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Abstract

Design of communications circuits often requires computing
steady-state responses to multiple periodic inputs of differing
frequencies. Mixed frequency-time (MFT) approaches are orders
of magnitude more efficient than transient circuit simulation,
and perform better on highly nonlinear problems than traditional
algorithms such as harmonic balance. We present algorithms for
solving the huge nonlinear equation systems the MFT approach
generates from practical circuits.

1 Introduction

One of the most difficult challenges in circuit simulation is the
analysis of circuits that operate on multiple timescales. Typical
examples of this class are switched-capacitor filters and circuits
used in RF communications systems. Applying standard transient
analysis to such circuits can imply simulating the detailed response
of the circuit over hundreds of thousands of clock cycles (millions
of timepoints), a generally impractical approach. Fortunately many
circuits of interest are designed to operate near a time-varying,
but quasi-periodic, operating point. Some of these circuits can
be analyzed by assuming one of the circuit inputs produces a
periodic response that can be directly calculated by steady-state
methods[4], thus avoiding long transient simulation times. Any
other (time-varying) circuit inputs are treated as small-signal by
linearizing the circuit around the periodic operating point. Efficient
algorithms[12, 7] now exist to find periodic operating points and to
perform periodic time-varying small-signal analysis[13, 8].

However, many circuits cannot be analyzed with the periodic-
operating-point-plus-small-signal approach. For example, predict-
ing intermodulation distortion of a narrowband circuit, such as
a mixer+filter, involves calculating the nonlinear response of the
mixer circuit, driven by an LO, to two high-frequency inputs that
are closely spaced in frequency. The steady-state response of such
a circuit is quasi-periodic.

The situation is further complicated by the fact that many multi-
timescale circuits have a response (again mixers and switched-
capacitor filters are good examples) that is highly nonlinear with
respect to at least one of the exciting inputs, and so steady-state
approaches such as multi-frequency harmonic balance[7] do not
perform well.

To circumvent these difficulties, mixed frequency-time

approaches(MFT)[2, 3] have been proposed. The methods in [2, 3]
exploit the fact that many circuits of engineering interest have a
strongly nonlinear response to only one input, such as the clock in
the case of a switched-capacitorcircuit, or local oscillator in the case
of a mixer, but respond only in a weakly nonlinear manner to other
inputs. Recent extensions[9] of the MFT algorithms can sometimes
treat circuits with strongly nonlinear responses to multiple inputs.

The original MFT algorithms suffered from several drawbacks
that prevented their application to practical circuits, particularly
circuits of large size. This paper makes four improvements on the
original algorithms that enable the MFT method to be applied to
large circuits. In section 3 we discuss a quasi-periodic boundary
condition that avoids the ill-conditioning due to a poor choice of
boundary condition in previous algorithms [3, 2]. In Section 4,
we show how matrix-free Krylov-subspace based iterative schemes
may be extended to the MFT methods to allow solution of very
large scale problems. A similar approach is taken in [15]. Section 6
presents a simple continuation scheme that improves convergence
of the Newton iteration. In section 5 we show that, while the
unpreconditioned matrices arising from applying shooting methods
are often well conditioned and thus suitable for direct application
of Krylov-subspace based iterative solvers, the matrices generated
by the MFT method are never well conditioned even for a well-
chosen boundary condition. We present a preconditioning strategy
that gives rapid convergence of the iterative solver.

2 Background on the MFT approach

Circuit behavior is usually described by a set of nonlinear
differential-algebraic equations (DAEs) that can be written as

d

dt
Q(v(t)) + I(v(t)) + u(t) = 0; (1)

where Q(v(t)) 2 <N is typically the vector of sums of capacitor
charges at each node, I(v(t)) 2 <N is the vector of sums of
resistive currents at each node, u(t) 2 <N is the vector of inputs,
v(t) 2 <N is the vector of node voltages, and N is the number of
circuit nodes.

We are interested in the case in which the input signal u(t)
is quasiperiodic. We will say a signal is L�quasiperiodic if it
can be written as a Fourier series with L fundamental frequencies.
RF circuits are generally influenced by one periodic timing signal,
often referred to as the LO or the clock, and one or more information
signals. If we let fc denote the clock frequency, and f1 : : : fS the
S information signals, then the (S + 1)-quasiperiodic input can be
written as

_
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u(t) =
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k1�1
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kS=�1
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U(k1; � � � ; kS; kc) (2)
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�|2�kSfSte
|2�kcfct

The fundamental assumption of the MFT method is that the
circuit possessesa quasiperiodic steady-state response. That is, v(t)
is an S + 1 quasiperiodic signal with fundamentals f1; : : : ; fS; fc.
Furthermore, since all physical circuits have a finite bandwidth,
v(t) can be well approximated by taking only a finite number of
terms in the Fourier series, so that

v(t) =

K1X
k1=�K1

� � �

KSX
kS=�KS

1X
kc=1

V (k1; � � � ; kS; kc)

� e
�|2�k1f1t � � � e

�|2�kSfSte
�|2�kcfct: (3)

where V (k1; � � � ; kS; kc) 2 CN . An interesting property of the
MFT method is that it is not necessary to truncate to a finite number
of harmonics of fc.

Now suppose that v(t) is sampled at a discrete set of points
t0n = t0 + nTc , where Tc = 1=fc is the clock period, t0 2 [0; Tc)
and n runs over the integers, to obtain a discrete signal v̄(t0). Since

v̄(t0n) =

K1X
k1=�K1

� � �

KSX
kS=�KS

V̄ (k1; � � � ; kS)

� e
�|2�k1f1t

0

n � � � e
�|2�kSfSt

0

n (4)

where

V̄ (k1; � � � ; kS) =

1X
kc=�1

V (k1; � � � ; kS ; kc)e
�|2�kcfct0 ; (5)

the “envelope” v̄(t0) is S-quasiperiodic and can be represented as
a Fourier series in only the “information” fundamentals. The clock
fundamental has disappeared. For an example of such an envelope,
see Figure 1. The continuous waveform is the waveform that has
V̄ as its Fourier coefficients, or, equivalently, obtained by Fourier
interpolation of the sampled points.

In principle, since there are only K =
QS

s=1
(2Ks+ 1) Fourier

coefficients to represent v̄, then once the value of K distinct points
t1; � � � ; tK along the sample envelope are known, then the full
envelope can be recovered. The envelope corresponding to the
quasiperiodic operating point is obtained by obtaining K sample
points that lie on the solution to the DAE given by (1).

We define the state transition function �(v0; tk; tf ) = v(tf) :
v(t) satisfies equation (1) for t 2 [tk; tf ] and v(tk) = v0: In
particular, define the vector

v̄0 = [v̄T (t1); � � � ; v̄
T (tK)]T = [vT (t1); � � � ; v

T (tK)]T ; (6)

where superscript T denotes matrix transpose, to contain v̄ at the
K sample points tk = t0 +nkTc; k = 1 : : :K;nk 2 Z . The value
of the K points that follow by one cycle can be obtained from the
transition function,

v̄
T
Tc = [vT (t1 + Tc); � � � ; v

T (tK + Tc)]
T (7)

= [�(v(t1); t1; t1 + Tc)
T
; � � � ; �(v(tK); tK; tK + Tc)

T ]T

Waveform        
Envelope        
Sampled Envelope

Figure 1: Sample envelope is the waveform traced out when signal
is sampled with the clock period

which may be written more compactly by introducing the multi-
cycle transition function that is the collection of the K transition
functions from tk to tk + Tc , as

v̄Tc = ΦTc(v̄0): (8)

Now note that for each node n, the vector of signals on that
node, at the sample time plus one clock cycle, v̄nT , is a delayed
version of the signals at the sample points (this will be made more
clear below). Therefore there exists a linear operatorDTc that maps
v̄n0 to v̄nTc

v̄
n
Tc = DTc v̄

n
0 : (9)

Note thatDTc is a real matrix and independentof noden. Hence (9)
holds for each n = 1; � � � ; N . It represents a boundary condition
on solution to (1).

Combining (9) and (8) gives

(DTc 
 IN )v̄0 � ΦTc(v̄0) = 0; (10)

where 
 is the Kronecker product (see [5] for definition) and IN
is the N by N identity matrix. Equation 10 is a system of KN
nonlinear equations and KN unknowns v̄0 that can be solved for
the envelope sample points. From these sample points and the
transition functions the circuit’s quasiperiodic operating point (in
particular, the spectrum of v) can be recovered, which is discussed
in Section 7.

3 Sample point selection

To construct the matrix DTc , referred to as the delay matrix,
consider the Fourier series of v̄0 and v̄Tc . Referring to equation
(4), we have

v̄(t0n + Tc) =

K1X
k1=�K1

� � �

KSX
kS=�KS

V̄ (k1; � � � ; kS)

� e
�|2�k1f1t

0

n � � � e
�|2�kSfSt

0

nΩTc(k1; � � � ; kS) (11)

where

ΩTc (k1; � � � ; kS) = e
�|2�k1f1Tc � � � e

�|2�kSfSTc (12)



Thus if Γ is the matrix mapping sample points on the envelope
to Fourier coefficients, then the delay matrix may be constructed as

DTc = Γ�1ΩTcΓ: (13)

In particular Γ may be constructed as the Kronecker product of
one-dimensional 2Ks+ 1-point Fourier-transform matrices

Γ(s)mn = e|2�mfstn=(2Ks+1) (14)

as

Γ = Γ(1) 
 � � � 
 Γ(S) (15)

From the properties of Kronecker products, Γ�1 is likewise a
Kronecker product of the inverses of the Γ(s). In [3], no particular
care was taken in the choice of the sample points tk , so that the
Γ(s)’s were ill-conditioned matrices corresponding to an “almost-
periodic” Fourier transform. Fortunately, a better choice of points
is possible.

Assume the K sample points can be arranged into an S-
dimensional array �(k1; � � � ; kS), �Ks � ks � Ks, 1 � s � S,
such that for a given dimension s, there exists an integer p and

�(� � � ; ks + 1; � � �)� �(� � � ; ks; � � �) =
Ts

2Ks + 1
+ pTs (16)

hold. In this case the entries of the Γ(s) matrices are

Γ(s)mn = e
|2�mn=(2Ks+1) (17)

That is, they are the DFT matrices, and the matrix Γ : C2K1+1 �
� � � � C2KS+1 =) C2K1+1 � � � � � C2KS+1 represents an S-
dimensional DFT. Thus Γ has a condition number of one; it is
perfectly well-conditioned.

4 Matrix-implicit solution procedure

We employ Newton’s method to solve

(DTc 
 IN )v̄0 �ΦTc(v̄0) = 0; (18)

At iteration i, the Jacobian matrix is given by

(DTc 
 IN)�
@ΦTc

@v̄0

���
v̄0=v̄

i

0

; (19)

Recall from (13) DTc = Γ�1ΩTcΓ, which is fixed through all
Newton iterations. Let J = @Φ

@v̄0
jv̄0=v̄

i

0
be obtained from the

multicycle transition function by

@ΦTc

@v̄0

���
v̄i

0

=

2
6664

@�1
@v̄0(t1)

���
v̄0(t1)

i

. . .
@�K

@v̄0(tK)

���
v̄0(tK)i

3
7775 : (20)

Note that J is block-diagonal. Defining b = �(DTc 
 IN)v̄i0 �
Φ(v̄i0), we perform the Newton iteration by solving the equation

((DTc 
 IN)� J)∆v̄i0 = b (21)

using the iterative solver GMRES [11], and setting

v̄
i+1
0 = v̄

i
0 + ∆v̄i0: (22)

Each iteration of GMRES requires a matrix-vector multiplication.
For a vector q 2 <KN , the term (DTc 
 IN )q is calculated by first
applying a K dimensional DFT N times, then scaling each row
with ΩTc , and finally applying a K dimensional inverse DFT N
times.

Let q be partitioned into q = [qT1 ; � � � ; q
T
K ]T , qk 2 <N , for

1 � k � K . Then

@Φ
@v̄

q =

2
64

@�1
@v̄0(t1)

q1

...
@�K

@v̄0(tK)
qK

3
75 : (23)

The calculation of each @�k
@v̄0(tk)

qk can be carried out in the same
matrix-implicit fashion as discussed in [12].

5 Preconditioning

For many problems, the GMRES method is not efficient for solving
(21) without an effective preconditioner. A simple analysis reveals
why. Consider the case where the state transition function of
the circuit, over one clock cycle, is approximately linear, that is
�(x; t; t+ Tc) ' Hx(t). Linear circuits are a trivial example of
a case where this is true, and while nonlinear circuits will have
nonlinear state-transition functions, if the method performs poorly
for linear circuits, it surely will not work well for nonlinear circuits
either. However, many nonlinear circuits have a state-transition
function that is nearly linear[4], a fact we will exploit below to
construct an effective preconditioner. The convergence of the
GMRES method will depend on the location of the eigenvalues of
the Jacobian matrix, DTc � J . If �H is an eigenvalue of the matrix
H , then ei!Tc � �H , where ! = 2�(k1f1 + k2f2 + � � �kSfS)
will be an eigenvalue of DTc � J , for every k1; k2; : : : in the
MFT analysis. Thus unless all the secondary input frequencies
are nearly commensurate with the clock frequency, the eigenvalues
of DTc � J will be “fanned out” by delay matrix. This will cause
severe convergence problems for the GMRES solver. Roughly
speaking, the GMRES algorithm in the MFT algorithm with K
total harmonics will take K times as many iterations to converge
than the GMRES iteration for the steady-state problem with only
the clock excitation applied.1

The following lemmas[5] about the properties of Kronecker
products are needed to perform the formal analysis.

Lemma 5.1 If A1;A2; � � � ;Ap 2 Fm�m, B1;B2; � � � ;Bp 2
Fn�n then

(A1A2 � � �Ap)
 (B1B2 � � �Bp)

= (A1 
B1)(A2 
B2) � � � (Ap 
Bp):

Lemma 5.2 If A 2 Fm�m;B 2 Fn�n then

(a) (A
 In)(Im 
 B) = (Im 
 B)(A
 In).

(b) (A
B)�1 = A�1 
 B�1.

Theorem 5.3 If the system in (1) is linear time-invariant then if �H
is an eigenvalue of @Φ=@v̄0, then e|2�!kTc � �H is an eigenvalue
of the MFT Jacobian matrix.

1This follows because the eigenvalues of H are typically inside the unit circle of
the complex plane. The delay matrix replicates the eigenvalue structureK times, each
shift being a complex number of order unity, and generally causing the convex hull of
the eigenvalues ofDTc

� J to enclose the origin.



Proof. For linear time-invariant circuits, the diagonal blocks of
@Φ
@v̄0

are the same, i.e., @�1
@v̄0(t1)

= � � � = @�K
@v̄0(tK)

= H . The Jacobian
matrix is equal to

(Γ�1ΩTcΓ)
 IN � (IK 
H) (24)

= (Γ�1

 IN)(ΩTc 
 IN)(Γ
 IN )� (IK 
H) (25)

= (Γ�1

 IN)f(ΩTc 
 IN )� (26)

(Γ�1

 IN)�1(IK 
H)(Γ
 IN )�1

g(Γ 
 IN )

= (Γ�1

 IN)f(ΩTc 
 IN ) (27)

�(Γ
 IN )(IK 
H)(Γ
 IN )�1
g(Γ
 IN)

= (Γ�1

 IN)f(ΩTc 
 IN ) (28)

�(IK 
H)(Γ
 IN)(Γ 
 IN )�1
g(Γ
 IN)

= (Γ�1

 IN)f(ΩTc 
 IN ) (29)

�(IK 
H)g(Γ 
 IN ):

Equations (24) to (25) is because of IN = INININ and Lemma
5.1. Equations (26) to (27) is due to Lemma 5.2 (b), and equations
(27) to (28) due to Lemma 5.2 (a). Since (Γ�1
 IN) is unitary and
its inverse is (Γ
IN)�1, the right hand side of equation (29) has the
same spectrum as (ΩTc 
 IN)� (IK
H). It is easy to verify that
(ΩTc 
 IN ) � (IK 
H) is block diagonal, hence its eigenvalues
are the union of eigenvalues of all the blocks, e|2�!kTcIN �H , for
k = 1; � � � ;K .

The preceding analysis suggests a good way of preconditioning
for solving the Newton equation (21). Solving (21) is equivalent to
solving

f(ΩTc 
 IN) � ((Γ
 IN)J(Γ�1

 IN ))gy = (Γ 
 IN )b; (30)

where y = Γ∆v̄i. A good choice of preconditioner is P =
(ΩTc 
 IN)� (IK 
H), where H can be chosen as the Jacobian
matrix from the steady-state analysis in the initial guess stage
discussed in Section 6, or any of the diagonal blocks, @�

@v(ti)
, for

i = 1; � � � ;K , of @Φ
@v̄0

. In particular, if the single-cycle state-
transition function is linear and time invariant, then the Newton
equation can be solved in a single GMRES iteration. Note that
the preconditioner presented here will be effective if the Jacobian
of the state-transition function is nearly constant over multiple
cycles. The circuit behavior inside each clock cycle is hidden
from the preconditioner. This is not the case in, for example, the
time- or frequency-averaged prenditioners typically used in modern
harmonic balance[7, 6] codes. For this reason the preconditioner
presented here may perform well under much weaker assumptions
about the circuit behavior, in particular at higher power levels.

For each GMRES iteration, a system Pu = v has to be
solved. Since P is block diagonal, we need to solve a sequence
of K systems (e|2�!kTcIN � H)uk = vk , for k = 1; � � � ;K ,
where uT = [uT1 ; � � � ; u

T
K]T and vT = [vT1 ; � � � ; v

T
K]T . The

preconditioner can be applied very efficiently by incorporating a
Krylov subspace reuse algorithm[13], as the linear systems to be
solved are the same as arise in the small-signal analysis for periodic
time-varying systems. The basic idea of the algorithm is that the
Krylov subspaces associated with the matrices ei!Tc �H are very
similar for different !k . Essentially, the Krylov-subspace re-use
algorithm allows the preconditioner for the matrix DTc 
 IN � J
to be applied with only slightly more cost than an iterative solve
with the matrix H .

Figure 2 shows the effectiveness of this preconditioner in
compressing the eigenvalues for an example RF receiver circuit.
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Figure 2: Eigenvalue distribution before and after preconditioning
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Figure 3: Convergence of GMRES with (dashed line) and without
(solid line) preconditioner for one MFT Newton iteration.

The eigenvalues are very tightly clustered around unity, indicating
excellent performance of the preconditionerand very rapid GMRES
convergence.

Figure 3 shows the effectiveness of the preconditioner in
reducing the number of GMRES iterations needed to solve each
MFT Newton update equation, for the same RF circuit mentioned
above. Only three iterations were needed to reduce the residual
by a factor of 10�2, whereas without the preconditioner, over 400
iterations are needed to achieve any reduction in the residual at all.2

6 Improving Newton convergence

Rapid convergence of Newton’s method can only be assured with a
good initial guess. To achieve a good initial guess, we first calculate
the periodic steady state response of the circuit with the clock
signal applied, while suppressing other non-DC signals. Using

2Since the MFT circuit equations are not solved exactly, we have found that, on
average, there is a performance advantage in the MFT method to using approximate
solvesof the Newton update equation,and therefore GMRES isconverged to a relatively
loose tolerance.



the steady state solution as an operating point, a small-signal[13]
analysis is performed by treating non-clock fundamentals as small
signals. As a result of the small signal analysis, amplitudes at
fs+ksfc, for�Ks � ks � Ks, 1 � s � S, are generated. These
amplitudes are transformed into time domain initial conditions via
inverse Fourier transform. At higher input power levels, using a
Newton continuation [1] method, with the amplitude of the non-
clock signals as the continuation parameter, is generally effective
in securing convergence.

7 Spectrum calculation

After the solution is converged, the values
v̄ = [v(t1)

T ; v(t2)
T ; � � � ; v(tK)T ]T and the integration solution

in [ti; ti + Tc], i = 1; � � � ;K are available. From these pieces of
information, the spectrum v(t) can be obtained. Let

v(t) =

KcX
kc=�Kc

K1X
k1=�K1

� � �

KSX
kS=�KS

V (k1; � � � ; kS; kc)

� e
�|2�k1f1t � � � e

�|2�kSfSte
�|2�kcfct: (31)

Define v̄(�) = [v(t1 + �)T ; v(t2 + �)T ; � � � ; v(tK + �)T ]T . Then

v̄(�) = f(Γ�1Ω(�))
 INg (32)

�

2
664

...PKc

kc=�Kc

V (k1; � � � ; kS; kc)e�|2�kcfc�

...

3
775 :

Then for each KN -vector V (�; kc), where �Kc � kc � Kc,
which is collection of all N -vectors V (k1; � � � ; kS; kc), where
�K1 � k1 � K1; � � � ;�KS � kS � KS (the actual order is
determined by the Fourier transform),

V (�; kc) =
1
Tc

Z Tc

0

f(Ω(�)�1Γ)
 INgv̄(�)e
|2�kcfc�d� (33)

Forming f(Ω(�)�1Γ) 
 INgv̄(�) requires the values for v(t1 +
�); � � � ; v(tK+�), or synchronized time steps between cycles. The
total cost is oneKN -vector integration and M Fourier transforms,
where M is the number of synchronized time points.

The synchronized time step requirement may not be easily
met in practice. One alternative is to use interpolation schemes.
However they potentially lose accuracy. Another alternative is to
trade integrations for Fourier transforms. Specifically, it is easy to
verify that

V (k1; � � � ; kS; kc) (34)

=
1
Tc

Z Tc

0

E
T
p f(Ω(�)�1Γ)
 INgv̄(�)e

|2�kcfc�d�

= E
T
p (Γ
 IN)(

1
Tc

Z Tc

0

v̄(�)e
|2�(
P

S

i=1
kifi)�e

|2�kcfc�d�);

whereEp is aKN�N block matrix whose pth N�N block is IN
and other blocks zero, and p is determined by (k1; � � � ; kS) from the
Fourier transform. Calculating (34) does not require synchronized
time points. The total cost of calculating V (�; kc) is K KN -vector
integrations plus one final Fourier transform. However, it might be
more expensive since integrations normally cost more than Fourier
transforms.
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Figure 4: Harmonic distortion of a switched-capacitor filter

8 Test results

8.1 Switched-capacitor Filter

The first example is a low-pass switched-capacitor filter of 4kHz
bandwidth and having 238 nodes, resulting in 337 equations. To
analyze this circuit, the MFT analysis was performed with an 8-
phase 100kHz clock and a 1V sinusoidal input at 100Hz.

The 1000 to 1 clock to signal ratio makes this circuit difficult
for traditional circuit simulators to analyze. In the MFT method,
three harmonics were used to model the input signal. The eight-
phase clock resulted in the need to use about 1250 timepoints
in each transient integration. This brings the total number of
variables solved by the analysis to slightly less than three million
(337� (2� 3 + 1)� 1250 = 2;948; 750). The simulation took a
little less than 20 minutes CPU time to finish, on a Sun UltraSparc1
workstation with 128 Megabyte memory and a 167MHz CPU clock.
Figure 4 shows the output spectrum of the filter.

8.2 High-performance receiver

The second example is the high-performance image rejection
receiver also discussed in [14]. It consists of a low-noise amplifier, a
splitting network, two double-balancedmixers, and two broad-band
Hilbert transform ouput filters combined with a summing network
that is used to supress the undesired side-band. A limiter in the LO
path is used for controlling the amplitude of the LO. It is a rather
large RF circuit that contains 167 bipolar transistors and uses 378
nodes. This circuit generated 987 equations in the simulator.

To determine the intermodulation distortion characteristics, the
circuit was driven by a 780MHz LO and two 50mV closely placed
RF inputs, at 840MHz and 840MHz+10KHz, respectively. Three
harmonics were used to model each of the RF signals. 200
time points were used in each transient clock-cycle integration,
considered to be conservative in terms of accuracy for this circuit.
As a consequence, nearly ten million unknowns (987 � (2 � 3 +
1)2 � 200 = 9;672; 600 ) were generated. It took 55 CPU minutes
to finish on a Sun UltraSparc10 workstation with 128 Megabytes of
physical memory and a 300MHz CPU clock. Figure 5 shows 3rd
and 5th order distortion products.

To understand the efficiency of the MFT method, consider that
traditional transient analysis would need at least 80,000 cycles of
the LO to compute the distortion, a simulation time of over two
days. Additionally, the results would be very inaccurate, because
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Figure 5: Intermodulation distortion of a high-performance receiver

of the large amount of numerical error accumulated by integrating
over so many cycles. In contrast, the MFT method is able to resolve
very small signal levels, such as the 5th order distortion products
show in Figure 5.

Solving the MFT equations by direct factorization methods is
also impractical, as the storage needed for the factored rank-50,000
(987 � (2� 3 + 1)2 = 48; 363 ) MFT Jacobian of Equation 19 is
several gigabytes. Forming the Jacobian matrix by direct methods
would also require computation time proportional to the cost of
50,000 transient integrations, again a number on the order of days.

9 Conclusion

In this paper we have demonstrated that the MFT method is an
efficient approach to analyzing multi-frequency nonlinear effects
such as intermodulation distortion. Making the MFT method
computationally efficient on problems of engineering interest
required careful construction of the delay matrix, matrix-implicit
Krylov subspace iterative linear solvers, and a preconditioner
tailored to the MFT method and the circuits it typically analyzes. As
a result, nonlinear systems comprising tens of millions of unknowns
can be solved in less than an hour with computational resources
commonly available to engineering designers.

One salient advantage of the MFT method as described here
is that the dominant part of the computation is in computing
the functions � and the product of the Jacobian of � with some
vector. Both computations are essentially the solution of an initial
value problem. Each application of the operator DTc � J , or
calculation of the Newton residual, involves solvingK such initial
value problems, that is, integrating K sets of DAEs forward in
time over one clock period. Each of the K problems, however, is
essentially decoupled. Parallel implementations of the MFT will
therefore enjoy very efficient processorutilization. This decoupling
also assists the implementation of out-of-core solvers. In fact we
have observed it is possible to implement the MFT algorithm as an
out-of-core algorithm with over 80% average CPU utilization.

Several possible extensions of this work are possible. Of
particular interest is the computation of poly-cyclostationary[10]
noise statistics that can be performed by linearizing around the the
quasiperiodic steady-state.
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