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Abstract

Krylov-subspace based methods for generating low-order models of
complicated interconnect are extremely effective, but there is no opti-
mality theory for the resulting models. Alternatively, methods based
on truncating a balanced realization (TBR), in which the observability
and controllability gramians have been diagonalized, do have an opti-
mality property but are too computationally expensive to use on com-
plicated problems. In this paper we present a method for computing
reduced-order models of interconnect by projection via the orthogonal-
ized union of the approximate dominant eigenspaces of the system’s
controllability and observability gramians. The approximate domi-
nant eigenspaces are obtained efficiently using an iterative Lyapunov
equation solver, Vector ADI, which requires only linear matrix-vector
solves. A spiral inductor and a transmission line example are used
to demonstrate that the new method accurately approximates the TBR
results and gives much more accurate wideband models than Krylov
subspace-based moment matching methods.

Keywords: Model Reduction, Truncated Balanced Realization, Lya-
punov Equation, Vector ADI, Krylov Subspace

1 Introduction

The need to accurately model interconnect and packaging in
circuit-level simulators has led to the development of a va-
riety of robust approaches for generating low-order models
of interconnect. The most popular approach for computing
these low-order models, either directly from 3-D simulation
or from extracted RLC circuits, is based on moment-matching
via humerically robust orthogonalized Krylov subspace meth-
ods[1, 12, 3, 10, 9]. An alternative, the Truncated Balanced Re-
alization methods (TBR) [4, 11], have never been given serious
consideration even though they generate near-optimal reduced
order models with a knowh®-transfer function error bound.
The difficulty with TBR methods is that they require the solu-
tion of two Lyapunov equations and then a full singular value
decomposition, and are too computationally expensive to use on
complicated interconnect problems.

In this paper we describe an approach to model reduction
which attempts to approximate Truncated Balanced Realiza-
tion cheaply. The technique presented uses the recently de-
veloped Vector ADI [7] algorithm for computing approxima-
tions to the dominant eigenspace of matrices that satisfy the
Lyapunov equation. Then, the reduced order model is con-
structed by forming the orthogonalized union of the two domi-
nant eigenspaces derived from solving the Lyapunov equations
for the controllability and observability gramians. This is differ-
ent from [7], in which only the dominant controllable subspace
is used. In addition, we use Vector ADI to obtain an approxima-
tion of a higher rank than the desired reduction order, and then
use a subspace in the projection. This results in a more accurate
reduced model than in [7].

Section 2 gives brief background on model reduction. Sec-
tion 3 describes using Vector ADI to obtain an approximate
dominant gramian eigenspace. In section 4 we describe the new
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model reduction algorithm. We prove in section 5 the equi
alence to TBR in a special case. In section 6 two numeric
examples are used to compare the new approach with TBR
moment matching via Lanczos. Section 7 contains concludi
remarks and acknowledgements.

2 Model Reduction

A linear time-invariant system with realizatioA,B, C) is char-
acterized by the equations:

Ax+Bu
Cx

X =
y =

1)
)

wherex € R™*1 u e RP*1 andy € R¥*! are the vector of
state variables, inputs, and outputs, respectivelye R™",
B € R™P, C € RI*", are the system matrix, the input coeffi-
cient matrix, and the output coefficient matrix, respectively.
is assumed thap andq are both very small compared to the
number of state variablas

The system has controllability grami&and observability
gramianQ, which are symmetric, positive definite, and satisf
the following Lyapunov equations

AP+ PAT +BB" =0
ATQ+QA+C'C=0

(3)
(4)

The gramians are needed in optimal Hankel-norm or Truncat
Balanced Realization-type model reductions(4, 11].
The system described by equations (1-2) is characterized
its transfer functiorG(s),
G(s) =C(sl —A)™IB, Y(s)=G(s)U(s). (5)
Model order reduction seeks to obtain a smaller system st
that the number of state variables of this new systems is mt

smaller tham, and the transfer function of the new system i
close to the original.

2.1 Moment Matching Methods

Krylov subspace-based moment matching methods [5, 6] u:
ally utilize the Arnoldi or Lanczos method to find an orthonor
mal basis for some combination of Krylov subspackgA, B),

K(AT,CT), K5((A—pl)~L,B), or K3((AT — pl)~1,CT), where

(6)

Projection ofA onto an union of these Krylov subspaces resul
in a reduced system whose transfer function moments ma
those of the original system up to a certain order [5].

%(A,B) = span{B,AB,A?B,--- ,AU-1B}.



Moment-matching methods require only matrix-vector
productsor solves,andhencearevery efficient. However, there
Is no theoreticalerror boundfor the reducedsystems transfer
function. Theerrorwill besmallatpointswheremomentsvere
matched,but thereis no guaranteghat the error will also be
smallelsavhere.

2.2 Truncated BalancedRealization

TruncatedBalancedRealizationproducesa guaranteedtable
reducedsystemand has a theoreticaltransfer function error
bound.Thefollowing summarizeshe developmentn [4].
Given a stablesystemdescribedby equations(1-2), with
controllability and obsenrability gramians,P and Q, respec-
tively. Let Q have a factorizationQ = R'R, then RPR" will
be positive-definiteandcanbe diagonalizedas
RPRT =Us?UT, 7)
with UTU = | and X = diag(o1,05,---,0n), Where o1 >
0,--- > 0, > 0 arethe singularvaluesof RPR'. A balancing
transformatioris givenby T = 2-Y/2U TR,
In the transformedstatespacecoordinateswith realization
A, = TAT 1B, = TB,C, = CT1), the new controllability
andobsenability gramiansarediagonalandequal Pb=Qy=
¥ =diag{01,02, - ,0k,Okt1," - ,On}.
If o) > 041, thenthe kth ordertruncatedoalancedeallza-
tion is givenby

(Atkbr ) B[kbr > Ctkbr )= (8)

where A1 € RK B; € RE“P,C; € RI*K are principal sub-
matricesof the balancedealization,(Ay, By, Cy). Theresulting
transferfunction G, (s) hasL®-error

(A11,B1,C1)

IG(jw) — Gy (JW)|L> < 2(Okt1+ Op2+ -+ 0n).  (9)

3 Vector ADI

VectorADI wasdevelopedn [7] to provide alow-rankapproxi-
mationto the solutionof the Lyapunar equatiorwith alow rank
right handside,andis derivedfrom thefull AlternateDirection
Implicit method[2, 8]. Dominanteigenspac@nformationtends
to emegequickly in VectorADI, evenif thefull solutionerror
is notyet small. Thefollowing summarizeshe developmentn

VADI iterateson the matrix squareroot V; of the approx-
imate solutionX, (X = V;VJ), to AX + XAT +BBT = 0. The
numberof iterationsneededo achieve a requirederror toler-
anceis determinedh priori [8]. Thenthe ADI parametergp;}
arecalculatedasa functionof therequirednumberof iterations

andA’s spectrabounds.
If the numberof iterationsto be performedis J, thenV; =

vadi(A,B,J) is:

Vj (Wi, Pi_1wy, -+, P1P2- - - Pi_1wy) (10)
wy = /2py(A-pyl)'B (11)
A = 2P (paep)Aa-ph) (12)

V2Pi+1

The startingvectorw; is obtainedfrom a linear matrix-vector
solve, andeachsucceeding-vectorof V; is obtainedfrom the
previous one at the costof a linear matrix-vectorsolve. The
columnsof V; spanarationalKrylov subspaceX (w;y, P(A),J).
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The Vector ADI approximationis then X; = V3Vy', which

hasrankJp anderrorboundecby
1% = Xlle < ITIZIT 2K (P) 11X Ir,

J
Pj (13)
)= e, | B9,
xespec(A (pJ +X)
where T is a matrix of elgen/ectors of A, and p =
{p1,P2,---,pa} arethe ADI parameters.

If the Lyapunw solution X hasthe singularvalue decom-
position X = U3ZUT, U = [UK UK, with diagonalof ¥ =
diag(oi,---,0n), in decreasingrder, thenUy is thek-dim dom-
inanteigenspacef X with associateéigervalues(alsosingular

values)oy,---, 0. If X is closeto the exactsolutionX, agood
apprOX|mat|orto Uy is givenby thek-dim domlnantelgenspace

Uy of X. In practice,Uy obtainedby VectorADI tendsto line
up quickly with Uy.

The singularvalue decompositiorof V; = vadi(A,B,J) =
UsA;W, canbe obtainedcheaplybecause/; containsonly Jp
vectors. If k < J andU; = [Ug,U;j_y], then Uy is the dom-
inant eigenspacef X = ViV, with associateceigervalues

diag(A3(1:k,1:K)) = A%,--- A2,

4 Reduction via Union of Dominant
Gramian Eigenspaces

Becausdalancinghegramiangequirecompleteknowledgeof
the entireeigenspacef both gramiansit is notin generapos-
sible to approximateTBR without good approximationto the
full eigenspacesf bothgramians.

Sinceonly the dominanteigenspacesf the controllability
andobsenability gramiansareobtainablecheaplythroughVec-
tor ADI, we proposea modelreductionmethodwhich utilizes
all the availableinformation. We proposeprojectingthe origi-
nal systemonto the orthogonalizedunion of the two dominant
eigenspaces.

Algorithm:
1. ChooseJ andlet V{* = vadi(A, B, J) andW® = vadi(AT,CT,J).

2. CalculateSVD of V§t andWgP. V§t = USAS(US)T andwgb =
USPAS(USP)T

3. Choosek < J andlet U™ = gram— schmidt[U$*(:, 1 : k),VoP(:, 1
k)]. Notek < rank(U/™) = m< 2k.

4. ReducehesystemA™ = U™ AUM, BM = (U]

mTg cm=cum,

Remarks J may be much larger than k if A is poorly con-
ditioned. To prevent ill-conditioning in forming the rational
Krylov space in (10), back orthogonalization can be performed
inside VADI. Then V§! is stored asits QR decomposition, V{ =

QiRyxa-
5 A SpecialCase

If the k most controllablemodesspanthe samespaceas the

k mostobsenablemodes the kth-orderTBR reductioncanbe

obtainedby projectionvia thek-dim dominanteigenspacef ei-

ther gramian,without having to calculatethe entire coordinate
transformatiorir .

Theorem1 Let the gramians P and Q have SVD, P =
UpZoUg,Up = [Ug,ug—k], and Q = UgZqUq ,Uq = [Ug,UEX.
Let ( br,Bﬁbr, ;) be the kth-order TBR reduction, with the
factorization Q = R'R given by R = 21/2 Let A =



(UKTAUE, BE = (Ug)TB, CK = CUK be the reduction by Q's
dominant eigenspace. If span(Ug) = span(U('l‘), then

Cri(sl — A 1B = Gy (s — Afy) !By (14)

Proof: ‘
1.UjUp= (qu U{Z_k) is (k,n—k)-block diagonalandboth
blocksarethemselesunitary.
. T Wy, 0
2. In  equation (7), RPR' = 0 Wik
pa

WheLe W, - (zkg)l/ZL;ng';)(ukgq)T(25)1/2, and Wik =
(zg_ )1/T<U3q_ %(g_k(ggak):(zg_ )1/2k. k ky2 KT
3. LetW, = UK(ZK)2(UM)T andwji = Un-k(zn-k2un-k)

k
be SVDs, thenU = (% U’(‘)—k)’ which is unitary, and

k
= (zo Zr(‘)_k) canbethe SVD of RPRT in (7).

4, T=3"YUTR= (%( Sno_k) (é}é‘ik)k;), whereSis in-
vertible. ThenA, = S(USTAUKS ™, BY, = S(UX)TB,C, =
CUaS ANy (o — )8l
= CUSS (S — (U TAUES D) ts(ug) B
= CUGS'S(sl — (Ug)TAUg) S 'S(Ug) B
= CUK(Sl — (UOTAUK HUsHTB
= cltsl— A Bl

6 Numerical Results

Thenew modelreductionmethodwascomparedvith TBR and
momentmatchingarounds = 0 via Lanczos.Thefirst example
comesfrom inductanceextraction of an on-chipplanarsquare
spiral inductor suspendedver a copperplane[6]. The origi-
nal systemis order500 and symmetric,so only oneLyapunw
equationis solved. Therelative inductancesrrorsof the differ-
entmodelsareshovn in Figuresl-2.

Figurel compareseductionsof order7. VADI-7-11 comes
from projectionvia the 7-dim dominanteigenspacebtained
by 11 VADI iterations. VADI-7-12 uses12 VADI iterations.
MMV A-7 is order7 momentmatchingarounds= 0 via Arnoldi.

o Spiral: 500 States System. Relative Inductance Error
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Fig 1: Spiral inductor inductanceerror.
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It canbeseernin Figurel thatrunningonemoreiterationof Vec-
tor ADI reducegheerrorby morethanoneorderof magnitude.
VADI-7-12 is a very good approximationto TBR-7 and both
have flat erroroverthe entirefrequeng range unlike MMV A-7
which hasalmostno errornears = 0 andlarge errorfar awvay.

Figure2 compare®rderl3momentmatching(MMVA-13)
with VADI-7-12. Note thatthoughbothrequirethe samenum-
ber of matrix-vector solves, VADI-7-12 is a smallerreduced
systemprder7 versusMMVA-13'sorder13.

Spiral: 500 States System. Relative Inductance Error
T
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Fig 2: Inductanceerror.

VADI-7-12's L®-error is about half an order of magnitude
smallerthanMMVA-13's.

The spiral inductor hasrelatively simple and smoothfre-
queny responsebehaior, which malesit easyto model by
bothVADI andMMVA.

An examplethatexhibits morecomplicatecoehaior comes
from the discretizationof a transmissiorine usingthe formu-
lation in [9], with the original systemhaving 256 states. The
systemmatrix is not symmetricandit illustratesthe general
casewhenthe dominanteigenspacesf the two gramiansare
different.

Figures3 comparesprojection by the union of the exact
dominanteigenspacefCTOB) with TruncatedBalancedReal-
ization. Bothreductionsareorder10. CTOB-10usesthe union
of thetwo exact5-dim dominanteigenspaces.

Reduction of a 256 States System. TBR vs. CTOB
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Fig 3: TransmissionLine: CTOB closeto TBR
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For this transmissiorline example,projectionby the union of
the dominanteigenspaceproducesa reducedmodelthatis al-
mostindistinguishabldrom TBR.

Figure 4 comparesCTOB-10with projectionby eitherthe
10-dimdominantcontrollablesubspacenly (CT-10) or the 10-
dim dominantobsenablesubspacenly (OB-10).

10°

Reduction of a 256 States System: CTOB vs. CT or OB
T

10° F

Amplitude
=
S
I

Exact
CTOB-10
CT-10
OB-10
107, 4 - |

0 11 12
10 10 10
Frequency

Fig 4: CTOB better than either CT or OB

Neither CT-10 nor OB-10 alonecomescloseto capturingthe
frequeng responsdehaior.

Figure5 compareghe new method,usingthe approximate
dominanteigenspacesalculatedvia Vector ADI (ADIctob),
with momentmatchingvia LanczogMMlanz). MMlanz-18re-
quires34 matrix-vectorsolves,ADIctob-10(15),wherethetwo
5-dimdominantgramianeigenspaceareeachobtainedafter15
VADI iterations requires30 matrix-vectorsolves.

10°

Reduction of a 256 States System. Lanczos vs. VADI
T
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Fig 5: ADIctob capturesglobal behavior.

ADIctob-10(15)clearly captureghe global frequeny response
behaior muchbetterthan MMlanz-18. It capturedall but the
next to last sharppeakand averageshe first tiny peakanda
coupleof smallbumpsbetweersharppeaks.ThiskeepshelL®-
errorsmallwithouthaving to follow everytopographicafeature
exactly. MMlanz-18 completelylosesaccurag after the first
sharppeak.

7 Conclusionsand Acknowledgements

In this paperwe presentech nev methodof modelreduction
of interconnectvia projection onto the orthogonalizedunion
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of the approximatedominantcontrollableand obsenable sub-
spaceswhich areobtainedhroughaniterative Lyapuna equa-
tion solver, Vector ADI. This nev methodis as inexpensve
asKrylov space-basethomentmatchingmethods.It approxi-
matesTruncatedBalancedRealizationin the specialcasewhen
the most controllablemodesand the most obsenable modes
spanthe samesubspace.Two numericalexamplesshow that
the new methodcapturesglobal frequeng responsebehaior
muchbetterthanthe momentmatchingmethodsandoffersthe
flexibilitﬁ of keepingthe reducedmodelorderlow evenwhen
makinghigherorderapproximations.
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