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Abstract
Krylov-subspace based methods for generating low-order models of
complicated interconnect are extremely effective, but there is no opti-
mality theory for the resulting models. Alternatively, methods based
on truncating a balanced realization (TBR), in which the observability
and controllability gramians have been diagonalized, do have an opti-
mality property but are too computationally expensive to use on com-
plicated problems. In this paper we present a method for computing
reduced-order models of interconnect by projection via the orthogonal-
ized union of the approximate dominant eigenspaces of the system’s
controllability and observability gramians. The approximate domi-
nant eigenspaces are obtained efficiently using an iterative Lyapunov
equation solver, Vector ADI, which requires only linear matrix-vector
solves. A spiral inductor and a transmission line example are used
to demonstrate that the new method accurately approximates the TBR
results and gives much more accurate wideband models than Krylov
subspace-based moment matching methods.

Keywords: Model Reduction, Truncated Balanced Realization, Lya-
punov Equation, Vector ADI, Krylov Subspace

1 Introduction
The need to accurately model interconnect and packaging in
circuit-level simulators has led to the development of a va-
riety of robust approaches for generating low-order models
of interconnect. The most popular approach for computing
these low-order models, either directly from 3-D simulation
or from extracted RLC circuits, is based on moment-matching
via numerically robust orthogonalized Krylov subspace meth-
ods [1, 12, 3, 10, 9]. An alternative, the Truncated Balanced Re-
alization methods (TBR) [4, 11], have never been given serious
consideration even though they generate near-optimal reduced
order models with a knownL∞-transfer function error bound.
The difficulty with TBR methods is that they require the solu-
tion of two Lyapunov equations and then a full singular value
decomposition, and are too computationally expensive to use on
complicated interconnect problems.

In this paper we describe an approach to model reduction
which attempts to approximate Truncated Balanced Realiza-
tion cheaply. The technique presented uses the recently de-
veloped Vector ADI [7] algorithm for computing approxima-
tions to the dominant eigenspace of matrices that satisfy the
Lyapunov equation. Then, the reduced order model is con-
structed by forming the orthogonalized union of the two domi-
nant eigenspaces derived from solving the Lyapunov equations
for the controllability and observability gramians. This is differ-
ent from [7], in which only the dominant controllable subspace
is used. In addition, we use Vector ADI to obtain an approxima-
tion of a higher rank than the desired reduction order, and then
use a subspace in the projection. This results in a more accurate
reduced model than in [7].

Section 2 gives brief background on model reduction. Sec-
tion 3 describes using Vector ADI to obtain an approximate
dominant gramian eigenspace. In section 4 we describe the new

model reduction algorithm. We prove in section 5 the equiv-
alence to TBR in a special case. In section 6 two numerical
examples are used to compare the new approach with TBR and
moment matching via Lanczos. Section 7 contains concluding
remarks and acknowledgements.

2 Model Reduction
A linear time-invariant system with realization (A, B, C) is char-
acterized by the equations:

ẋ � Ax � Bu (1)
y � Cx (2)

where x ��� n � 1, u ��� p � 1, and y ��� q � 1 are the vector of
state variables, inputs, and outputs, respectively.A ��� n � n ,
B �	� n � p , C �	� q � n , are the system matrix, the input coeffi-
cient matrix, and the output coefficient matrix, respectively. It
is assumed thatp and q are both very small compared to the
number of state variablesn.

The system has controllability gramianP and observability
gramianQ, which are symmetric, positive definite, and satisfy
the following Lyapunov equations

AP � PAT � BBT � 0 (3)

AT Q � QA � CTC � 0 (4)

The gramians are needed in optimal Hankel-norm or Truncated
Balanced Realization-type model reductions[4, 11].

The system described by equations (1-2) is characterized by
its transfer functionG 
 s � ,

G 
 s ��� C 
 sI  A ��� 1B � Y 
 s ��� G 
 s � U 
 s ��� (5)

Model order reduction seeks to obtain a smaller system such
that the number of state variables of this new systems is much
smaller thann, and the transfer function of the new system is
close to the original.

2.1 Moment Matching Methods
Krylov subspace-based moment matching methods [5, 6] usu-
ally utilize the Arnoldi or Lanczos method to find an orthonor-
mal basis for some combination of Krylov subspaces,� J 
 A � B � ,� J 
 AT � CT � , � J 
�
 A  pI � � 1 � B � , or � J 
�
 AT  pI � � 1 � CT � , where� J 
 A � B ��� span � B � AB � A2B ��������� A � J � 1� B ��� (6)

Projection ofA onto an union of these Krylov subspaces results
in a reduced system whose transfer function moments match
those of the original system up to a certain order [5].
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Moment-matching methods require only matrix-vector
productsor solves,andhenceareveryefficient. However, there
is no theoreticalerror boundfor the reducedsystem’s transfer
function.Theerrorwill besmallatpointswheremomentswere
matched,but thereis no guaranteethat the error will also be
smallelsewhere.

2.2 Truncated BalancedRealization
TruncatedBalancedRealizationproducesa guaranteedstable
reducedsystemand has a theoreticaltransfer function error
bound.Thefollowing summarizesthedevelopmentin [4].

Given a stablesystemdescribedby equations(1-2), with
controllability and observability gramians,P and Q, respec-
tively. Let Q have a factorizationQ � RT R, then RPRT will
bepositive-definiteandcanbediagonalizedas

RPRT � UΣ2UT � (7)

with UTU � I and Σ � diag 
 σ1 � σ2 ��������� σn � , where σ1 �
σ2 ����� � σn � 0 arethe singularvaluesof RPRT . A balancing
transformationis givenby T � Σ � 1� 2UT R.

In thetransformedstatespacecoordinates,with realization
 Ab � TAT � 1 � Bb � T B � Cb � CT � 1 � , the new controllability
andobservability gramiansarediagonalandequal,Pb � Qb �
Σ � diag � σ1 � σ2 ������� � σk � σk ! 1 ������� � σn � .

If σk � σk ! 1, thenthekth ordertruncatedbalancedrealiza-
tion is givenby 
 Ak

tbr � Bk
tbr � Ck

tbr ���"
 A11 � B1 � C1 � (8)

where A11 �#� k � k � B1 �$� k � p � C1 �$� q � k are principal sub-
matricesof thebalancedrealization,
 Ab � Bb � Cb � . Theresulting
transferfunctionGk

tbr 
 s � hasL∞-error%
G 
 jw �& Gk

tbr 
 jw � % L∞ ' 2 
 σk ! 1 � σk ! 2 �$������� σn �(� (9)

3 Vector ADI
VectorADI wasdevelopedin [7] to providealow-rankapproxi-
mationto thesolutionof theLyapunov equationwith alow rank
right handside,andis derivedfrom thefull AlternateDirection
Implicit method[2, 8]. Dominanteigenspaceinformationtends
to emergequickly in VectorADI, evenif thefull solutionerror
is not yet small.Thefollowing summarizesthedevelopmentin
[7].

VADI iterateson the matrix squareroot VJ of the approx-
imatesolution X̃ , (X̃ � VJV T

J ), to AX � XAT � BBT � 0. The
numberof iterationsneededto achieve a requirederror toler-
anceis determineda priori [8]. ThentheADI parameters� p j �
arecalculatedasa functionof therequirednumberof iterations
andA’sspectralbounds.

If thenumberof iterationsto beperformedis J, thenVJ �
vadi 
 A � B � J � is:

VJ � )wJ � PJ � 1wJ ��������� P1P2 ����� PJ � 1wJ * (10)

wJ � + 2pJ 
 A  pJI ��� 1B (11)

Pl � , 2pl+ 2pl ! 1
) I �#
 pl ! 1 � pl ��
 A  plI ��� 1 * (12)

The startingvectorwJ is obtainedfrom a linear matrix-vector
solve, andeachsucceedingp-vectorof VJ is obtainedfrom the
previous oneat the cost of a linear matrix-vectorsolve. The
columnsof VJ spanarationalKrylov subspace,��
 wJ � P 
 A �(� J � .

The VectorADI approximationis then X̃J � VJV T
J , which

hasrankJp anderrorboundedby%
X̃J  X

%
F ' %

T
% 2
2
%
T � 1 % 2

2k 
 p � 2 % X %
F �

k 
 p ��� max
x - spec � A �/. J

∏
j 0 1


 p j  x �
 p j � x � . � (13)

where T is a matrix of eigenvectors of A, and p �� p1 � p2 ��������� pJ � aretheADI parameters.
If the Lyapunov solutionX hasthe singularvaluedecom-

position X � UΣUT , U �1)Uk � Un � k * , with diagonalof Σ �
diag 
 σ1 ��������� σn � , in decreasingorder, thenUk is thek-dim dom-
inanteigenspaceof X with associatedeigenvalues(alsosingular
values)σ1 ������� � σk. If X̃ is closeto theexactsolutionX , a good
approximationtoUk is givenby thek-dim dominanteigenspace
Ũk of X̃ . In practice,Ũk obtainedby VectorADI tendsto line
up quickly with Uk.

The singularvaluedecompositionof VJ � vadi 
 A � B � J �2�
UJΛJW T

J canbeobtainedcheaplybecauseVJ containsonly Jp
vectors. If k ' J and UJ �1)Uk � UJ � k * , then Uk is the dom-
inant eigenspaceof X̃ � VJV T

J , with associatedeigenvalues
diag 
 ΛJ 
 1 : k � 1 : k ����� λ2

1 ������� � λ2
k .

4 Reduction via Union of Dominant
Gramian Eigenspaces

Becausebalancingthegramiansrequirecompleteknowledgeof
theentireeigenspaceof bothgramians,it is not in generalpos-
sible to approximateTBR without goodapproximationto the
full eigenspacesof bothgramians.

Sinceonly the dominanteigenspacesof the controllability
andobservability gramiansareobtainablecheaplythroughVec-
tor ADI, we proposea modelreductionmethodwhich utilizes
all theavailableinformation. We proposeprojectingthe origi-
nal systemonto the orthogonalizedunionof the two dominant
eigenspaces.

Algorithm:
1. ChooseJ andlet V ct

J 3 vadi 4 A 5 B 5 J 6 andW ob
J 3 vadi 4 AT 5 CT 5 J 6 .

2. CalculateSVD of V ct
J andW ob

J . V ct
J 3 Uct

J Λct
J 4 Uct

J 6 T andW ob
J 3

Uob
J Λob

J 4 Uob
J 6 T

3. Choosek 7 J andlet Um
r 3 gram 8 schmidt 9Uct

J 4 : 5 1 : k 6�5 V ob
J 4 : 5 1 :

k 6;: . Notek 7 rank 4 Um
r 6 3 m 7 2k.

4. Reducethesystem:Am
r 3 Um

r
T AUm

r 5 Bm
r 3 4 Um

r 6 T B 5 Cm
r 3 CUm

r .

Remarks J may be much larger than k if A is poorly con-
ditioned. To prevent ill-conditioning in forming the rational
Krylov space in (10), back orthogonalization can be performed
inside VADI. Then V ct

J is stored as its QR decomposition, V ct
J �

QJRJ � J .

5 A SpecialCase

If the k most controllablemodesspanthe samespaceas the
k mostobservablemodes,the kth-orderTBR reductioncanbe
obtainedby projectionvia thek-dim dominanteigenspaceof ei-
thergramian,without having to calculatethe entirecoordinate
transformationT .

Theorem1 Let the gramians P and Q have SVD, P �
UpΣpUT

p � Up �<)Uk
p � Un � k

p * , and Q � UqΣqUT
q � Uq �<)Uk

q � Un � k
q * .

Let 
 Ak
tbr � Bk

tbr � Ck
tbr � be the kth-order TBR reduction, with the

factorization Q � RT R given by R � Σ1� 2
q UT

q . Let Ak
r �
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 Uk
q � T AUk

q , Bk
r �=
 Uk

q � T B, Ck
r � CUk

q be the reduction by Q’s
dominant eigenspace. If span 
 Uk

p ��� span 
 Uk
q � , then

Ck
r 
 sI  Ak

r ��� 1Bk
r � Ck

tbr 
 sI  Ak
tbr ��� 1Bk

tbr (14)

Proof:

1. UT
q Up �?> Uk

pq 0
0 Un � k

pq @ is 
 k � n  k � -blockdiagonalandboth

blocksarethemselvesunitary.

2. In equation (7), RPRT � > W k
pq 0
0 W n � k

pq @ ,

where W k
pq �A
 Σk

q � 1� 2Uk
pqΣk

p 
 Uk
pq � T 
 Σk

q � 1� 2, and W n � k
pq �
 Σn � k

q � 1� 2Un � k
pq Σn � k

p 
 Un � k
pq � T 
 Σn � k

q � 1� 2.
3. Let W k

pq � Uk 
 Σk � 2 
 Uk � T andW n � k
pq � Un � k 
 Σn � k � 2 
 Un � k � T

be SVDs, then U �B> Uk 0
0 Un � k @ , which is unitary, and

Σ � > Σk 0
0 Σn � k @ canbetheSVD of RPRT in (7).

4. T � Σ � 1� 2UT R � > Sk 0
0 Sn � k @ > 
 Uk

q � T
 Un � k
q � T @ , whereS is in-

vertible.ThenAk
tbr � Sk 
 Uk

q � T AUk
q S � 1

k � Bk
tbr � Sk 
 Uk

q � T B � Ck
tbr �

CUk
q S � 1

k , and
Ck

tbr 
 sI  Ak
tbr � � 1Bk

tbr� CUk
q S � 1

k 
 sI  Sk 
 Uk
q � T AUk

q S � 1
k ��� 1Sk 
 Uk

q � T B� CUk
q S � 1

k Sk 
 sI C
 Uk
q � T AUk

q ��� 1S � 1
k Sk 
 Uk

q � T B� CUk
q 
 sI �
 Uk

q � T AUk
q ��� 1 
 Uk

q � T B� Ck
r 
 sI  Ak

r ��� 1Bk
r

6 Numerical Results
Thenew modelreductionmethodwascomparedwith TBR and
momentmatchingarounds � 0 via Lanczos.Thefirst example
comesfrom inductanceextractionof an on-chipplanarsquare
spiral inductorsuspendedover a copperplane[6]. The origi-
nal systemis order500andsymmetric,soonly oneLyapunov
equationis solved. Therelative inductanceerrorsof thediffer-
entmodelsareshown in Figures1-2.

Figure1 comparesreductionsof order7. VADI-7-11 comes
from projectionvia the 7-dim dominanteigenspaceobtained
by 11 VADI iterations. VADI-7-12 uses12 VADI iterations.
MMVA-7 is order7momentmatchingarounds � 0 viaArnoldi.
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Fig 1: Spiral inductor inductanceerror.

It canbeseenin Figure1 thatrunningonemoreiterationof Vec-
tor ADI reducestheerrorby morethanoneorderof magnitude.
VADI-7-12 is a very goodapproximationto TBR-7 andboth
haveflat errorovertheentirefrequency range,unlikeMMVA-7
which hasalmostno errornears � 0 andlargeerrorfaraway.

Figure2 comparesorder13momentmatching(MMVA-13)
with VADI-7-12. Notethat thoughbothrequirethesamenum-
ber of matrix-vector solves, VADI-7-12 is a smaller reduced
system,order7 versusMMVA-13’sorder13.
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Fig 2: Inductanceerror.

VADI-7-12’s L∞-error is about half an order of magnitude
smallerthanMMVA-13’s.

The spiral inductor hasrelatively simple and smoothfre-
quency responsebehavior, which makes it easyto model by
bothVADI andMMVA.

An examplethatexhibitsmorecomplicatedbehavior comes
from thediscretizationof a transmissionline usingthe formu-
lation in [9], with the original systemhaving 256 states.The
systemmatrix is not symmetricand it illustratesthe general
casewhen the dominanteigenspacesof the two gramiansare
different.

Figures3 comparesprojection by the union of the exact
dominanteigenspaces(CTOB) with TruncatedBalancedReal-
ization.Both reductionsareorder10. CTOB-10usestheunion
of thetwo exact5-dimdominanteigenspaces.
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For this transmissionline example,projectionby the union of
thedominanteigenspacesproducesa reducedmodelthat is al-
mostindistinguishablefrom TBR.

FigureD 4 comparesCTOB-10 with projectionby eitherthe
10-dimdominantcontrollablesubspaceonly (CT-10)or the10-
dim dominantobservablesubspaceonly (OB-10).
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Fig 4: CTOB better than either CT or OB

NeitherCT-10 nor OB-10 alonecomescloseto capturingthe
frequency responsebehavior.

Figure5 comparesthenew method,usingtheapproximate
dominanteigenspacescalculatedvia Vector ADI (ADIctob),
with momentmatchingvia Lanczos(MMlanz). MMlanz-18re-
quires34 matrix-vectorsolves,ADIctob-10(15),wherethetwo
5-dimdominantgramianeigenspacesareeachobtainedafter15
VADI iterations,requires30matrix-vectorsolves.
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Fig 5: ADIctob capturesglobal behavior.

ADIctob-10(15)clearlycapturestheglobalfrequency response
behavior muchbetterthanMMlanz-18. It capturedall but the
next to last sharppeakandaveragesthe first tiny peakanda
coupleof smallbumpsbetweensharppeaks.ThiskeepstheL∞-
errorsmallwithouthaving to follow everytopographicalfeature
exactly. MMlanz-18 completelylosesaccuracy after the first
sharppeak.

7 Conclusionsand Acknowledgements

In this paperwe presenteda new methodof model reduction
of interconnectvia projection onto the orthogonalizedunion

of the approximatedominantcontrollableandobservablesub-
spaces,whichareobtainedthroughaniterativeLyapunov equa-
tion solver, Vector ADI. This new methodis as inexpensive
asKrylov space-basedmomentmatchingmethods.It approxi-
matesTruncatedBalancedRealizationin thespecialcasewhen
the most controllablemodesand the most observable modes
spanthe samesubspace.Two numericalexamplesshow that
the new methodcapturesglobal frequency responsebehavior
muchbetterthanthemomentmatchingmethods,andoffersthe
flexibility of keepingthe reducedmodelorder low even when
makinghigherorderapproximations.
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conductor ResearchCorporation and Grants from Hewlett-
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