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Abstract
As VLSI circuit speeds have increased, reliable chip and sys-

tem design can no longer be performed without accurate three-
dimensional interconnect models. In this paper, we describe an
integral equation approach to modeling the impedance of inter-
connect structures accounting for both the charge accumulation
on the surface of conductors and the current traveling in their
interior. Our formulation, based on a combination of nodal and
mesh analysis, has the required properties to be combined with
Model Order Reduction techniques to generate accurate and
guaranteed passive low order interconnect models for efficient
inclusion in standard circuit simulators. Furthermore, the for-
mulation is shown to be more flexible and efficient than previ-
ously reported methods.

1 INTRODUCTION

As VLSI circuit speeds have increased, reliable and accurate
chip and system design can no longer be performed without accur-
ate three-dimensional interconnect models. In the past, designers
had to cope with tools where 2D models, used for modeling long
and uniform interconnect structures, were glued together with 3D
models that were necessary for handling discontinuities such as vias
through planes, chip-to-board and board-to-board connectors. Not
only was this mixing of models cumbersome but, as circuit density
continues to increase, such discontinuities become more prevalent.
In recent years much effort has been devoted to the study and de-
velopment of fast and accurate algorithms for computing full 3-D
interconnect models directly from Maxwell’s equations.

Many of these structures are small compared to a wavelength,
and much work has been directed at rapidly solving for the in-
ductance and capacitance of these structures. However inductance
and capacitance are not necessarily decoupled quantities, and for
higher frequencies a distributed model is necessary. In this pa-
per, we describe an integral equation approach to modeling the im-
pedance of interconnect structures accounting for both the charge
accumulation on the surface of conductors and the current travel-
ing along conductors. When high accuracy is desired, the mod-
els generated can become excessively large and difficult to solve
for a continuous range of frequencies. The need for reduced-size
models leads us to consider Model Order Reduction (MOR) tech-
niques, which have been developed in the field of parameter extrac-
tion [1, 2, 3, 4, 5, 6, 7, 8, 9].

Our approach, which is based on a combination of nodal ana-
lysis formulation with a mesh analysis formulation, has significant
advantages over previously reported methods, both in extraction
speed and model size, making it possible to generate guaranteed
passive low order models for efficient inclusion in a circuit simu-

lator such asSPICEor SPECTRE. Combining our formulation with
acceleration techniques such as the Fast Multipole Method [10, 11]
or the Precorrected-FFT [12], allows the accurate analysis of lar-
ger, more complex three-dimensional geometries than previously
possible.

In Section 2 we discuss the integral formulation and discretiza-
tion from which we derive the circuit equations that describe the in-
terconnect effects. In Section 3 we describe a nodal analysis-based
formulation that allows the application of recent model order reduc-
tion techniques in order to directly generate passive reduced-order
models. We then present an extension to this formulation based
on a combination of nodal and mesh analysis that can be used to
accelerate model construction. In Section 4 we present results of
using the new extraction tool and analyze the performance of the
generated reduced-order models. Finally, conclusions are drawn in
Section 5.

2 MATHEMATICAL FORMULATION

Parasitic extraction for a set of conductors involves determining
the relation between the terminal (or port) currents and the terminal
voltages. Given a structure ofk terminal pairs, the admittance mat-
rix which relates the terminal currents and the terminal voltages is
defined as

Yt(!)Vt(!) = It(!); (1)

where sinusoidal steady-state at frequency! is assumed.Yt(!) 2
C
k�k , andIt;Vt 2 C

k are the terminal current and voltage vec-
tors, respectively [13]. If it is possible to compute the currents given
the voltages at the terminals then, by adding voltage sources to all
terminals in the circuit,Yt(!) can be computed one column at a
time. To do this, we set entryi of Vt to one, the others to zero, and
solve forIt, which will be theith column ofYt(!).

To derive a relation between voltages and currents, we resort
to an integral equation approach derived directly from Maxwell’s
equations and similar to the Partial Element Equivalent Circuit
(PEEC) method [14]. At each point inside the conductors, we
have [15]

E = �r'�
@A

@t
(2)

where

'(r; t) =
1

4��

Z
V 0

�(r0)

kr � r0
k
dv

0 (3)

A(r; t) =
�

4�

Z
V 0

J(r0)

kr � r0
k
dv

0

: (4)

In deriving equations, the Electromagneto-Quasistatic assump-
tion was considered. This approximation corresponds to assuming
that the influence of the charge and currents at any point in the struc-
ture is instantaneously felt everywhere. That is to say, we consider
the speed of light as infinite. So, our model will be valid only for
structures small compared to a wavelength. (In practice, however,
one can analyze structures on the order of a wavelength, because the
interaction terms where retardation time is significant correspond to
weak coupling).

35th Design Automation Conference ®
Copyright ©1998 ACM

1-58113-049-x-98/0006/$3.50 DAC98 - 06/98 San Francisco, CA USA

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies 
are not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, to republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 

DAC 98, June 15-19, 1998, San Francisco, CA USA 
ISBN 1-58113-049-x/98/06…$5.00 

 
 

297



If
b

Vb
f

Ib
p

Vb
p

Isources
Isources

branch currents (Ib)

filament (x-directed current)
surface panel (charge)

branch voltages (Vb)

(a) (b)

Fig. 1. a) Results of discretization operation applied to a conductor showing volume filaments (with its cross section decreasing toward the
surfaces to properly capture skin and proximity effects) and charge panels (only some panels are shown); b) A simplified version of the
correspondent electrical circuit – nodal analysis quantities are described.

To compute a model from this formulation, a discretization op-
eration is performed on the conductors. Following the PEEC ap-
proach, the interior of each conductor is divided into a grid of fil-
aments where each filament is assumed to have a constant current
density with the direction of its length, and the surfaces of the con-
ductors are covered with panels, where each panel is assumed to
have a constant charge density. For conductors that are very long
and thin we can assume that the current running along its length
is much larger than the current running along the other two ortho-
gonal directions. In those cases, a filament discretization along a
single direction is performed. For planar conductors, the filament
discretization must be performed along two coordinate directions
and for volume-like conductors, filaments are set along the three-
coordinate directions. This discretization operation allows us to
generate an equivalent electrical “circuit” made up of filaments and
panels. Figure 1-a) shows the discretization operation applied to a
long and thin conductor (filaments along one direction only) and
Figure 1-b) shows the electrical circuit associated with it.

To generate the constitutive relations for these elements, we
apply the Galerkin method to (2), after discretizing the equation
(see [14] for details). A constitutive relation for the filaments is
obtained in the form of

ZLI
f
b � (R+ j!L)Ifb = V

f
b (5)

whereIfb 2 C
f is the vector off filament currents,

Rii =
li

�ai
(6)

is thef � f diagonal matrix of filament DC resistances, and

Lij =
�

4�aiaj

Z
Vi

Z
V 0

j

li � lj

kr � r0k
dV

0

dV (7)

is thef�f dense, symmetric positive semidefinite matrix of partial
inductances.V f

b = �n1 � �n2 is the vector of voltages given as
the difference between the node potentials,�n, at the two ends of
the filament.

In our formulation, and unlike the PEEC method, the coeffi-
cients of the potential matrixP , which relates node potentials to
panel charges, are computed such that charge conservation is veri-
fied on every node. In our case, forp panels,P 2 R

p�p will be
computed as:

Pij =
1

Aj4��0

Z
p0

j

1

krpi � r
0k
dV

0

; (8)

that is in the form of partial coefficients of potential - wherep0j is
the surface of panelj,Aj its area andrpi is the center of each panel
pi. Note that we allow multiple panels on each node - as is the case
for nodes on edges or apices of conductors. Furthermore, we shall
see that this allows us to establish a set of equations amenable to
generate passive reduced-order models.

Since the current flowing onto the panels is given byI
p
b = d

dt
qp,

qp 2 C
p being the charge on each of thep panels, for the sinusoidal

steady state we can writeqp = I
p

b=(j!). Additionally, since the
panel node voltages are voltages relative to infinity, we can view the
panel branches as connecting the panel node to the zero potential
node at infinity. Then the panel branch voltages are given byV

p
b =

�p � 0 = �p, where�p are the panel potentials. Combining, we
get a relation between the panel currents and their voltages,

V
p
b =

1

j!
PI

p
b (9)

With (5) and (9) we can write the constitutive relations for the ele-
ments as a single matrix inC b�b , b = f + p,

Vb =

�
V

f

b
V

p
b

�
=
h
ZL 0
0 P =(j!)

i �
I
f

b
I
p
b

�
= ZIb: (10)

whereIb 2 R
b is the vector of branch (filaments and panels) cur-

rents andVb is the vector of branch (filaments or panels) voltages.
See Figure 1-b) for an illustration of these quantities.

Applying voltage sources to the circuit, we can now solve it, and
extract the desired terminal currents, thus producing the required
admittance model. To that end we will use a Modified Nodal Ana-
lysis technique. Note that only voltage sources can be used because
one needs to connect all the sources to the zero potential node at
infinity and that node is only connected to capacitors. This is ne-
cessary in order to be able to obtain DC results, which are desirable
if we want to use the model in time-domain simulations.

Kirchoff’s Current Law, which implies that the sum of the
branch currents leaving each node in the network must be zero, can
be written as

[ A �N ]
h
Ib
Isrc

i
= [ 0 ] (11)

whereA 2 R
n�b is the sparse nodal incidence matrix summing

the filament and panel currents in each node,N 2 R
n�nsrc is the

sparse matrix summing the currents through the voltage sources,n
is the number of nodes (excluding the one for the point at infinity),
b is the number of branches (filaments plus panels), andnsrc is
the number of voltage sources in the circuit.Isrc 2 R

nsrc is the
vector of currents leaving each voltage source (always connected
to ground) and entering the terminal nodes. Note the0 in the right
hand side due to the absence of current sources in the circuit.

Applying Kirchoff’s Voltage Law to the circuit, we obtain�
AT

NT

�
[ Vn ] =

h
Vb
Vsrc

i
(12)

whereVn is the vector of voltages at each node in the network,
Vsrc are the known source voltages. Note thatVsrc is exactly the
terminal voltage vectorVt, from (1). Combining (12) with (11) and
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(10) yields the system of equations"
Z �AT 0
A 0 �N

0 NT 0

#"
Ib
Vn
Isrc

#
=

"
0
0
Vsrc

#
(13)

One approach to coupling the above models with circuits is to
directly include an admittance model, for instance some version
of (13), into a circuit simulator. This approach has the drawback
that the size of the system in (13) can easily be very large if high-
accuracy is desired. Even computing the admittance matrix directly,
as described at the beginning of this section is inefficient, as it re-
quirest solutions of a system with a very large matrix. The use
of iterative methods could reduce the computational cost of solv-
ing this system but the resulting model would be valid only at a
single frequency. However to design with this admittance model
it is often necessary to perform coupled simulation with nonlinear
devices, such as CMOS drivers and receivers. Nonlinear devices re-
quire time domain simulation, and thus the admittance information
is necessary from DC up to the highest frequency of interest in the
circuit. Thus, it is essential to have models valid for a continuous
range of frequencies.

3 GUARANTEED PASSIVE MODEL ORDER REDUCTION AND
INTERCONNECTSIMULATION

Recently, Model Order Reduction (MOR) algorithms [1, 2, 5,
9, 6] have been presented to solve this problem. The basic idea of
MOR techniques is to reduce the size of the system described by the
circuit equations, usually written in a convenient state-space form,
to a much smaller one that still captures the dominant behavior of
the original system. This approximation is then used to generate a
model amenable to be inserted in a circuit simulator such asSPICE
or SPECTRE. The field of MOR has matured significantly in the
past few years. Recently, MOR techniques, such as the PRIMA
algorithm [6], have been presented, that produce guaranteed stable
and passive reduced-order models.

To apply this algorithm, the circuit equations are written in the
state-space form

sL x = �R x + B u

y = BTx:
(14)

wheres = j!. To generate passive reduced order models both�
R+RT

�
and

�
L+LT

�
must be positive semidefinite. It was

shown in [16] that it is possible to derive a state-space form with
these properties when Mesh analysis is applied to the circuit. We
will now describe how a state-space form with these properties can
also be derived using Modified Nodal Analysis.

3-1 Nodal Formulation

To derive a state space form of (13), the powers of the Laplace
variables = j! must all be to the first powers only. However,
the constitutive relationZ in (10) contains terms with boths and
1=s. To separate the1=s power, note that as seen in Figure 1-b),
the branch currents can be separated into two types,Ib = [Ifb ; I

p
b ]

whereIfb represents the currents in filaments andIpb represents the
currents onto panels. Also,A can be split into[Ae;Ai] whereAe

corresponds to thene external nodes (an external node is a node
that has at least one panel connected to it) andAi corresponds to
theni internal nodes (an internal node is a node to which no panels
are connected). Based on this categorization, (11) becomes

h
Ae Be �Ne

Ai 0 0

i" I
f
b

I
p

b
Isrc

#
=
h

0
0

i
: (15)

The zero-blocks in (15) correspond toBi andN i, which are
always null since there are no panels or voltage sources connected
to internal nodes. We can also rewrite (12) separating the branch

voltages inV b = [V f
b ;V

p
b ]. V

e
n andV i

n correspond to, respect-
ively, the voltage in external and internal nodes:"

AT
e AT

i

BT
e 0

NT
e 0

# h
V e
n

V i
n

i
=

"
V

f

b
V

p
b

Vsrc

#
(16)

The desired equation in state-space form can then be obtained
using (15) and (16) and the constitutive relations expressed in (10).
Using the first equation in (15) and the constitutive relation for the
panels, we can write

AeI
f

b + sBeP
�1
V

p

b �N eIsrc = 0 (17)

Furthermore, using the second relation in (16), we have

AeI
f

b + sBeP
�1
B

T
e V

e
n �N eIsrc = 0 (18)

Now using the constitutive relation for filaments with the first rela-
tion in (16), yields

(R+ sL)Ifb �A
T
e V

e
n �A

T
i V

i
n = 0 (19)

Finally, using (18) and (19) plus the relations not yet used in
(15) and (16), we obtain the desired state-space form:

s

2
4 L 0 0 0

0 BeP
�1BT

e 0 0
0 0 0 0
0 0 0 0

3
5
2
4 I

f

b
V e
n

V i
n

Isrc

3
5 = (20)

�

2
4 R �AT

e �AT
i 0

Ae 0 0 �Ne

Ai 0 0 0
0 NT

e 0 0

3
5
2
4 I

f

b
V e
n

V i
n

Isrc

3
5+

2
4 0

0
0
Vsrc

3
5 :

which can readily be written as (14).
It was shown in [17] that this system has the properties men-

tioned above as necessary to generate guaranteed passive reduced
order models. Model Order Reduction techniques can thus be ap-
plied directly to either this formulation or the one developed in [16]
using Mesh Analysis. Considering an expansion point ats = 0,
for which the matrixR needs to be inverted, the sizes of the result-
ing reduced-order models produced by those formulations is similar
for similar accuracy. However, because the number of states in the
nodal formulation is smaller, it is, for most cases, faster to obtain a
reduced-order model using this formulation. Indeed, the number of
states in the nodal case is

f + n+ nsrc (21)

wheref is the number of filaments,n the number of nodes in the
network, andnsrc is the number of sources; the number of states in
the mesh formulation is

m+ p = f + p� n+ 1 ' f + 2p� n (22)

wherem is the total number of meshes andp is the total number
of panels. So the nodal formulation is smaller ifp > n, which is
always the case for a discretization along one or two directions.

As described in [18], and as we shall see in the results section,
interconnect models derived using the Electromagneto-Quasistatic
assumption, which captures skin effect, have in general a large
number of real poles that have a weak effect on the system beha-
vior. Many of these poles are near the origin and moment-matching
arounds = 0 tends to match these non-dominant poles first, and
only then consider more important outward poles. Thus it might be
useful to consider using other expansion points. An obvious choice
would bes = 1. For certain structures, it turns out that the size
of the reduced models obtained with expansions arounds = 1

can be significantly smaller, for similar accuracy, than the sizes of
those obtained with expansions arounds = 0. Therefore, the abil-
ity to perform expansions around any point in the complex plane,

299



including s = 1, is an important property of the nodal formula-
tion. For expansions arounds = 1, the matrixL from (14) will
require inversion. Unlike mesh analysis, in the nodal formulationL

is non-singular if there are no internal nodes, a common situation
since for most structures discretizing conductors along one direc-
tion is sufficient. Note that in order to derive a model based on an
expansion arounds = 1, one needs to consider current sources,
instead of voltage sources, and so theIsrc unknowns do not appear
in the system.

3-2 Mixed Nodal-Mesh Formulation

Computing a reduced-order model from (14) with an algorithm
such as PRIMA, using any expansion point, corresponds to solv-
ing a linear system with a matrix that involvesR andL in some
form. If s = 0 is considered then the system matrix isR�1

L. In
the cases = 1 presented above,L must be inverted directly to
form the system matrix (note thatL is never inverted explicitly: if
L
�1b = x is needed,Lx = b is solved forx using an iterat-

ive algorithm such as GMRES [19]). In any case, the smaller the
condition number ofL, the faster the convergence will be.

The form of theLmatrix reveals one of the differences between
the Nodal and Mesh formulations. In the latter the block matrices
describing the filament constitute relations appear together with the
mesh matrixM , thus the blockMLMT inL, while in the former
L is used directly, as shown in (20).

It is known that under an appropriate choice of precondi-
tioner, the condition number of a system obtained from the matrix
MLMT can besignificantly smallerthan that obtained from the
partial inductance matrixL (see [20] for a proof). Thus faster sys-
tem solution usingL can be accomplished in the nodal formulation
if the blockL were replaced by a term likeMLMT in L, as in
the mesh formulation. Such a substitution implies the combination
of a mixed nodal and mesh analysis method taking advantage of
the best characteristics of each system. Although this mixed nodal-
mesh formulation was developed to be combined with PEEC-style
discretizations, the authors have been made aware that the resulting
approach is quite similar to a specialized basis function methods
presented in [21].

Using Mesh Analysis, we know that

MVb = Vs (23)

M
T
Im = Ib: (24)

Eqn. (23) is based on Kirchoff’s Voltage Law, which implies that
the sum of branch voltages around each mesh in the network must
be zero. Vb is the vector of branch voltages,Vs is the mostly
zero vector of source voltages andM is the mesh incidence mat-
rix. Eqn. (24), on the other hand, is based on Kirchoff’s Current
Law, and establishes a relation between the mesh currentsIm and
the branch currentsIb. Consider now separating the branch terms
in (23) and (24) for filaments (V f

b ; I
f
b ) and panels (V p

b ; I
p
b ). Three

different types of meshes in the circuit are then considered: those
that contain only filaments -Mf (with mesh currentsIbm), those
that contain only panels -Mp (with mesh currentsIpm), and those
that contain both filaments and panels -Mfs;Mps (with mesh cur-
rentsIsm). Rewriting Eqns. (23) and (24) in terms of these variables
leads to "

Mf

Mp

Mfs Mps

# �
V

f

b
V

p

b

�
=

"
0
V p
s

0

#
(25)

�
MT

f MT
fs

MT
p MT

ps

�"
Ifm
Ipm
Ism

#
=

�
I
f
b

I
p

b

�
(26)

Using the first equation in (26), multiplying the first line of (20)
Mf , and usingIf+sm , where

Mf =
h
Mf

Mfs

i
If+sm =

h
Ifm
Ism

i

V

I

Fig. 3. Example geometry to compare models obtained at various
expansion points.

the final state space-form is, then,

s

2
64 MfLMf T 0 0 0

0 BeP
�1BT

e 0 0
0 0 0 0
0 0 0 0

3
75
2
4 If+sm

V e
n

V i
n

Isrc

3
5 =

�

2
664
MfRMfT

�MfAT
e �MfAT

i 0

AeM
f T 0 0 �Ne

AiM
f T 0 0 0

0 NT
e 0 0

3
775
2
4 If+sm

V e
n

V i
n

Isrc

3
5

+

2
4 0

0
0
Vsrc

3
5 (27)

or, equivalently, adding the output equations

sL x = �R x + B Vt
It = BTx:

(28)

In this mixed formulation, again both theR andLmatrices satisfy
the conditions required for passive MOR. The size of the system is
the same as that of the nodal formulation. Also as for nodal,R and
L (subjected to the same restrictions) are non-singular, meaning
that any expansion point can be used in the model order reduction.

4 RESULTS

In this section examples will be considered that allow the study
of the efficiency of MOR techniques when applied to the extrac-
tion of 3D interconnects using the formulation proposed in this pa-
per. First, models of a simple structure generated using expansion
points ats = 0 ands = 1 will be explored and compared. Then
a model of a connector example, will be analyzed in order to verify
the formulation. To attest to the accuracy of the formulation and the
reduction algorithms, results of a time-domain analysis of the con-
nector model will be compared with experimental measurements.

4-1 A simple two-conductor example

Consider the simple geometry made up of two long and thin con-
ductors, as shown in Figure 3, whose dominant behavior is similar
to a transmission line. Both conductors are1cm long,37�m wide,
13�m in height and the distance between conductors is17�m. For
this example a discretization is chosen such that416 panels are used
to cover all surfaces. Each conductor is divided into10 segments
along its length and each segment is divided into15 filaments to
properly capture skin effect. Figure 2 shows the efficiency of re-
duced models, compared with the full model, with expansion points
at s = 0 ands = 1. The full system has 323 states for an expan-
sion points = 0 (voltage sources are used in this case; fors = 1

current sources are used). For this example a62th-order model was
generated. Figure 2-a) and c) show the positioning of the system
and reduced-order model poles, for expansions arounds = 0 and
s = 1 respectively, while Figure 2-b) and d) show the magnitude
of the frequency dependent impedance of both the full system and
the reduced models for each situation. Note that, because we have
to use different sources fors = 0 ands =1, the poles in the figure
relative tos = 0 are the admittance poles, while in that relative to
s =1, they are impedance poles.

300



−10
15

−10
14

−10
13

−10
12

−10
11

−10
10

−10
9

−10
8

−8

−6

−4

−2

0

2

4

6

8
x 10

11

System poles       
Reduced model poles

0 2 4 6 8 10 12

x 10
10

0

200

400

600

800

1000

1200

Freq (Hz)

Im
pe

da
nc

e 
(O

hm
)

Full model response   
Reduced model response

(a) (b)

−10
15

−10
14

−10
13

−10
12

−10
11

−10
10

−10
9

−10
8

−10
7

−10
6

−8

−6

−4

−2

0

2

4

6

8
x 10

11

System poles       
Reduced model poles

0 2 4 6 8 10 12

x 10
10

0

200

400

600

800

1000

1200

Freq (Hz)

Im
pe

da
nc

e 
(O

hm
)

Full model response   
Reduced model response

(c) (d)

Fig. 2. Results obtained for the example geometry using the nodal-mesh formulation using an expansion point ofs = 0 ((a) and (b)) and an
expansion point ofs =1 ((c) and (d)). In (a) the admittance poles are shown, while in (c) the impedance poles are plotted.

It is important to note the large number of poles of the full sys-
tem along the real axis. Almost all of these poles have a weak effect
on the final response (they have very small residues). For this ex-
ample we found that only around15% of the poles are relevant.
These poles appear due to the large number of filaments connec-
ted in parallel (capacitances in panels are summed in each node, in
the formulation, and so do not contribute with weak poles). These
non-dominant poles are responsible for the large orders required for
the reduced models shown since, for expansions arounds = 0 or
s = 1, there is always a large cluster of such poles “nearby” and
the MOR algorithm will capture them. However only about22 of
these poles are necessary to maintain the accuracy of the model as
shown in the figures.

This simple geometry demonstrates some of the differences
from expanding at different points. Fors = 0, when the order of
the reduced models is increased, we obtain a model that is accurate
for an increasingly larger frequency range. However, fors = 1,
all the reduced models are inaccurate until full accuracy is suddenly
achieved for a specific order, smaller than the original system size.
This is because the algorithm, in thes =1 case, tries to first match
all of the weak poles near�1014 before matching any of the domin-
ant ones while in thes = 0 case the distance between the dominant
and the weak poles near zero is smaller.

4-2 Connector example

Figure 4 presents an eighteen-pin portion of a real backplane
connector structure. The connector is composed of18 pins with a
ground shield around and between the conductors. A discretization
operation is performed using582 filaments and864 panels. Fig-

                           

                                    

                            

                           

X

Y

Z

Fig. 4. A 3D connector.

ure 5 shows the results obtained for the self-impedance of a single
pin using the mixed nodal-mesh formulation with different order
reduced models computed using an expansion arounds = 0. The
full system has658 states. In the figure, models with orders182
and420 are compared to the exact response. Similarly to what was
found for the first structure presented, only a small number of these
poles are relevant, in this case78 and110 respectively.

Finally, in Figure 6 we present a comparison between results of
a time-domain simulation obtained with a reduced model generated
with our formulation and experimental measurements. For this ex-
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Fig. 6. Comparison between measured time-domain waveforms
and simulated results obtained using a reduced-order model of
the connector example.

periment all pins are connected to ground through resistors. Then
a noisy input is connected in series with one of these resistors and
a step with a500ps rise-time is imposed on it. The voltage wave-
form at an adjacent pin is collected. As can be seen from the plot
the waveforms are qualitatively similar and acceptable accuracy is
obtained. If higher accuracy is required, a finer discretization can
be used.

5 CONCLUSIONS

The main contribution of this paper is the presentation of a mod-
eling approach based on a mixed nodal-mesh formulation. This
formulation, when combined with recent Model Order Reduction
algorithms, allows for the generation of guaranteed passive reduced
order models of three-dimensional interconnect structures. The
mixed nodal-mesh method takes advantage of the flexibility intro-
duced by the nodal analysis, namely by maintaining relatively small
model sizes and the ability to use expansion points at any frequency,
and adds to it the good conditioning properties of the mesh analysis
matrices. Important properties of the new formulation, such as the
ability to use any expansion point in the complex plane, were illus-
trated with an example. Also, a comparison between measured data
and the time-domain response of a generated model of a real 3-D
connector structure, was used to validate the accuracy of the for-
mulation. Further research is still required in order to improve the
model generation process such that only the set of dominant poles
is captured.
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