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ABSTRACT
In this paper we presen t a rank-one update method for up-
dating reduced-order models of interconnect parasitics when
driv e resistances or load capacitances change, as commonly
occurs during timing analysis. These rank-one updates are
extremely inexpensive, do not require reexamining the origi-

nal in terconnect netw ork, and most importantly are provably
equivalent to rereducing the original netw ork.This abstract
con tains the proof only for the case of varying the driver
resistance, but examples are given to sho w that the exact-
ness holds more generally. In particular, a cross-talk case is
examined where the conductance matrix is singular.

1. INTRODUCTION
The impact of interconnect delays on the performance of
very high speed integrated circuits has made it necessary
to adapt timing analysis tools so that interconnect delays
are accurately modeled. In many of the gate-lev el timing

analysis tools, the gates are presumed to be characterized
by timing dela ys whic hare functions of gate load capaci-
tance. Then, in an attempt todev elop an accurate driver
model to use while analyzing the parasitic components as-
sociated with the interconnect, most gate level tools con vert
the gate's timing information into a time-varying current

source in parallel with a driver output resistor.

The diÆculty with the above stated approach is that in or-
der to determine the driver resistor, it is �rst necessary to
determine the e�ective load capacitance on the gate. Ho w-

ever, the e�ectiv e load capacitance depends on the driver
resistor, due to resistive sheilding, and typically an iterative
algorithm is used to arrive at a self-consistent solution [1].
The use of such an iterative algorithm requires reanalyzing
the interconnect for many di�erent driver resistances. In ad-
dition, the gate's driver resistor may also change under other

circumstances. If the gate is complex, the output drive resis-
tor may depend on what logic function is being performed,
or may even depend on whether the gate's output is rising

or falling.

In order to improve the eÆciency of the interconnect analy-
sis, large net w orks of in terconnect-related resistors, capaci-
tors and inductors are usually reduced using numerical tech-
niques that replace the original network with a low-order
model that accurately represents both the dela ys and the

loading e�ects. Ho wever, when these reduced-order models
are going to be used in timing analysis, they are often more
complicated because they m ustmaintain accuracy over a
wide range of possible gate driver resistances.

Although it is possible to rereduce the entire interconnect

network every time the driver resistor changes, this has tw o
distinct disadvantages. First, the reduction is computation-
ally expensive. Second rereduction implies that all the par-
asitic netw orks for a given timing analysis m ust bestored
for the entire analysis. In this paper w epresent an alter-
nativ e based on peforming rank-one updates of the existing

reduced-order model. These rank-one updates are extremely
inexpensive, do not require reexamining the original inter-
connect netw ork, and most importantly are provable equiv-

alent to rereducing the original netw ork with the updated
driver resistance. We start in the next section by brie
y

describing model-order reduction and then in Section 3 we
give a circuit deriviation of the rank-one update formulas for
changes in both driver resistances and load capacitors. In
Section 4, we giv e an outline of the proof that the rank-one
updates are equivalent to rereduction for driver resistances.
In Section 5, we show by example that the exactness holds

more generally than there was space to prove in this short
paper. We also demonstrate that the method can be used to
easily handle a cross-talk case where the conductance matrix
is singular. Conclusions are given in section 6.

2. BRIEF BACKGROUND ON MODEL RE-
DUCTION

All the computational results below are for RC circuits, but
the rank-one algorithm forupdating reduced-order models

seems, at least formally, to extend to RLC circuits. Ho w-
ever, to simplify the exposition and to be consistent with our
experiments, w e consider just the R Ccase. If the drivers
are represented using current sources entering at nodes 1
through m, the circuit can be converted to a system of dif-
ferential equations using nodal analysis, in which case the

system has the form

C _v(t) = Gv(t) + e1u1(t) + :::+ emum(t) (1)
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where v is the n-length vector of time-varying node voltages,
C and G are n� n nodal capacitance and conductance ma-
trices, e1; :::; em are n-length unit vectors, and u1; :::; um are
the time varying scalar input currents.

Since the �rst use of Krylov-subspace methods to compute
reduced-order models of circuits [6, 4], variants of these
methods have found wide acceptance due to their numer-
ical robustness. Issues of stability and passivity have re-
ceived considerable attention [2, 7], single-input multiple-
output and multiple-input multiple-output approaches have

been developed [8], and a projection framework for analyz-
ing these methods has been carefully studied [9]. In this
paper we will make extensive use of the recently developed
PRIMA algorithm [10], so this algorithm will be brie
y re-
viewed.

Although we will consider the multiple-input case experi-
mentally, here we only consider the single input case, corre-
sponding to assuming m = 1 in (1). This is a typical case,
as often the parasitic networks in timing analysis have a sin-
gle driver and multiple receivers. The PRIMA method for

this single input case is based on seperately projecting the
C and G matrices in (1) using vectors generated from the
Krylov-subspace

fG
�1

e1; G
�1

CG
�1

e1; :::; (G
�1

C)
q�1

G
�1

e1g (2)

where q is the order of the model. Let Vq be the n� q ma-
trix generated by sequential orthogonalization of the Krylov-
subspace vectors, in which case the reduced-order model is
given by

V
T

q CVq _z = V
T

q GVqz + V
T

q e1u(t): (3)

or

Cr _z = Grz + V
T

q e1u(t): (4)

where z is the q-length state vector for the reduced-order
model, Cr = V

T

q CVq and Gr = V
T

q GVq are q � q reduced

matrices, and V
T

q e1 is a q-length reduced input vector.

In a typical parasitic network, many of the node voltages will
be outputs. Each of the output node voltages of interest can
be related to the reduced-order model states using

v̂i � e
T

i Vqz (5)

where v̂i is the reduced order approximation to node volt-
age vi and e

T

i Vq is the q-length row vector equal to the ith

row of Vq . It is perhaps instructive to consider how many


oating point numbers are needed to completely describe
the reduced order model. If there is one input, l outputs,
and q states, then roughly

2 � q
2
+ (l+ 1) � q (6)


oating point numbers are needed to represent the reduced-
order model. Since q is typically less than �ve, once the
q-th order model has been constructed, timing information
is easily extracted by solving (4) using eigendecomposition

or numerical integration.

3. A CIRCUIT-BASED DERIVATION OF THE
RANK-ONE UPDATE FORMULAS

REDUCED−ORDER
       MODELis

irom
i

R

Figure 1: Circuit for deriving rank-one Update For-

mula

If the reduced-order model is extracted using a guess at the
driver transistor's output resistor, the reduced-order model

must be corrected every time the estimate of the driver resis-
tor is updated. One approach to performing this update is to
simply rereduce the original n-node parasitic network every
time the driver resistor changes, but this is disadvantageous
for two reasons. First, the reduction is computationally ex-
pensive. Second, and perhaps more importantly, such an

approach implies that all the parasitic networks for a given
timing analysis must be stored for the entire analysis.

A better approach would be to �nd some way of updating
the reduced-order model directly, without going back to the

original parasitic network. With such a method, the original
large network could be reduced once, and then discarded.
To see how to derive the update, consider the diagram in
�gure 1. In the diagram, �R is the change in the driver
resistance, i� is the current through �R, irom is the cur-
rent entering the reduced-order model, and is is the driver

current. The voltage across �R, denoted vin, can be related
to the reduced-order model states using (5). In particular,

vin = (e
T

1 Vq)z: (7)

As irom is the input current to reduced-order model, the
model's states satisfy

Cr _z = Grz + V
T

q e1irom(t): (8)

Summing currents and using the i-v relation for �R yields

irom = is � i� = is �
vin

�R
= is �

1

�R
(e
T

1 Vq)z: (9)

Combining (7), (8), and (9)

Cr _z = Grz � V
T

q e1
1

�R
(e
T

1 Vq)z + V
T

q e1is;= G
updated

r z + V
T

q e1is;

(10)

where

G
updated

r = Gr �
1

�R
p1p

T

1 (11)

and p1 is a q-length vector whose transpose is the �rst row
of Vq.

The update to Gr,
1

�R
pp

T is a q� q matrix whose columns
are all scalings of the vector p. Updates of this form are
often referred to as rank one updates.
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It is also possible to derive an analogous formula to up-
date any load capacitor, by following an analogous argu-
ment. The result is

C
updated

r = Cr +�Cpjp
T

j (12)

where �C is the change in the load capacitance at node j,
and pj is a q-length vector whose transpose is the j

th row
of Vq .

4. AN EXACTNESS THEOREM
The rank-one update formulas derived in the previous sec-
tion were based on simply combining the reduced-order model
with external components to produce a combined model.
What is surprising is that the drive resistor rank-one update
formula produces EXACTLY the same reduced-order model

as would be produced by rereducing the original n-node par-
asitic network from scratch, with the updated drive resistor.
This surprising (at least to the authors) result follows from
two facts. The �rst is a well-known property of rank-one up-
dates, and the second is that the span of a Krylov subspace
is invariant to certain rank-one updates of the associated

matrix.

Below is a well-known property of rank-one updates [11]. If
A is an n� n matrix and p is an n-length vector, then

(A+ pp
T
)
�1

= A
�1

+ �
�
A
�1

p
��

p
T
A
�1

�
(13)

where � is a scalar.

The following lemma is easily proved using (13).

Lemma 1. For any vector u

(A+ pp
T
)
�1

u = A
�1

u+ �A
�1

p: (14)

To prove the lemma, apply (13)

(A+ pp
T
)
�1

u = A
�1

u + �
�
A
�1

p
��

p
T
A
�1

�
u: (15)

Now let � be the scalar given by�pTA�1u.

Theorem 1. Let G
u
be the n � n conductance matrix

formed by updating the driver resistance and reapplying nodal

analysis to the unreduced RC network. If V
u

q is the n � q

matrix of Krylov-subspace vectors generated by sequential or-

thogonalization of

f(G
u
)
�1

e1; (G
u
)
�1

C(G
u
)
�1

e1; :::; ((G
u
)
�1

C)
q�1

(G
u
)
�1

e1g

(16)

then

(V
u

q )
T
G
u
V
u

q = G
updated

r and (V
u

q )
T
CV

u

q = Cr (17)

where G
updated

r are given in (11).

To prove the theorem, �rst note that when the drive resis-
tor is updated only the �rst row and column of the n � n

conductance matrix changes. In particular, the update to
the conductance matrix is rank-one and is given by

G
u
= G+

1

�R
e1e

T

1 : (18)

Note that Lemma 1 and (18) can be used to show G
�1

e1 is
parallel to (Gu)�1e1, and in addition it follows that

spanfG
�1

e1; G
�1

CG
�1

e1; :::; (G
�1

C)
q�1

G
�1

e1g (19)

= spanf(G
u
)
�1

e1; (G
u
)
�1

C(G
u
)
�1

e1; :::;

((G
u
)
�1

C)
q�1

(G
u
)
�1

e1g:

Since the two Krylov subspaces have the same span and
parallel starting vectors, sequential orthogonalization will
produce V u

q = Vq and

(V
u

q )
T
CV

u

q = (Vq)
T
CVq: (20)

Finally,

(V
u

q )
T
(G+

1

�R
e1e

T

1 )V
u

q = V
T

q GVq +
1

�R
V
T

q e1e
T

1 Vq (21)

which is exactly the formula given in (11).

5. COMPUTATIONAL VERIFICATION
In this section we give several computational results to demon-
strate the correctness of our theorem and to demonstrate
that the rank-one updates have exactness properties beyond
what was proved above.

The waveforms in Figure (2) are time waveforms for �ve
nodes in an interconnect network with 463 resistors and 470
grounded capacitors. The results in the plot are the wave-
forms produced by the a rank-one updated reduced-order

model and direct simulation of the entire circuit, notice they
are very close to each other except for t close to zero. As
is common for reduced-order models based on matching at
s = 0, the initial dynamics have some small errors. In this
example, the driver resistance update doubled the drive re-
sistance. To experimentally validate our theorm, a fourth-

order model was also generated by rereducing the original
933 element network with the updated driver resistor. The
rereduced conductance and capacitance matrices were com-
pared to the updated reduced conductance and capacitance
matrices. The comparison was performed by comparing cor-
responding matrix elements, and the relative errors were less

than 10�7 percent

The waveforms in Figure (3) are time waveforms for two
nodes in a cross-talk example in which a driven RC line is
capacitively coupled to two RC lines with no drive resis-
tors. This problem is diÆcult to reduce because the con-

ductance matrix is singular, and waveforms bear this out as
one of them does not rise all the way to one volt. The rank-
one approach solves this problem quite elegantly. A block
Arnoldi method was used with three starting vectors, one
corresponding to the driving point of each of the coupled RC

lines. The initial reduction used �nite drive resistors for all
three lines, resulting in a nonsingular conductance matrix.
Finally, the rank-one update formulas were used to e�ec-
tively turn o� two of the drivers, resulting in 
oating nodes.
All though it is not clear from the plot, the waveforms from
the direct simulation and rank-one updated reduced order

model are in such close agreement that there appear to be
only two node voltage waveforms.

6. CONCLUSIONS AND ACKNOWLEDGE-
MENTS
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Figure 2: Comparison between 4-th order ROM and

the direct simulation

In this paper we presented a rank-one update method for up-
dating reduced-order models when drive resistances or load
capacitances change. These rank-one updates are extremely
inexpensive, do not require reexamining the original inter-
connect network, and most importantly are provable equiv-

alent to rereducing the original network. Although we only

proved the case for driver resistance changes, we showed
by example that the exactness holds more generally by ex-
amining a cross-talk case where the conductance matrix is
singular.
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