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Abstract

The many levels of metal used in aggressive deep submicron pro-
cess technol ogies has made fast and accurate capacitance extrac-
tion of complicated 3-D geometries of conductors essential, and
many novel approaches have been recently developed. Inthispaper
we present an accel erated boundary-element method, like the well-
known FASTCAP program, but instead of using an adaptive fast
multipole algorithm we use a numerically generated multiscal e ba-
sisfor constructing a sparse representation of the dense boundary-
element matrix. Results are presented to demonstrate that the mul-
tiscale method can be applied to complicated geometries, generates
a sparser boundary-element matrix than the adaptive fast multipole
method, and provides an inexpensive but effective preconditioner.
Examples are used to show that the better sparsification and the ef-
fective preconditioner yield a method that can be 25 times faster
than FASTCAP while still maintain accuracy in the smallest cou-
pling capacitances.

1 Introduction

The development of deep submicron processes with extremely fast
devices and five or more levels of metal have made designers of
high-performance digital and analog integrated progressively more
concerned with extracting accurate self and coupling capacitances
from complicated 3-D structures. Recently devel oped efficient al-
gorithms for performing 3-D capacitance extraction have focussed
on three techniques, the floating random walk method [10], im-
provements to the finite-difference and finite-element methods [3,
2] and the so-called fast methods based on acceleration of the
method-of-moments or boundary-element approach [8, 9, 7].

In this paper we present a new multiscale, or wavelet-like, ap-
proach to accelerating the boundary-element method, and demon-
strate the method on several examples. We show that this method
has two important features: it can accurately represent the N2
entries of the dense boundary-element matrix in provably order
N elements with a low constant factor, and the method gener-
ates an inexpensive and extremely effective preconditioner. As
has become traditional in this subject, we compare our results to
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the publically available Fastcap program, which uses a multipole-
accelerated boundary-element method, and show that our method
can be morethan twenty-fivetimesfaster without significantly com-
promising accuracy even in small coupling capacitances.

In Section 2 we present a brief background on boundary-
element methods and acceleration techniques. Then in the follow-
ing sectionswe describe the construction of the multiscalebasisand
our matrix sparsification schemes. Finally, we make extensivecom-
parisons between our multiscale method and the FASTCAP pro-
gram for several examples. We show that without truncation, the
multiscale method and the adaptive fast multipole algorithm gener-
ate sparse representations of the dense boundary-element matrix in
exactly the same number of elements. Wethen show that truncation,
which can only be used with the multiscale method, providesan ad-
ditional factor of five over FASTCAP without compromising accu-
racy even in smallest coupling capacitances, and that truncation can
be used to achieve areduction of nearly afactor of 60, but then the
self and larger coupling capacitances are accurate only to ten per-
cent. We also show that the multiscale preconditioner reduces the
cost of solving the boundary-element equationsby asmuch asafac-
tor of five, and when combined with the better sparsification gives
aspeed improvement over FASTCAP of anywherefrom 25 to 300.

2 Background

The most commonly used integral formulation for computing the
charge density o of conductors for the given surface potential 1 is
thefirst-kind integral equation

Vo(z) =¢(z),

where Vo () denotes the potential due to the charge distribution
evaluated at an arbitrary fieldpoint

1 '
Vo (z) = ————0(x') dS,r , 2
(@) /surfac&s dmeol|lz — ='|| (=)

where dS, isthe incremental conductor surface areaand ||z|| de-
notes the usual Euclidean length.

One standard approach to numerically solving (1) isto use a
piece-wise constant Galerkin scheme, where o is represented by a
set of uniformly-charged panels. The result is alinear system,

Ag=Dp €)

where P € R™*", q isthe vector of panel charges, p € R" isthe
vector of known panel potential averages,

A = (x4, VX)) (4)

x € surfaces, (0]
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x: is afunction which is unity on panel 7 and zero elsewhere and
(,) isthe Ly-inner product.

Since every charge in the problem contributes to the potential
everywhere, the system of equations for the unknown charge den-
sites is dense, and a straight-forward implementation using Gaus-
sian elimination requires order N2 operations. It is much more ef-
ficient to solve the system iteratively, e.g., by conjugate gradients
(cg), but the memory and cpu time required still scales superlin-
early, roughly as NZ.

In the last decade there have been an number of approaches de-
veloped that can be used to reduce the computation time and mem-
ory required to solve (4) to nearly order N. These methods ap-
proximately and implicitly represent the dense matrix P in asparse
way, using much less than N2 memory. The implicit representa-
tions can be used to compute the matrix-vector productsrequiredin
cg in much lessthan N2 time.

Almost al the sparsification techniques in use rely on the ob-
servation that nearby panel interactions must be represented accu-
ractly and in detail, but distant panel interactions can be clustered
together to achieve efficiency. The specific techniques that have
been used include the adaptive fast multipole method [11, 13], the
precorrected-FFT method [4], ahierarchical singular-value decom-
position method [5] and a hierarchical panel clustering method [1].

Wavelets have also been applied to this problem [6] but the ap-
proaches have been restricted to problemswith only one, or perhaps
afew, surfacesand therefore have not been practical for capacitance
extraction.

Similar to wavelets, our approach generates basisfunctions on
multiple levels. On the finest level, weighted combinations of pan-
els are used to generate two types of basis functions: Thefirst type
(later on denoted by 1)) have rapidly decaying potentials, and the
second type (denoted by ¢) is orthogonal to the ¢’s. On the coarser
levels, ¢-functionsof the next finest level are combined to form new
basi sfunctionswith rapidly decaying potentialsand their orthogonal
complement.

Aswewill demonstrate below, our multiscal e approach hastwo
main benefits: it generates a very sparse representation of P even
for extremely complicated geometriesand it also provides an effec-
tive preconditioner for the iterative solver.

3 Construction of the Multiscale Basis
For the construction of the multiscale basis we will apply two con-
cepts known from the Fast Multipole Algorithm.

e Thetruncated multipole expansion centered at the point z of
the characteristic function x; can be used to approximate the
potential dueto ;. Itisgiven by

p n m
ZUCED DI DEECAL L e
n=0m=—n

Here p, ¢, 6 denote the spherical coordinates of the vector
T — o, Y," are the surface spherical harmonicsand d =
dist(S;j, o). Themultipole coefficients uy, (x;) are given by

II'ZL(XJ) =/TnYn_m(a7ﬂ) Xj(r7a1ﬂ) dS(r,a,ﬂ) . (6)
S

For flat panels the multipole coefficients can be calculated in
closed form. For more details we refer to [13].

e Hierarchical decomposition of the problem domain. Embed
the surface S into a coarsest level cube. The cube is subdi-
vided into eight cubes of equal size and this processisiterated
until the cubesin thefinest level L contain at most a predeter-
mined number of panels. Thecubesat thel-th refinement level
are collectively denoted by C¥ ;1 =0,..., L.

The calculation of the multiscale basis follows the cube hierar-
chy from the finest to the coarsest level. At first, for every non-
empty finest level cube v € € the canonical basis functions
{xv,15.-+,Xv,n} inv are transformed to form a new orthogonal
basis. Thisisdonein away such that multipole coefficients of or-
der < p of some of the newly formed basis functions vanish. The
actual calculation will be described below in more detail. The ba-
sis functions with vanishing multipole coefficients are denoted by
Yy = {1, -, %vs, },» and theremaining orthogonal basisfunc-
tion aredenoted by ¢, = {¢v 1, .-, Pv.ry }-

In the new basis the matrix of the discretized operator assumes
the form

(1, V) (pF), Yyypth))
(B, vy (B yyh))

where ¢, (X) denote all level-L ¢- and v-functions, respec-
tively.

Thefunctions1,; have vanishing multipole expansionsand be-
cause of (5) their potentials V4),,; are rapidly decreasing functions.
Therefore the entries

<¢U’i' ) V¢w) ) <¢V’i’ ) V¢uz) ) (wlﬂi' ) V¢w) (8)

will beneglectedif v and v/’ are not neighboring cubes. Hencethree
blocks of the matrix A% are sparse.

Once the finest level transform has been achieved, next level
functions ¢“~1 and 4“1 are obtained by transforming the
¢)’sin away such that the newly formed X~ -functions have
vanishing multipole coefficients. This process is iterated until a
basis of the form {y(X) =1 2 4} has been con-
structed. We describe the transformation below in more detail.

AW = 7)

Finest Level

First consider the finest level
cuber € CP) that contansn,, panels. The new basisisformed
by combining the characteristic functions of the panels

$ui = Y GiXedr i=1l..,m )
i

Pui D GitriXvis =180, (10)
i

wherer, + s, = n,. The ¢- and they-functionsarelinear combi-
nations of the y-functionsand so are their moments. In matrix form
this relation takes the form

[1(9), u(¥)] = M, Q7 , (11)

where M, € R®+1’Xnv s the matrix whose i-th column con-
tains the moments of x.;, u(¢) € RPHTD™ X" isthe matrix that

contains the moments of ¢, ;, u(1)) € RP+HD’ %% s the matrix
that contains the moments of v, ; and @, contains the coefficients

qi,j-



Thetransformation @, that makesthe multipolemomentsof the
1p-functionsin vanish comesfrom the singular value decomposition

My = UVSUQZ (12)
of M, . Here, U, = u; ; isunitary and S, isadiagonal matrix with
non-zero singular values sy, ..., Sy, -

If the coefficientsin (9) and (10) arethe entriesof the matrix Q..
in (12), then the ¢-functionshave vanishing multipole momentsand
areorthogonal to they-functions. To determinethe new basisinthe
higher levelswewill need the multi polemoments of the ¢-functions
which are given by

P (Do) = Sihnm)i, t=1,...,7,. (13)

Higher levels

Suppose multiscale basis functions ¢ ¢ ®) k = L,... 1+ 1
have been constructed. Consider now the non-empty cuber € .
The new basis functions ¢, , 1, are linear combinations of the ¢-
functions of cube v’schildrena € K,

¢V,i = Zqi,(a,j)¢a,j7 1= la"'arV (14)
Ja

¢V,i = Zqi+ru,(a,j)¢a,j; 1= 1,"'aSV7 (15)
J.o

This leads again to the singular value decomposition of M, as
in (12). Thematrix M, containsthe multipole momentsof thefunc-
tions ¢, € K, centered in x,,. These moments have been com-
puted in the previous levels, however, they are centered inthe z,'s
and must be trandlated to the new center z,,. Thisisalinear trans-
formation which also arisesin the Fast Multipole algorithm . It has
been described by Greengard [11].

Multiresolution Transform

The algorithm described above generates, beginning with the char-
acterigtic functions at the finest level, a sequence of orthogonal
bases of the finite element space

{X17"',XN} - {¢(L)7¢(L)}
N {¢(L—1),,¢(L—1)’¢(L)}

SR CART AP A N

A piecewise constant charge distribution can be expanded in the
canonical basis aswell as one of the multiscale bases at any level

N ! . v
on = ZUiXi = Z Z sza'\v,id)v,i + Z ngu,id’y,i
i=1

k=LveC i=1 veCy i=1
where
oi = {oh,Xi)
Gui = (Oh, %)
0vi = (oOh,Pui)-

Defining the vectors &, = [,.i)i, 00 = [0v.i]i, 0@ = [0W]vec,
ando¥) = [5,],ec, thetransform of o, can be written as

o — O, Fa-no @

N N NN (16)

e o1 . @

which can be viewed the multiresol ution analysis of the function o
Since there are only local transformationsthe calculation of & takes
order N operations.

4 Calculation of the Non-Standard Form

Because of the multiresolution analysisthe machinery of compress-
ingintegral operatorsexpressed inthe multiscale basisisquite simi-
lar to the compession with wavel et bases described by Beylkinet al.
[6]. Similar to the wavelet case, there are two aternativesto carry
out matrix-vector multiplicationsin the multiscale basis.

Thefirst alternativeisto transform the discretized linear system
into the multiscale basis

Az =0, a7

where A is the transformation of the stiffness matrix, or standard
form and is given by

[ @@, 0@ (6@, vy)
A_[ (¥, V@) (¥, Vo) ] ()

Here V denotestheintegral operator in (2). The second alternative
isto use the non-standard form

N , @) Pg®y (52, Yap()
Ans = B'OCKD'ag<[ éz(z)’vz@))) éi(z))vz@)g ]

(@, vyp®)
W,(S), v¢,(3)) :| )

0 (L)7v (L)

For a matrix-vector product in the non-standard form, all com-
ponents of the charge vector in the multiscale basis

0
[ (@, Vo))

ons = (70,5%)
are caculated via the multiresolution analysis (16). In a second
step, the vector uns = Ansons isformed and finally the vector in
the original basisis obtained by the additive inverse transformation

g — g Uy~ u

/ V. J (20)

~(2) ~(3) ~(L)
Ung uns .. Uns

Herethetransformsof the higher level smust be added to the already
computed ¢-components of the potential vector.

Because of therapid decay of the potential sV, thematrix coef-
ficients{¢,, V1), (¥, Vb, ) and (¢, V1), } aredropped when-
ever v and v’ are not neighboring cubes. Thus both, the standard as
well asthe non-standard form are approximated by sparse matrices.

Contrary to the standard form, the non-standard form does not
contain interactions of y-functions at different levels. Thus, for a
fixed polynomia degree, the non-standard form contains order N
non-zero terms. For the standard form truncation strategies can be
developed that also leave only order NV terms. However, the non-
standard is somewhat easier to implement, and has been used in our
implementation. In the remainder of this section we describe how
the coefficients in the sparsified non-standard form can be calcu-
lated efficiently.



Finest Level

In view of (9) and (10) the bottom level ¢ and ¢’s are linear com-
binations of the canonical basis functions. Thus the interactions of
¢ and ¢’sof neighboring cubes’ € N, aretransformations of the

X's

<¢V’ ) V¢u) <¢v’ ) vd)'/)
(1/)1/’ ) V¢V) <¢V’ 3 V¢u)

For the calculation of the blocks (x., Vx,) standard quadrature
rules can be used. Theblocks (4., V¢,) do not appear in the non-
standard form, but they will be needed to set up the matrix coeffi-
cients of the next higher levels. Since the farfield is dropped in the
non-standard form, only interactions between neighboring cubes
must be calcul ated.

= QV <XV1 VXU’ )QZ" -

Coarser Levels

Suppose that the coefficients (¢., Vo, ), {¢dv, Vibu1), (v, V,1)
and (1, Vib,+) have been calculated for al v € MN,,v €
C‘k),k > 1. For agiven cubev inlevel 1, the ¢, and ¢, ’s arelin-
ear combinations of the ¢, € K, asin (14) and (15). Thusthe
entriesin the non-standard form are transformations of ¢-functions
of the children cubes

<¢u, V¢u’>
<¢Va V¢u’> <¢Va V"pu’)

Fora' € N, theentry (¢q, Vo, ) of thematrix intheright hand
side has been calculated in the previous level. However, there are
also interactions between cubes « and o’ which are not neighbors
but whose parents are neighbors. These are interactions between
well-separated cubes and hence their calculation may be approxi-
mated using the multipole expansions. For that, set x = zo + h,
Y=oy +kandry = 2o — Ty, then

(bar V)i = / foi (%) (4)

s, |7'o¢,o¢’ +h — k‘|
Thevariablesin theintegrand can be separated using the translation
theory of spherical harmonics. Thus the integral can be expressed
in terms of the multipole moments of the ¢-functionsin cubesa, o’

(b, Vdar)iir = i(dai)” Lip(darir)

where L is the multipole-to-local translation matrix of cube « to
cube o of the Fast Multipole aogrithm, see [11].

a€kyal€K,,

dsS, dS, .

a

5 Truncation of nearby interactions

The truncated non-standard form has non-zero terms only for inter-
actions corresponding to neighboring cubes. These matrices have
alarge number of small entries which can be dropped to achieve a
higher compression of the integral operator.

To understand why nearby interaction matrices have small en-
tries, consider an arbitrary entry

<¢Wl: V¢V’i’)

of two adjacent cubes v, v'. This entry is the inner product of the
function ,; with the potential due to the function ¢,,;:. This po-
tential isasmooth harmonic function and furthermore, since the -
function has vanishing multipole coefficients, it is orthogonal to the

(b0, Vo) ] -0 [<¢a,v¢a1>] QL.

solid spherical harmonics. Thusfor any harmonic polynomia h,, of
degree < p we have (1,4, hp) = 0 and

<¢Via v¢u'i’) = S}?p("pui, V¢yli’ — hp) .

This quantity is small if the potential due to ¢,;; can be well ap-
proximated by harmonic polynomials. In practice, it is difficult to
predict a priori for which pairs of functions the interaction is small
enough to be truncated from the matrix. Instead, every entry of
nearby interaction matrices must be calculated and dropped if its
modulusfalls below a given threshold.

The threshold must be chosen so that the error dueto truncating
nearby interactionsis not bigger than the error dueto truncating dis-
tant interactions. In our implementation, we eliminate entries that
satisfy

2P
(p+1)2L°
wherep isthe expansion order, L isthe number of levelsin the cube
hierarchy and e isauser-specified parameter. With thischoicethe
additional error of the potential is O(277) and therefore decays ex-
ponentially with the expansion order.

(21)

laij| <er

6 Preconditioning

Multiscal e bases bear a strong resemblenceto the hierarchical bases
schemes[12]. These schemes were originally designed to improve
the convergence of iterative solvers for discretized PDEs, but they
generalize to a large class of differential as well as integral opera-
tors. Their striking feature is that their representation with respect
to the multiscale basis is diagonal except for a small block in the
highest level.

The form of the standard form A suggests a similar precondi-
tioning strategy. The entries (¥ ,.;:, V¥,;) are small not only for
cubes at positive distances but also for intersecting cubes at differ-
ent levels. Thusthediagonal blocks of A havethel argest impact on
the matrix vector product and are used for preconditioning.

P = BlockDiag (8™, V&™), (¥, V¥,),ecou..uc) (22)

It is more desirable to solve the discretized system in the origi-
nal coordinates, where the more efficient non-standard form can be
used for the matrix-vector product. Sincethe preconditionerisonly
given in the transformed basis, each preconditioning step involves
an additional forward and an additiona inverse multiscale trans-
form.

7 Numerical Results

This section reports some numerical results obtained by using the
multiscale basis described above. We have used Galerkin dis-
cretization with piecewise constant elements. The computationsare
based on the non-standard form (19), where all entriesare truncated
unless they correspond to nearest neighbor cubes.

We illustrate the convergence behavior of the compression
scheme, the performance of the preconditioner, as well asthe spar-
sity of thematrix on two example domains, the ellipsoid and the bus
crossing structure of [7] with varying numbers conductors.



Accuracy

For the ellipsoid the the charge density is known analytically and
compared with the the numerical solution for various expansion or-
ders. The mean-square (L.-)error of the charge density as a func-
tion on the surface, aswell asthe error of the capacitance are shown
inTable1. The Ly-errorishalvedif themeshwidthishalved and the
expansion order increased by one. If only the capacitanceis sought,
high accuracies can be obtained with moderate expansion orders.

Ls-error
Panels 192 768 3072 12288 49152
p=1 | 04027 05041 0.7930 13416 2.0734
p= 0.3591 0.1843 0.2400 0.4145 0.6151
p=3 | 03533 0.1513 0.0838 0.0841 0.1081
p=4 | 03530 0.1494 0.0721 0.0433 0.0352
p=>5 | 03530 0.1500 0.0712 0.0362 0.0206
Error Capacitance
0.1394 0.0049 0.0315
0.1531 0.0390 0.0095
0.1525 0.0387 0.0103
0.1508 0.0350 0.0058
0.1508 0.0348 0.0055

0.5916
0.5911

p=1 0.0419
p=2

p=3 | 0.5799

p=4

p=>5

0.0030
0.0041
0.0012
0.0016

0.5793
0.5793

Table 1: Discretization errors, ellipsoid. The exact value of
the capacitanceis 24.702.. No truncation of nearby terms.

For the bus-crossing structure, no analytical solution is known.
Toillustrate the convergence behavior of the truncation scheme, we
show in Table 2 the self- and coupling for afixed discretization and
increasing expansionorder. For the self-capacitanceal ow-order ex-
pansion will suffice. If the smallest coupling capacitances are re-
quired to a high accuracy, larger expansion orders are needed.

order 1 2 3 4 5

Ci1 82.628 82.007 81875 81.930 81.956
Ci,2 -29.11  -2849 -2869 -28.67 -28.68
Cis -2.183 -2340 -2259 -2284 -2.276
Cia -0533 -1.237 -1.059 -1.024 -1.027
Cis -1.095 -0.361 -0555 -0.619 -0.621
Cie -0.878 -0.498 -0.432 -0.432 -0.433
Ci7 -0.151 -0319 -0.339 -0.341 -0.343
Cis -0.510 -0477 -0456 -0.455 -0.455
Cio -5646 -5.662 -5.647 -5.651 -5.652
Cio0 | 4712 -4630 -4596 -4593 -4.595
Ci11 | 4528 -4546 -4549 -4554 -4555
Ci,12 | 4604 -4554 -4545 -4544 -4.546
Cia3 | 4572 -4558 -4543 -4544 -4547
Ci,14 | 4550 -4559 -4550 -4553 -4.555
Ci15 | 4665 -4.628 -4596 -4592 -4.595
Ci16 | -5.658 -5.674 -5648 -5650 -5.652

Table 2: Convergence as a function of the expansion order
in the 8+8 bus crossing example. No truncation of nearby
terms.

Table 3 shows the effect of truncating nearby interaction terms

as discussed in Section for various truncation parameters e in
equation (21). In the example shown, valuesup to e = 2 result
in errors below five percent.

ET 0.0 0.5 1 2 5
nz*10® | 18530 4186 2890 1774 725

Cia 82.007 82.033 82193 82810 85314
Ci,2 -28498 -28.489 -28598 -28919 -29.904
Cis 2340 -2352 -2493 -2351 -2.530
Cia -1.237  -1237 -1173 -1215 -1.236
Cis -0361 -0361 -0353 -0.339 -0.333
Cie -0.498  -0499 -0495 -0507 -0.498
Ci -0.319 -0318 -0320 -0.317 -0.329
Cis -0.477  -0479 -0478 -0478  -0.482
Cho 5662 -5672 -5652 -5646 -5.733
Ci10 -4630 -4641 -4645 4722 -A718
Ci 1 -4546  -4542  -4506 -4569  -4.993
Ci12 -4554 4556  -4559 -4596  -4.657
Ci3 -4558 -4546 -A4578 -4569 -4.812
Cia -4559  -4566 -4521 -4656 -4.785
Ci15 -4628 -4620 -4651 -4647 -4.816
Ci,16 5674 5687 -5703 -5778 -5.875

Table 3: Non-zero entries (nz) and capacitances for the 8+8
bus crossing structure when increasing the truncation param-
eterer, p = 2.

Complexity

As ameasure of the overall cost, the number of non-zero termsin
the non-standard form are counted. The remaining steps of the al-
gorithm, namely setting up the basis and transforming vectors into
the multiscale basis, are negligible compared to setting up the ma-
trix and performing matrix-vector multiplications.

10°

—p=1 ~
- - p=2 -
--p=3 B -

7 - 4
10'F p=4 p e
linear - -

10°F

10°F

Figure 1: Complexity for ellipsoid

Figure 1 shows the number of non-zero entries in the non-



standard form as afunction of the number of conductorsin the bus-
crossing structure for various expansion orders. These counts were
obtained without truncating termsin the nearby interaction matrices
described in Section . For afixed expansion order p the complexity
grows faster than linearly for the problems with a few conductors,
but eventually reacheslinear complexity with the number of panels.
Although we have not demonstrated this here, the number of non-
zero terms can be shown to be exactly equal to the number of entries
inall M2L, Q2P, Q2L and M 2P matricesin the Fast Multipolea go-
rithm. Here we use the terminology from [13]. Sincethe M2M and
L2L operationsare negligible, the cost for the cal culating of the po-
tential due to a charge distribution in the multiscale basis is amost
exactly equal to the cost of the FMM. Note that in our experiments
we use only first nearest neighbors. If second-nearest neighborsare
included, the operation count for both methods go up by the same
factor, between 1.5 to 2, depending on the problem geometry.

Different to the FMM, the wavelet basis allows truncation of
nearby interactionsas describedin Section. Theeffectisadramatic
reduction of the entriesin the matrix without compromising the ac-
curacy of the approximation. Thisisclearly evidenced in Table 3.

Preconditioning

We compare the number of iterations of the cg algorithm with and
without preconditioner. The iteration is terminated until the ini-
tial residual is reduced by at least 10™°. The iteration counts in
Table 4 clearly show the effectiveness of the multiscale precondi-
tioner: When increasing the problem complexity by adding more
conductors the number of iteration go up without preconditioner,
however, with the preconditioner the numbers appear to remain
bounded.

conductors 1+1 2+2 4+4 6+6 8+8
cg 58 79 9 110 124
pcg 12 17 18 18 18

Table 4: Iterations versus number of conductors, cg and pre-
conditoned cg.

8 Conclusions

We described a new multiscale method for accelerating boundary-
element methodsfor 3-D capacitance extraction and presented sev-
eral computational resultswith comparisonsto the publically avail-
able FASTCAP program. We showed that with truncation of nearby
terms, which can only be used with the multilevel method, it is pos-
sible to improve the sparsification of the boundary element method
by afactor of five over FASTCAP without compromising accuracy
for even the smallest coupling capacitances. We al so show that the
multiscal e preconditioner reducesthe cost of solving the boundary-
element equations by as much as a factor of five, and when com-
bined with the better sparsification gives a speed improvement over
FASTCAP of anywhere from 25 to 300.
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