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Abstract

A new surface integral formulation and discretiza-
tion approach for computing electromagnetoquasistatic
impedance of general conductors is described. The key
advantages of the formulation is that it avoids volume
discretization of the conductors and the substrate, and
a single discretization is accurate over the entire fre-
quency range. Computational results from an on-chip
inductor, a connector and a transmission line are used
to show that the formulation is accurate and is “accel-
eration” ready. That is, the results demonstrate that an
efficiently computed preconditioner insures rapid itera-
tive method convergence and tests with projection show
the required kernels can be approximated easily using a
coarse grid.
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1 Introduction

In this paper we describe a surface integral formula-
tion and discretization approach to computing electro-
magnetoquasistatic impedance of general conductors.
The key advantages of this formulation is that it avoids
volume discretization of the conductors and the sub-
strate, and a single discretization is accurate over the en-
tire frequency range. In addition, the approach does not
require a-priori information about surface impedances,
does not include assumptions about proximity effects,
and does not switch to volume formulations at low fre-
quencies [3], [2], [1]. In the next section the integral
formulation is derived, and in section 3 the discretiza-
tion is presented. In section 4, we present results for a
spiral inductor, a connector and a tranmission line and
compare to the publicly available FastHenry program
and analytic formulas. In section 5 we show that the
discretized system can be efficiently solved iteratively
and that the kernels involved can be projected onto a
coarse grid. We present the data in section 5 to demon-
strate that even though we have not yet completed a
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fast solver for the approach, the formulation is suitable
for acceleration.

1.1 Surface BRupledifion

In the interior of any conductidd, the electric
denoted F, satifies

V2E —iwpocE =0 or V2E =iwul. (1)

where ¢ is the conductor conductivity, u is the perme-
ability, and J is the current density.GAgmplying s
Theorem to the left-hand equation in (1)yields a dyadic
surface integral equation
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wher#,is the surfacstif thaductor,

k1 = /—twpo (3)

and z and y are odNte that we use the simpler
notation in vhich ¢ %@E(y)dy is the entire inte-
gral rather than decomposing the integral into an extra
term and a principle-value integral.

A similar-looking dyadic integral equation can be
derived by apfigdng s Theorem to the right-hand
equation in (1)and then eliminating .J using the relation
—Vi¢ = E +iw [}, pGo(x,y).J (y)dy. The result is
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wher$is the union of conductor surfaces, and
1
Go(z,y) = drlz—y| (5)

The scalar potenfied shé¢iPoisson equation,
and since the only nonzero charge in the problem is on
the conductor surfaces, the scalar potential is given by

/SGo(:v,y)ps(y)dy =eY(z),z,y €S (6)



where p; denotes the surface charge density.

The equations derived above are three sets of equa-
tions for four sets of variables, F, g—g, 1 and ps. The
needed additional equation can be derived by enforcing
current conservation. Since there is no interior charge,
current conservation implies Ve EF = 0 in the conductor
interiors.

2 Discretization

In order to solve the system of integral equations,
(2), (4) and (6), consider discretizing the surface into
N quadrilateral panels. In such a discretization, a
quadrilateral panel vertex will be shared by four panels.
We associate 7 unknowns with each panel: aalff, a;; Y
88% , Bz, Ey,E, and q. The scalar potential is associated
with the panel vertices.

The panel unknowns are assumed to be constant over
a panel. Then, if centroid collocation is used to solve
(2) the result is a 3N x 6NN system

OFE 1. -
Pl%_(D1+§I)E—O (7)
where
Pli) = [ Giwndy

panel;

. 0Gy
Dy (3, = / —(xz;,y)d

1(4, ) e, any( y)dy

and z; is the 3** collocation point.

Collocation applied to (4) will result in an equation
similar in form to (7), but will include a V% term. The
V4 term is difficult to compute as the surface-normal
derivative of the potential can not be evaluated using
only the vertex potentials. Instead, consider applying
collocation to (4) but extracting out only the surface
tangential components as in

P ]
Tpo‘;_n —TDoF + Ay = 0 (8)

where T is the 2N x 3N matrix which extracts the
tangential components at the panel centroids,

Po(i,j) = / Gola)iy
panel;

. 0G
Do(id) = [ Ghandy
panel; Yy

and A; is the operator that computes the surface
tangential components of V4 using finite-differences on
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the vertex potentials. In order to replace the missing
normal direction equation, one can use the fact that
nef = XPs

a

(9)

where p; is the vector of panel charge densities.
The charge on a panel can be related to the weighted
average of the panel’s vertex potentials, as in

Pyps = €Ay (10)

where A is the matrix of potential averaging coeflicients.

P4 P3

P1 P2

Figure 1: Dual panel for current conservation

Equations (7), (8), (9) and (10) represents seven
equations for each panel, matching the seven panel
electric field and charge unknowns. In order to generate
a set of equations for the vertex potentials, consider
applying current conservation to dual panels, as shown
in Figure 1. Node O in the figure is the vertex at the
corner of four panels. The dual panel is denoted by the
dashed line that connects four panel centroids.
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Figure 2: A thin box just under the conductor surface.

Now consider a thin box just underneath the dual
panel as shown in Figure 2. Letting the thickness of the
box approach zero results in an integral relation

OEn(y) , _
/C’Et(:c) o (n(z) x I(z))dx — /a () dy=0. (11)

By examining Figure 2, it is clear that E;(z) and

aab; "(%) in (11) can be approximated by averaging the

surrounding panel field and field derivatives.




3 Numerical Accuracy Experiments

In this section we present results from using the
above formulation to perform both magnetoquasistatic
and electromagnetoquasistatic analysis of several struc-
tures. We start by performing magnetoquasistatic anal-
ysis of a multipin connector and a spiral inductor over a
semiconductor substrate ground plane, and compare the
results to the public domain program FASTHENRY [4].
We then perform electromagnetoquasistatic analysis of
a transmission line, and compare the results to an ana-
lytic formula.

3.1 Multipin Connector
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Figure 3: A 3 by 3 curved connector example
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Figure 4: Inductance for a 3 by 3 curved connector
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Figure 5: Resistance for a 3 by 3 curved connector
Our surface formulation was used to compute

the frequency-dependent magnetoquasistatic induc-
tance (Fig. (4)) and resistance (Fig. (5)) of the curved
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multipin connector shown in Fig. (3). The plots show
three sets of computations, one with our surface for-
mulation using 2088 panels, one using FASTHENRY
(denoted FH) with 3600 filaments, and one using FAS-
THENRY with 14400 filaments. As the resistance plots
show, the surface formulation captures the correct fre-
quency dependence of the resistance, but the FAS-
THENRY results are only accurate to a discretization
dependent frequency. There are a few anomalies in the
plots generated by FASTHENRY for the fine discretiza-
tion due to a well-known problem with FASTHENRY’s
filament integrals [6].

3.2 Spiral Inductor

The second example( Figure 6) is a spiral inductor
with and without a semiconductor substrate ground
plane. The diameter of the spiral is about 100um, with
a bum by 5um cross section. The ground plane is about
400um by 400um, and is 100um thick. The conductivity
of the spiral is that of copper, and the conductivity of
the ground is .005 that of copper.

Figure 6: A spiral inductor over a substrate ground
plane
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Figure 7: Inductance for the spiral inductor with and
without a substrate ground plane

The simulation results show the same trends as the
first example. As shown in Fig. (7), the surface for-
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Figure 8: Resistance for the spiral inductor with and
without a substrate ground plane

mulation matches the inductance computed by FAS-
THENRY over the entire frequency range. Both meth-
ods capture the drop of inductance due to skin and
proximity effects. Again, the surface formulation cor-
rectly captures the frequency-dependent resistance over
the entire frequency range, but FASTHENRY does not,
as shown in Figure 8. One final note, it was necessary to
use more than 21,000 filaments in the substrate ground
plane to converge the FASTHENRY results, where only
2500 panels were needed in the surface formulation.

3.3 Transmission Line

To verify that the surface formulation can perform
EMQS analysis, the admittance of a long shorted trans-
mission line was computed and then compared to the
analytic formula for a 2-D shorted transmission line.
The transmission line wires were 37 microns wide, 15
microns thick and 10000 microns long. The two lines
were seperated by a gap of 27 microns. To compute
the admittance using the surface formulation, the two
wires of the transmission line were discretized into a
total of 804 panels. To compute the admittance using
2-D analysis, an effective inductance and capacitance
per unit length were computed numerically. The results
are compared in Fig. (9), and clearly show that the
surface formulation correctly captures the resonances.

4 Fast Solution Algorithms

The surface formulation and discretization described
above generates 3N x 3N and 2N x 3N dense block
matrices, and so can not be used directly to analyze
complicated structures. Instead, the integral formula-
tion must be combined with an accelerated iterative
method which allows for general Green’s functions, such
as the Precorrected-FFT algorithm [5] or the hierarchal
SVD [7] approach. Although we have not yet imple-
mented an accelerated version of our formulation, in this
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Figure 9: Admittance of the long transmission line

section we try to demonstrate that acceleration will be
effective. In particular, we demonstrate that we have
a preconditioner which insures rapid Krylov-subspace
method convergence and that the % kernel can
be well approximated using the Precorrected-FFT grid.

The preconditioner used directly factors a system
made up of the sparse blocks, as well as the diagonals
of the dense blocks, in (7), (8), (9), (10) and (11). The
preconditioner was combined with GMRES and used
to solve all the examples in the previous section, over
the entire frequency range. The results are tabulated
in Table (1). As is clear from the table, the iterative
always converges in fewer than 100 iterations.

Problem | panel unknown Min iter Max iter
connector | 2088 14850 16 41
spiral NG | 2528 17704 5 67
spiral WG | 2448 17184 27 81

tranmission | 804 6452 4 10

Table 1: Size of the problem and GMRES iteration
number

The only kernel that has not been previously ac-
celerated with the Precorrected-FFT algorithm is the

RITES

— kernel, as here k; is imaginary. To show the
Precorrected-FFT algorithm will have no difficulty with
this kernel, we projected a point source onto vertex
sources of a 2 by 2 by 2 cube. In Figure 10, the worst
case error at a distance of 3 from the cube center is
plotted as a function of frequency. This plot shows that
even for this low order projection, the error is never
worse than a few percent.

5 Conclusions and Acknowledgements

In this paper we described a surface integral formu-
lation and discretization approach to computing electro-
magnetoquasistatic impedance of general conductors.



Figure 10: Worst case projection error for a typical
example

The key advantages of this formulation is that it avoids
volume discretization of the conductors and the sub-
strate, and a single discretization is accurate over the
entire frequency range. We showed by examining a spi-
ral inductor, a connector and a transmission line exam-
ple that the formulation is accurate and “acceleration
ready”. We are currently working on implementing a
version of the approach which uses the Precorrected-
FFT accelerated algorithm.
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