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ABSTRACT
The sudden increase in systems-on-a-chip designs has renewed in-
terest in techniques for analyzing and eliminating substrate cou-
pling problems. Previous work on the substrate coupling analysis
has focused primarily on faster techniques for extracting coupling
resistances, but has offered little help for reducing the resulting net-
work whose number of resistors grows quadratically with the num-
ber of contacts. In this paper we show that an approach inspired by
wavelets can be used in two ways. First, the wavelet method can be
used to accurately sparsify the dense contact conductance matrix.
In addition, we show that the method can be used to compute the
sparse representation directly. Computational results are presented
that show that for a problems with a few thousand contacts, the
method can be almost ten times faster at constructing the matrix.

1. INTRODUCTION
As designers of mixed signal integrated circuits become more ag-
gressive in their use of the technology, the conservative design prac-
tices that allowed them to ignore substrate coupling problems are
being abandoned. Not only is this making substrate coupling prob-
lems more commonplace, but the ones that do occur are harder to
analyze. For this reason, there is renewed interest in analyzing sub-
strate coupling[1, 2, 3, 4, 5]. Because of the complexity of the
substrate interactions, it is important to find robust and effective
numerical techniques for substrate parasitic extraction and conse-
quent simulation of substrate effects on circuit performance.

Compared to other parasitic extraction and analysis problems, such
as capacitance extraction, the difficulty with extracting and simu-
lating substrate coupling models is that the coupling is potentially
dense. Evaluating the impact of parasitic capacitances is relatively
easy in comparison, since due to strong shielding effects conduc-
tors are usually capacitively coupled only to a few other nearby
bodies, and the extraction problem can be localized by analyzing
only a section of the 3D geometry. Later simulation is efficient
because the capacitive parasitics generate only a few more terms
in the sparse circuit matrix. If the substrate is uniformly conduc-

tive, substrate coupling is more localized, so that the conductance
matrix is already numerically sparse. In other cases, such as in sub-
strates where there is a thin top layer of relatively low conductiv-
ity and lower layers of higher conductivity, a situation desirable for
latchup supression, the coupling tends to be global. In this case, ev-
ery substrate contact may have important couplings to every other
contact, implying that large sections of the substrate may need to
be analyzed at once.

Recent work on numerical modeling of substrate coupling effects
has focused on obtaining ann by n impedance or admittance cou-
pling matrix, wheren is the number of contacts. Any of the algo-
rithms developed for rapid analysis of interconnect parasitics[6, 7,
8, 9] may be adapted to solve the problem of extracting the sub-
strate coupling information associated with a single contact(e.g.,
[10, 11, 12]).

The difficulty with these approaches is that, in the substrate cou-
pling context, knowing how to do each of these single-contact solves
quickly is insufficient. First, the density of the extracted coupling
matrix makes later circuit simulation prohibitively costly, because
the now-dense circuit matrix must be factored hundreds or thou-
sands of times in each simulation. Second, most methods of ob-
taining then columns of the coupling matrix requiren matrix so-
lutions, which is computationally quite costly, making it imprac-
tical to solve problems withn larger than a few hundred. To ad-
dress these two problems we are motivated by work on multi-scale,
wavelet-like bases[13, 11, 9] for fast integral equation solutions.

By changing to a wavelet basis, which is constructed to efficiently
represent coarse-grain information associated with the specific IC
geometry under study, we hope that the resulting coupling matrix
will become numerically sparse. That is, the use of the wavelet
basis will allow us to “sparsify” the matrix, as many entries will
become small in the new basis, and can simply be dropped with
only small loss of accuracy. This will have advantages for later
circuit simulation. It is important to note that because of the multi-
resolution property of the wavelet basis, the matrix can be made
sparsewhile still preserving the global circuit couplings. We show
for an example that we can reduce the number of nonzeros by 90%
while still achieving 1% accuracy.

In addition, because the construction of the wavelet basis gives us
a good idea of the final sparsity structure of the matrix, we can
exploit this structure to reduce the total number of solves needed
to extract the full coupling information. To see this, consider that
the naive approach to computing the conductance matrix is to per-
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form n solves with a unit vector or a basis function as a right-hand
side. Then each solve produces one column of ann� n conduc-
tance matrix. The number of solves can be reduced by construct-
ing right-hand sides which are sums of basis functions whose as-
sociated current responses do not overlap. Thus we extract several
columns of the conductance matrix while only doing one solve, in
this way reducing the number of solves needed to obtain the com-
plete (sparsified) coupling matrix. We present this acceleration of
the extraction process as a black-box algorithm that can be used
regardless of what underlying technology (finite-difference, finite-
element, boundary-element) implements the detailed extraction al-
gorithm. Our preliminary results show that number of solves can
be potentially reduced by an order of magnitude for medium sized
analog or RF circuits. It should be noted that on larger problems
with sparser conductance matrices, many more basis functions will
generate current responses that do not overlap. Therefore, each
solve will yield more matrix columns, suggesting that the asymp-
totic complexity is closer toO(n) thanO(n2).

The coupling matrix sparsification technique is developed in Sec-
tion 3 and can be performed whether or not the technique of Section
4 for reducing the number of solves is used. In Section 2, we spec-
ify our formulation and briefly describe the simple Laplace solver
we developed to do the solves. It is based on a standard finite-
difference volume discretization, using a preconditioned iterative
method for the solve. Numerical results are presented in Section 5.

2. FINITE-DIFFERENCE ANALYSIS
2.1 Formulation
To obtain a concrete solver technology in which to test the matrix
sparsification ideas, we have implemented a simple finite difference
solver. We were motivated in our choice by the fact that modern
process technologies produce substrates with complex conductivity
profiles as a result of features such as wells, diffusion gradients, and
buried layers, so that in the future we can easily use the solver for
these more complicated cases. However, we emphasize that the
choice of finite-difference solver is independent of our algorithms
for sparsifying the conductance matrix and reducing the number of
solves, and other approaches such as boundary elements could be
used.

The finite-difference formulation we use for our numerical experi-
ments is standard and has been described elsewhere, so we discuss
it only briefly here. We consider a substrate of rectangular cross
section withL layers, ordered from top to bottom of thicknesses
d1 : : :dL and conductivitiesσ1 : : :σL. No current can enter or es-
cape the substrate except through the contacts, which are on the top
surface. This situation is described by Poisson’s equation

�∇ � (σi∇φ(r )) = ρ(r)

whereφ(r) is the potential (voltage) atr and ρ(r) is the current
flux density atr . Note that this is zero inside the substrate. The
boundary conditions are Dirichlet on the contacts and Neumann
everywhere else:

∂φ
∂n

= 0 on non-contact substrate surfaces

φ = φ(r) on contacts

For simplicity of implementation, we work with piecewise-constant
conductivities, so at the interfaces of regions of differing conduc-
tivity, current continuity must be enfored, leading to the interface

condition between layersi andi +1,

σi
∂φi

∂n
(r) = σi+1

∂φi+1

∂n
(r)

where∂φi=∂n(r) denotes the normal derivative ofφ at r on the in-
terface, approached from layeri. The current flowing from theith
contact can be calculated asZ

contact
σ1

∂φ
∂n

:

For computer solution of this mixed Dirichlet-Neumann problem,
discretization is required. We use a uniform grid with a standard
7-point stencil. It is easiest to understand as a large 3-D grid of
resistors. The only issue is what to do at the interfaces. If an inter-
face is a fractionp between two grid layers (with conductivitiesσi
andσi+1) the conductance of the resistor crossing the layer is de-
termined by using the formulas for resistors in series and resistance
from resistivity and length:r = 1

p
σi
+

1�p
σi+1

.

2.2 Finite-difference solver
The finite-difference solver uses the preconditioned conjugate gra-
dient method. The method is effective for our problem because
the operator matrixA is quite sparse (at most 7 nonzeros per row)
and thus cheap to apply, and because we were able to find a good
preconditioner. Preconditioning is particularly important for large
Laplace/Poisson type problems because the condition number grows
quadratically with the discretization fineness.

Fast Poisson solvers are the method of choice for solving prob-
lems with uniform boundary conditions in each dimension. Unfor-
tunately they cannot be applied directly to problems, such as ours,
with irregular mixed boundary conditions. However, for a precon-
ditioner to be effective it only needs to be anapproximateinverse,
suggesting the use of a fast Poisson solverfor the pure-Dirichlet
problemas a preconditioner [14]. For our experiments this usually
resulted in solves to a 10�5 relative residual tolerance in about 20
iterations.

Each iterative solve of the finite-difference equations, followed by
a current calculation, can be considered as the (implicit) multipli-
cation of the contact-contact substrate conductance coupling matrix
G with a potential vectorv that corresponds to voltages on the con-
tacts. To extract then�n conductance matrixG, the standard ap-
proach is to set the voltages on each contact in turn to one volt and
then obtain a column ofG using the currents computed the finite-
difference solver. That is, for columni of the conductance matrix,
the voltage is set to unity on contacti and zero on all contactsj 6= i,
and the vector of currents obtained from the iterative solve forms
columni.

3. SPARSIFYING THE CONDUCTANCE MA-
TRIX

Suppose for the moment that we have been able to extract the con-
ductance matrix,G, that relates the voltagesv on the contacts to
the current flowing into the contacts, asGv= i. In this section we
explain how to sparsify the conductance matrixG—that is, find a
change of basis which is inexpensive to apply and results in a matrix
which isnumericallysparse. Numerically sparse is a weaker condi-
tion than sparse in that we don’t require that most entries are zero,
only that most entries are smaller than a suitably chosen threshold.
Then we can zero the entries below the threshold to obtain a truly
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sparse approximation to the numerically sparse matrix. Of course,
the threshold must not be chosen too large or the approximation
will be inaccurate.

The algorithm is based on the wavelet methods developed in [9].
Here we adapt these methods to the quite different setting of sub-
strate coupling. The methods of [9] sparsify the 1=r potential-from-
charge operator in three dimensions. (In making precise compar-
isons with the notation of [9], it is important to keep in mind that
the analogous quantity to charge in [9] ispotentialfor us, and the
analogous quantity to potential in [9] iscurrent for us, since we
calculate the contact currents from the contact potentials usingG).

3.1 The algorithm
Assume for simplicity that the top surface of the substrate is a
square with side length 1. This square can be subdivided into four
squares of half the sidelength. In general, doingl levels of subdivi-
sion leads to a partition of the surface into 22l squares of sidelength
2�l . The union of the 22l squares on levell is denoted bySl . For
simplicity we assume that the level of refinementL is chosen so that
contacts do not cross square boundaries. The union of the contacts
in squaresat levell is denoted byCs. The standard basis consists of
the characteristic functions of thens contacts in squares, denoted
by χs;1 � � �χs;ns.

Before going through the multilevel algorithm formally, we try to
develop some intuition for what is going on. On the lowest level,
the idea is that the new basis vector voltages will be linear com-
binations of the standard basis vector voltages in a given squares
on levelL which havevanishing moments, resulting in very local
current response—that is, far away froms the current response will
be very small. This leads to a numerically sparse matrix. Consider
the zeroth-order moment

µ0(σ;s) =
Z

s
σ(x;y)dxdy;

whereσ(r) is a linear combination ofχs;1 � � �sχs;ns. On two equal-
area contacts, if one voltage is set to 1 and the other to�1, we might
expect that at distant points (relative to the distance between the two
contacts), the current response from one contact would cancel most
of the current response from the other. If we can set higher-order
moments of our new basis functions to 0 as well, even faster decay
of current response might be expected. In [9], there is a theorem to
this effect for the 1=r kernel.

Of course, some basis functions on the lowest level willnot have
vanishing moments. For example if we choose the(1;�1) voltage
vector in the previous paragraph, the(1;1) which is orthogonal to
it has a nonzero zeroth-order moment. However, if we take linear
combinations of basis functions in the four squares on levelL�1
whose parent is the parent ofs, it is possible to get moments which
vanish on that higher level. This process is continued up through
the levels.

We now describe the algorithm more formally. First, the moments
µα;β;s of a functionσ(x) are defined fors2 Sl by

µα;β;s(σ) =
Z

s
x0αy0βσ(x;y)dxdy;

where(x0;y0) = (x;y)�centroid(s). We want basis functions on the
lowest level whose moments vanish up to orderp (order(µα;β;s) :=
α+β). There are(p+1)(p+2)=2 moments of order� p.

3.2 Lowest level
On levelL in squares, we find thevs basis functionsψs;i whose
moments vanish and thews basis functionφs;i which are orthogonal
to theψ functions (and whose moments therefore do not vanish),
for a total ofns := vs+ws basis functions in squareson levelL, by
forming the(p+1)(p+2)=2�ns matrix of moments

M(α;β); j = µα;β;s(χs; j):

From this we will find the change-of-basis matrixQs = qi; j such
that

φs;i = ∑
j

qj;iχs; j ; i = 1: : :ws

ψs;i = ∑
j

qj+ws;iχs; j ; i = 1: : :vs

by taking the singular value decomposition

Ms = [Us]
�

Ss;r 0
�� ΦT

ΨT

�

which we can write in the more standard form by defining

Ss =
�

Ss;r 0
�

Qs =
�

Φ Ψ
�

so we have

Ms =UsSsQT
s

whereUs andQs both are matrices with orthonormal columns. The
matrix M is a matrix that maps a vector representing a function
f expressed as a sum of the characteristic functionsχ into mo-
ments of f . If M f = 0, then f has vanishing moments. Iff has
vanishing moments, it must lie in the nullspace ofM. We con-
clude that because by construction the rightmostvs columns of the
singular value matrixSs are 0, then thevs columns of the sub-
matrix Ψ are the columns of the matrixQ corresponding the the
basis functionsψ with vanishing moments, as only vectors in the
space spanned by the columns ofΨ can have non-zero inner prod-
uct with Ψ. Similarly the ws columns of the submatrixΦ give
the basis functions with non-vanishing moments; these basis func-
tions will be “pushed up” to the next level. Note that the num-
berws of basis functions with nonvanishing moments is limited to
(p+1)(p+2)=2, because the dimension of the nullspace ofMs is at
leastns� (p+1)(p+2)=2. We can re-organize the decomposition
asMsQs =UsSs, such that the left-hand side gives the moments of
the new basis functions. This vector of momentsMsQs=UsSs will
be used to calculate higher-level moments.

3.3 Higher levels
Call the union of lowest level basis functions over all the lowest-
level squaresφ(L), ψ(L), where theφL have nonvanishing moments
and theψ(L) have vanishing moments. Now we describe induc-
tively the construction ofφ(l) andψ(l), the basis functions on level
l for l < L with nonvanishing and vanishing moments respectively.
Each level-l basis function will be nonzero in only one level-l square,
and the moments are computed with respect to the center of that
square, just as on the lowest level. Assumeφ(k) andψk have been
constructed for allk> l . Then the basis functionsφ andψ on level
l are combinations of theφ functions (nonvanishing moments) of
the four child cubes on levell +1:
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φs;i = ∑
j;α

q(α; j);iφα; j ; i = 1: : :ws

ψs;i = ∑
j;α

q(α; j);i+ws
φα; j i = 1: : :vs

Again Qv is found by a singular value decomposition. It would
be inefficient to calculate the moments directly on the larger levels
since the squares get larger and larger. Fortunately this is not nec-
essary, because one can use the already-calculated moments of the
children. To do this the center with respect to which the moments
are calculated must be shifted. A 6�6 matrix results, whose en-
tries can easily be calculated by expanding out(x� x0)

α(y� y0)
β

for α+β � p.

The process is continued all the way to the top level. It is cheap
in computational cost, as the analysis in [9] shows. In this way a
change-of-basis matrixQ is calculated which is sparse, and in the
new basis the coupling matrixG becomesQTGQ.

4. REDUCING THE NUMBER OF SOLVES
In the preceding section, we assumed that we were given a known
conductance matrix,G. In the situation of [9], the 1=r kernel is
known explicitly: given charges, potentials are calculated. In our
situation, given potentials at the contacts, we calculate the cur-
rents using the finite-difference solution procedure. TheG matrix
is known only implicitly. Instead of a simple 1=r calculation (or
even a relatively simple panel integration) to calculate the potential
at panely due to a charge at panelx, for us, calculating the current
on contacty due to a voltage at contactx will, as detailed in Section
2, involve a computationally expensive solve. To obtain an explicit
form for the entire conductance matrix,n solves are required if the
computation is performed in the usual manner.

In order to reduce this cost, basis vectors can be added and the cur-
rent response of the sum found in one solve. If we know where the
current response will be significantly different from zero, and these
areas of large entries do not overlap for the basis vectors which
were added together, then we can extract the current responses for
each basis vector in the sum from the solution vector. To see how
this might work, consider a sparse matrix :

A=

2
664

a
c d

e f
g h

3
775 :

In general, to extract all the entries ofA by performing only matrix-
vector product operations (which, recall, in the substrate context,
are actually themselves iterative solves), we would need four prod-
ucts (i.e. solves), sinceA has four columns, one product with each
of the identity vectors. But if we know the sparsity structure ofA,
we only need two vectors,

v1 =

2
664

1
0
1
0

3
775 ; v2 =

2
664

0
1
0
1

3
775 :

Note thatv1 is the sum of the first and third unit vectors, andv2
the sum of the second and fourth. Since the columns extracted
by entries in the first and second rows ofv1 andv2, respectively,
cannot overlap with columns extracted by placing ones in the third

�� ��

��

��

��

��

��

����

Schematic representation of basis vector
constituents of rhs vector for solve-
reduction technique (each basis vector
represented by a black square). Note that
neighbor squares of distinct basis vector
squares do not overlap.

and fourth rows the non-zero entries inA can be extracted just by
examining the vectorsAv1 andAv2.

In order to create the right-hand side vectors, we need to make some
assumption on where the large entries are. The assumption we use,
of rapidly decaying response to basis functions with vanishing mo-
ments, is made by analogy with properties which are provably true
in the case of the multipole algorithm for the 1=r kernel. Intu-
itively, it is plausible that other physically based integral operators,
and their inverses, share similar properties. To understand our as-
sumptions, consider two basis vectors,φ1 in squareson levell and
φ2 in squaret on levelm� l . (By construction, every basis vector
in the new basis has support in only one square at some levell and
its moments vanish at that level, except for some at level 0 whose
moments don’t vanish.) Ifl = m, we assume thatφ1 andφ2 have a
large interactiononly if sandt are the same or neighbors. Ifm< l ,
we denote byp the parent square on levelm of s, and assume that
φ1 andφ2 have a large interactiononly if p andt are the same or
neighbors.

In order to provide the needed separation, we only combine basis
vectors which are on the same level and which are at least 3 squares
apart. See Figure 4. Then we have right hand side vectors for each
level l , i = 0: : :2, j = 0: : :2, given by

θl ;(i; j);m =
1�k;n�2l

∑
(k;n)=(i mod3; j mod3)

= ψ(k;n);m

where ψ(k;n);m is the mth vanishing-moment basis vector in the
square in rowk and columnn on level l . Under our assumptions,
for eachψ vector from theθ solution, we can then extract the cur-
rent response component in the direction of each transformed basis
vector on levels� l . The rest of the conductance matrix (current
response components on levels> l to basis functions on levell ) is
obtained by symmetry.

By choosing the highest-level squares sufficiently small so that
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Figure 1: Regular contact layout.

Figure 2: Irregular contact layout.

each square has at most a constant number of contacts in it, we
can assure that each square at every level will have at most a con-
stantc vanishing-moments basis functions (the constantc depends
on the order of moments used). Notice that there are at most 9c
vectorsθl ;(i; j);m n a given level, so the number of solves needed is
9c �number of levels, which for largeN will be much smaller than
N. (The number of levels depends on the problem size but for prac-
tical purposes is not large, usually of order ten).

The next section of computational results shows the accuracy of
our method for some examples.

5. COMPUTATIONAL RESULTS
For all the examples we use two layers with the bottom-layer con-
ductivity 100 times the top-layer conductivity. The grid used was
8 points in thez-direction by 128� 128 in thexy plane, with an
interface just below the top surface (z= 0:5). Contacts of size 2�2
grid points were placed in a square pattern with a spacing of 4 grid
points (between corresponding points on adjacent contacts), for a
total of 1024 contacts. To show that our method applies to irregular
layouts as well, we present a second example with 1199 contacts
chosen using a randomized multilevel method designed to create
clustering of contacts. Figures 1 and 2 show the contact layouts
for the two examples. Even for these small examples, doing all the
solves required naively (one per contact) requires around 4 hours
on a SUN Ultrasparc.

First we examine the matrixQTGQ obtained by using the change-
of-basis matrix derived in Section 3, using order 2 moment match-
ing. We measure its numerical sparsity by choosing a “drop toler-
ance”t and counting the number of entries inQTGQthat are greater
thant. We calculate a “sparsification ratio”, the factor by which we
can reduce the number of entries in the matrix, by dividing the to-
tal number of entries (n2) in the original matrix by the number of

Example Contacts sparsification ratio L2 error
Regular 1024 1.001 1�10�3

Irregular 1199 1.004 2�10�3

Table 1: Sparsification in the standard basis.

Example Contacts sparsification ratio L2 error
Regular 1024 6 1�10�3

1024 24 1�10�2

Irregular 1199 9 2�10�3

1199 29 3�10�2

Regular 4096 13 1�10�4

4096 18 2�10�3

4096 34 2�10�2

Table 2: Sparsification using the wavelet basis.

entries greater thant.

Clearly we can achieve any desired sparsity by setting the threshold
t appropriately. The real test is getting good sparsity with small
error. There are many ways to measure error; we choose theL2
norm error, which is computationally easy to estimate and has a
simple intuitive interpretation. TheL2 norm error measures the
maximum possible ratio of the length of the error vector (that is,
the difference between the computed currents in the sparsified and
unsparsified representations) to the input (voltage) vector length.
To obtain a relative measure of error, we scale theL2 error by the
L2 norm of the original (unsparsified) matrix. It is important to
note that iterative methods are available for L2 norm estimation,
and we can apply the unsparsifiedG, without actually havingG, by
using the solver. This is important since computational savings in
the extraction depends onnot having to extract the fullG.

A common approach to reducing the density of coupling in the
substrate conductance matrix is simply to drop entries that, in the
normal basis, are small. Table 1 shows a sparsity ratio and error
obtained by thresholdingwithouta change of basis, demonstrating
that this more obvious approach can be quite ineffective. However,
when the multiscale basis is employed, much better results can be
obtained. Table 2 shows the sparsity ratio obtained for three ex-
amples in the wavelet basis. On the larger example, over an order
of magnitude compression can be achieved with very small error.
Moreover, note that the compression ratio seems to increase with
problem size. Figures 3 and 4 show the numerical sparsity pat-
tern for the 1024 contact and 1199 contact coupling matrices re-
spectively, in the wavelet basis. The multilevel structure is clearly
visible.

Now we look at the performance of the technique for reducing the
number of solves. We actually simulated the technique, in order to
save time in the exploration of the sparsification tolerance space, by
using the already-calculated standard basis coupling matrixG and
taking linear combinations of its columns to get the solutions for
theθ vectors in the solve-reduction technique. Since aside from a
modest setup cost, the expense of the actual algorithm is precisely
proportional to the number of solves, the results will be the same
doing the actual solves up to iterative method tolerance. See Ta-
ble 3. The “speedup ratio” column gives the ratio of the the number
of solves required naively (n) to the number of solves needed with
the multiscale basis and basis vector combining, i.e., the factor by
which the extraction can be accelerated. TheL2 error column gives
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Figure 3: Numerical sparsity pattern for size 1024 regular con-
tact coupling matrix
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Figure 4: Numerical sparsity pattern for size 1199 irregular
contact coupling matrix

the approximate norm of the difference between the dense matrix
obtained directly and the sparse matrix obtained through solve re-
duction. This gives the maximum current error length as a fraction
of the voltage vector input length. The number of solves required
is reduced substantially with very little loss in accuracy.

6. CONCLUSIONS AND FUTURE WORK
We have demonstrated a promising new method for sparsifying
dense coupling matrices, which could be used to speed up circuit
simulation of substrate coupling. We also showed how to obtain the
sparse approximate coupling matrix quickly by combining many
solves into one. The results show considerable improvements in
sparsity with only small loss in accuracy. This algorithm can be
applied to accelerate a variety of substrate extraction algorithms.
Ideally we would like to have an analysis, analogous to that for
the multipole or wavelet algorithms for the 1=r kernel, giving error
bounds for the new algorithm.
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Example Contacts solve speedup ratio L2 error
Regular 1024 2.94 2:3�10�4

Irregular 1199 2.86 7:3�10�4

Regular 4096 8.03 1:4�10�4

Table 3: Solve-reduction technique performance
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