
iterations iterations
100 1ddD L 100 1ddG
(=] [=] e =4
5 9 g 10! 1 E
£ 100 | 3
3 - 102 -
g 1 ] E ‘,
w T = 3L 2
E 102 4 | E 10 e\ E
g |\ el 3§ 104! E
& 10-5 |_ <Y 1 & 10—5 ; =t — 1 ___.E'
0 500 1000 1500 0 200 400 600 800
iterations iterations
104 | soiD 100 _s0iG ¥
E E g =\
5 5 104[ |
= ; = \
7] \ 7] |
10-2
g g 103
E 1 8104 E
B | L EE 105 L . *
100 200 300 0 100 200 300
iterations iterations
100 ¢ kGo4 - 100 o sG64 )
o) B, S
8 10-1,@ ' j 5 10-1{
£ f !| 9 g |
§ 102 {1 E 102 H
o | | 151 E
.| F
g 1035| 4 8§ 103 Y
= =\ Hr-trs El 1
F 1 3
GE 10—5 | L ek L L BQ !0-5 l’ I i
0 500 1000 1500 2000 0 500 1000 1500 2000
iterations iterations

FIG. 10. Terminal current error versus iteration for WR (dashed) and waveform CSOR (solid). The integration

method was backward Euler.
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FiG. 11. Terminal current error versus iteration for WR (dashed) and waveform CSOR (solid), using the

second-order backward-difference formula.

TABLE 3

Comparison of serial times required for pointwise methods and waveform methods, using the second-order
backward-difference formula. Serial experiments were conducted on an IBM R5/6000 Model 540 workstation.

Pointwise methods Waveform methods
Example || Sparseelim | GMRES WRN (Iters) | Conv SOR  (Iters)
1ddG 244.22 505.28 3496.88 (662) 457.58 (66)
s0iG 430.94 204.88 1461.23 (208) 399.46 (45)
karG 1460.40 792.63 5086.66 (443) 762.72 (55)
karG64 3834.80 5179.61 40242.77  (1895) 3863.22 (149)

To test for dependence on the integration method, the same set of eight experiments was
conducted using the second-order backward-difference formula (BDF2) [4]. The results were
almost identical to those of the backward Euler experiments and show that the comparison of
the iterative methods was not skewed by the use of a first-order integration formula. Figure 11
and Table 3 summarize the results of the BDF2 experiments for four of the examples.

It should be emphasized that the CSOR theory does not precisely apply to the semicon-
ductor device simulation problem since the problem is highly nonlinear. And even when
linearized about some point, the resulting matrix, though block consistently ordered, does not
satisfy the conditions of Theorem 5.2. Nevertheless, using a CSOR sequence determined by
Theorem 5.2 significantly accelerated the convergence of the waveform method.

7.3. Experimental results on parallel machines. In this section, the implementations
of the waveform and pointwise methods for device simulation on the Intel iPSC/860 MIMD
parallel machine are outlined and experimental results are presented. As described in §7, the
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FIG. 12. Hlustration of the communication and computation steps performed by compute node i during one
parallel waveform method iteration.

waveform methods used for device simulation are based on red/black block Gauss—Seidel WR,
where the blocks correspond to vertical mesh lines. In the parallel implementation, after the
N vertical lines of the device mesh are partitioned into N /2 pairs of adjacent red and black
lines, each pair is assigned to one of N /2 processors or compute nodes. Then in each parallel
iteration, the N /2 compute nodes first solve the N/2 red lines concurrently, and then solve
the N /2 black lines concurrently.

Figure 12 is an illustration of the communication and computation steps performed by
compute node i to complete one parallel waveform iteration. On compute node i, the black
line which gives the right boundary condition of the red line is already resident within the
node, but the black line which gives the left boundary condition is on compute node i — 1.
Therefore, the first step in computing iterates for all of the red lines is for each compute node
i to receive the black line information sent rightward from compute node i — 1. Once the left
boundary conditions have been received, each compute node i can compute iterates for its red
line, and send this red line information leftward. Solving the black lines in the second half of
the iteration requires a similar communication pattern. Each compute node i receives the red
line waveform solution sent from the right, computes the iterate for its black line, and sends
this black line iterate to the right.

Note that each iteration of the parallel waveform algorithm contains only two blocking
communications—before computing iterates for a line, each compute node must wait to re-
ceive the waveform from a neighboring line. The algorithm therefore requires very little
synchronization between the compute nodes, and the communication that is required consists
of large packets of information, entire waveforms.

If fewer than N /2 compute nodes are available, then each compute node is given multiple
pairs of red/black lines that are adjacent in the device mesh. This implies that some of the lines
(both red and black) residing on a compute node will depend only on other lines residing in the
compute node. In this case, some communication and computation can be overlapped—the
red lines that do not depend on other compute node solutions are solved before waiting to
receive the black line solutions. Similarly, the black lines that do not depend on other compute
node solutions are solved before waiting to receive the red line solutions.

To parallelize the pointwise Newton—-GMRES method, the vertical line blocking of the
device mesh is used to partition the block tridiagonal matrix of the linearized equation system.
First, the host assigns pairs of vertical line blocks to the compute nodes exactly as in the wave-
form method. Then, given a particular block, the corresponding compute node is responsible
for the storage and computation of the corresponding pieces of the matrix and GMRES vectors
in that “block row,” as shown in Fig. 13.

Unfortunately, partitioning the matrix and the vectors implies that the parallel pointwise
Newton-GMRES algorithm requires many communication steps, each consisting of relatively
small packets. Before every Newton iteration at every timepoint, a compute node must receive
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FiG. 13. To partition the matrix—vector product, each processor is assigned the block rows corresponding to a
pair of vertical line blocks.

TaBLE 4
Waveform relaxation Newton timing results on the iPSC/860).

Example 8 blk/proc  (Procs) | 4 blk/proc  (Procs) | 2blk/proc  (Procs)
1ddD NA 4721.25 (5) 2473.97 (10)
1ddG NA 2190.19 (5) 1182.51 (10)
soiD 1871.74 (3) 1037.27 (6) 554.67 (12)
s0iG 1504.04 (3) 812.72 (6) 429.44 (12)
karD 4378.82 (4) 2256.21 (8) 122432 (16)
karG 3745.48 (4) 1939.39 (8) 104191 (16)

the two vectors of solutions of the neighboring lines from the left and the right in order to
generate the block diagonal and block off-diagonal matrices. To accomplish the matrix—vector
product for each GMRES iteration, a compute node must exchange pieces of the multiplicand
vector with the neighboring compute nodes. Moreover, each GMRES iteration requires a
number of inner product calculations, each of which requires a global sum. Although it may
be possible to overlap these communication operations with local computation, a significant
amount of interprocessor synchronization is still required. An approach such as that given in
[24] might prove to be helpful, however.

Tables 4 and 5 show the CPU times required for solution of the eight examples on the Intel
iPSC/860. The times shown are measured elapsed times on the compute nodes. The waveform
method displays a remarkable scalability, with a roughly linear speedup up to 32 processors
(the s0iG64 and karG64 examples). In contrast, the parallel pointwise Newton-GMRES
algorithm became significantly slower on more than one processor. This can be attributed
to the many small communications and synchronizations required at each time point in the
simulation interval. Despite the fairly sophisticated parallel implementation and the dedicated
communication hardware in the iPSC/860, the parallel Newton—-GMRES method is bounded
by the cost of its communications, at every iteration, at every timestep. Table 6 summarizes
the best timing results for each method on the iPSC/860.

It is clear that the parallel implementations of both the waveform and the pointwise
methods could be improved. The pointwise Newton—-GMRES code could be rewritten to
avoid some communication with the host, perhaps by choosing one of the 1860 compute nodes
to act as coordinator. In addition, some of the Newton—-GMRES communication could be
overlapped with computation. The CSOR code could be improved by using a specialized
block tridiagonal matrix solver rather than a general sparse Gaussian elimination package.
But none of these improvements will change the inherent difference between the pointwise
and the waveform algorithm: the pointwise algorithm requires much more synchronization
and performs many more communications.
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TABLE §
Convolution SOR timing resulis on the iPSC/860.

Example 8 blk/proc  (Procs) | 4 blk/proc  (Procs) | 2 blk/proc  (Procs)
1ddD NA 382.77 (5) 201.23 (10)
1ddG NA 235.67 (5) 128.59 (10)
soiD 405.93 (3) 22541 (6) 120.15 (12)
s0iG 417.40 3) 225.74 (6) 117.31 (12)
karD 895.50 (C))] 460.27 (8) 248.93 (16)
karG 590.88 (4) 308.29 (8) 165.61 (16)

s0iG64 987.17 (8) 507.20 (16) 260.13 (32)

karG64 1386.32 (8) 713.97 (16) 373.53 (32)

TABLE 6

Summary of the best timing results for each method on the iPSC/860).

Example  (Size) Newton-GMRES  (Procs) | Conv SOR  (Procs)
lddD (656) 1184.68 (1) 201.23 (10)
1ddG (656) 989.74 (1) 128.59 (10)
soiD (856) 366.11 (1) 120.15 (12)
s0iG (856) 401.42 (1) 117.31 (12)
karD (1379) 1262.49 (1 248.93 (16)
karG (1379) 1492.17 (1) 165.61 (16)

s0iG64 (2292) 4400 est. (1) 260.13 (32)
karG64  (2854) 9800 est. (1) 373.53 (32)

8. Conclusion. In this paper, a new waveform convolution SOR algorithm was presented
and applied to solving the differential-algebraic system generated by spatial discretization
of the time-dependent semiconductor device equations. In the experiments included, CSOR
converged robustly, and substantially faster than unaccelerated WR. In addition, on the parallel
machines used in these experiments, the CSOR method was substantially more efficient than
the pointwise GMRES method.

Example 3.1 and all plots were generated with MATLAB 3.5 running on an IBM RS/6000
Model 540 workstation.
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