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Abstract

In this paper we describe a computationally e�cient

approach to generating reduced-order models from

PEEC-based three-dimensional electromagnetic anal-

ysis programs. It is shown that a recycled multipole-

accelerated approach applied to recent model order re-

duction techniques requires nearly two orders of mag-

nitude fewer 
oating point operations than direct tech-

niques thus allowing the analysis of larger, more com-

plex three-dimensional geometries.

1 Introduction

A well known approach to modeling coupled in-
ductive and capacitive e�ects is the Partial Element
Equivalent Circuit (PEEC) approach [1]. However,
for complex three dimensional structures, the num-
ber of densely coupled circuit elements can be in the
tens of thousands obviating the PEEC circuit's use in
circuit simulators. Recent model order reduction ap-
proaches could be applied, but even computing the
reduced model may be too computationally expen-
sive. In this paper we describe a computationally ef-
�cient approach to generating low order models from
these large circuit models. The approach is also ripe
for acceleration techniques such as the Fast Multipole
Method [2, 3] or the Precorrected-FFT [4] approach
allowing the analysis of larger, more complex three-
dimensional geometries.

In Section 2 we discuss the PEEC discretization
from which we derive the large dense linear system
describing the interconnect. In Section 3 we describe
using recent model order reduction techniques to gen-
erate models for e�cient coupled circuit-interconnect
simulation, and describe methods of accelerating the
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computation. Finally in Section 4, we present results
of this interconnect modeling tool called FastPep.

2 Formulation

In the area of interconnect analysis, perhaps the
best known integral equation approach is the Partial
Element Equivalent Circuit (PEEC) method [1]. To
model current 
ow in the PEEC method, the interior
of conductors is divided into a grid of volume �la-

ments, each of which carries a constant current den-
sity along its length, as shown in Figure 1-a. To model
charge accumulation, the surface of each conductor is
covered with panels, each of which holds a constant
charge density.

The interconnection of the �laments and panels,
plus sources, Vt, at the terminal pairs, generates a
\circuit" whose solution gives the desired admittance
parameters. Each �lament is a branch of the circuit,
as well as each panel as shown in Figure 1-b for a
transmission line structure. For illustration, Figure 1-
b coarsely models a two conductor line with termi-
nating load ZL. The length of the line is broken into
three sections where each section consists of a bundle
of three �laments. Two panels are connected at the
nodes in between the sections. Each section of the line
is broken into a bundle of �laments in order to model
skin and proximity e�ects as shown in Figure 1-a.

The constitutive relations for the elements can be
written as a single matrix in C b�b , b = f + p, where f
is the number of �laments and p the number of pan-
els, by noting that the charge on the panels is related
to current via Ipb = d

dt
qp, and by viewing the node

voltage at the panels as a branch voltage relative to
ground, V p
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the dense �lament partial inductance matrix, R, the
diagonal resistance matrix, and Vn = Pqp where P is
the dense panel potential coe�cient matrix.

To generate a system of equations, the circuit so-
lution technique known as Mesh Analysis can be used
whose solution gives the terminal admittance, Yt. The
mesh approach has been used in the context of inter-
connect analysis in [5] and [6].

Kircho�'s voltage law, which implies that the sum
of branch voltages around each mesh in the network
must be zero, is represented by

MVb =
�
Mf Mp

� � V f
b

V
p
b

�
= Vs (2)

where Vs is the mostly zero vector of source voltages,
Mf sums �lament voltages, andMp sums panel volt-
ages. The mesh currents, Im, are related to the branch
currents, Ib via M

t
Im = Ib.

To write the system in a state space form, the mesh
currents and panel voltages are assigned states similar
to the nodal voltages and inductor currents in Mod-
i�ed Nodal Analysis. Combining Eqns. (1), and (2)
yields a �rst order system in state space form,

sL x = �R x + B Vt

It = B
T
x:
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Since R is a diagonal matrix, and Mf and Mp

are sparse, then R is sparse. However, to form the
�rst block of L requires O(f2) operations and mem-
ory since L 2 Rf�f is dense. Similarly, the second
block, P�1, requires O(p2) operations and memory to
form, and then O(p3) operations to invert. For com-
plex geometries with tens of thousands of �laments
and panels, such growth rates are severely limiting. In
the next section we discuss a more e�cient technique
for generating reduced order models from (3).

3 Coupled Circuit-Interconnect Simu-

lation and Passive Model Order Re-

duction

To design with the admittance information avail-
able from (3), it is necessary to perform coupled sim-
ulation with nonlinear devices, such as CMOS drivers
and receivers. Nonlinear devices require time domain

simulation, and thus the admittance information is
necessary from DC conditions up to the highest fre-
quency of interest in the circuit.

One approach to coupling the PEEC-based package
models with circuits is to include (3) in a circuit sim-
ulator instead of solving for the terminal behavior [1].
This approach has the drawback that the size of the
system in (3) can easily be very large if high-accuracy
is desired. Another possibility is to construct and solve
(3) for various values of ! and then use some rational
�tting algorithm to compute a model for the pack-
age [7, 8]. However, a more computationally e�cient
approach is to apply model order reduction techniques
to (3) to derive a smaller approximation for direct in-
sertion into a circuit simulator.

3.1 Model Order Reduction

The idea of model order reduction is to reduce (3),
which can be on the order of tens of thousands, to
a much smaller system which still captures the dom-
inant behavior of the original system. For moment
matching techniques, one wishes to derive a rational
function whose moments, or terms in the Taylor se-
ries expansion, match that of the original admittance
function, Yt(s), up to some order. From (3), the ad-
mittance function can be expanded about s = 0 as

Yt(s) = B
T (R+ sL)

�1
B =

1X
k=0

mks
k
; (4)

where the moments can be easily obtained from

mk = �BT (R�1L)kR�1B:

Thus we seek an approximation, ~Yt(s) =
P
1

k=0 ~mks
k,

such that ~mk = mk; k = 1; : : : ; q. Since Yt(s) repre-
sents a passive circuit, we require ~Yt(s) also be pas-
sive, which can be guaranteed via the numerically sta-
ble Arnoldi-based PRIMA model order reduction al-
gorithm [9]. In order to apply PRIMA about s = 0,
both L andRmust be positive-semide�nite. The con-
dition on L follows since P and L are positive de�nite.
Also, since every �lament is modeled as resistor in se-
ries with an inductor, R is both positive semide�nite
and nonsingular.

3.2 Recycled iterative solver

Application of any moment matching scheme about
s = 0 requires the computation of repeated matrix-
vector products with the matrix (R�1L) in order
to obtain a reduced-order model. For instance, an
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Figure 1: a) A section of conductor and its bundle of volume �laments; b) A circuit describing the mesh quantities
for two parallel conductors divided into 3 sections each.

Arnoldi type algorithm requires q � 1 such products
to produce an order q model. However, because the
partial inductance matrix L and potential coe�cient
matrix, P�1, which appear in L, are both large and
dense, many multiplications by L can be prohibitively
expensive. In particular, if done directly, multiplica-
tion by P�1, would require an initial dense matrix
factorization which is O(p3) operations. For modern
packaging structures, for which p exceeds ten thou-
sand, such a factorization is prohibitive.

The expensive factorization can be avoided by not-
ing that the computation q = P

�1
v is equivalent to

solving for the panel charges, q, given a set of volt-
ages, v. It is thus possible to use a preconditioned,
Krylov-subspace iterative method to solve Pq = v as
outlined in Algorithm 1 [10]. Note that the dominant
cost of each iteration is the O(p2) computation of a
dense matrix-vector product, Pw, to acquire the next
vector in the subspace.

In the standard approach, for every product Lx,
the iterative algorithm would be called to solve P�1v,
generating a new subspace spanfw;Pw;P

2
w; : : :g,

and a new set of search direction, wk. If the num-
ber of Lx products is large, the advantage of an iter-
ative method would be degraded by the large number
of total Pw products necessary. One is thus lead to
consider reusing the search directions from the previ-
ous solves [11, 12]. While the recycled vectors are not
optimal for the next v, the cost of computing the so-
lution along those directions is negligible compared to
a single Pw product.

The O(p2) operations of the iterative algorithm can
be reduced further by using a multipole-accelerated it-
erative algorithm [3] whose cost and memory has been

d a

c b

Algorithm 1 (Iterative Scheme for Pq = v)

guess q0

Initialize the search direction

w
0 = v �Pq0

for k = 1; : : : f
Select wk 2 spanfw0

;Pw
0
; : : : ;P

k�1
w
0g

such that the new solution

q
k = qk�1 +wk

minimizes jjrkjj = jjv �Pqkjj
if jjrkjj <tolerance, return solution qk

g

shown to grow only as O(p). Similarly, the computa-
tion of the productMfLM

t
f can be performed in O(f)

operations also via the multipole-algorithm [5].

4 Results

In this section we present results from the mesh for-
mulated parasitic extraction program, FastPep. To
verify that the formulation is correct, consider model-
ing a long two conductor transmission line with this
3D tool. The characteristic impedance of the line was
computed as Z0 = 97:43
. By using a matched ter-
mination, ZL = Z0, the input impedance is constant,
Z(f) = Z0, for all frequencies f . To verify that the
FastPep formulation is correct, the two conductors
were taken to be 1cm long and discretized into 558
�laments, and 768 panels. Such a discretization leads
to a 2033 state system. As seen from Figure 2, the full
system matches closely to the exact solution. Notice
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Figure 2: Relative error for models for matched trans-
mission line

also that for a reduced order model with 1% error, a
20th order model is valid up to 6 GHz, a 40th order
model up to 12 GHz, and an 80th order model past
20GHz (to about 26GHz).

Next, to demonstrate the e�ciency of the recycled
iterative scheme, consider re�ning the discretization
of the transmission line of the previous example and
extracting a 50th order model. Figure 3 shows the
number of 
oating point operations (
ops) required
for direct factorization with back substitution, a non-
recycled Krylov-subspace method, a recycled Krylov
method, and multipole-accelerated recycled Krylov
method, for various levels of discretization. Our imple-
mentation of FastPep uses direct matrix-vector prod-
ucts and thus the multipole-accelerated times are pro-
jected based on 
op counts from multipole-accelerated
capacitance and inductance codes [3, 5]. The error
tolerance of the iterative algorithm was chosen such
that the di�erence between models produced by the
iterative scheme versus direct factorization di�ered by
less than 1% up to 100 GHz. As can be seen from
the �gure for an original 15409 state system, the re-
cycled scheme performs an order of magnitude faster
than direct factorization, and similarly, the multipole
algorithm would provide another order of magnitude
speed up. Note that the CPU time comparison would
be similar to the 
op count comparison for the di-
rect factorization and direct recycled iterative scheme,
however the overhead in arranging the multipole com-
putation would shift its curve slightly upward.

To demonstrate FastPep's utility as a 3D solver,
consider analyzing a printed circuit board connec-
tor from Teradyne, Inc, as shown in Figure 4. The
connector has four outer conductors and one middle
ground conductor which widens in the center to pro-
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Figure 3: Flop count for di�erent methods of comput-
ing P�1x.

Figure 4: A 3D connector

vide shielding. Here the number of states in the orig-
inal discretized system is 3018 which was generated
from 845 �laments and 1182 panels. The results of
generating models with 80 and 250 states are com-
pared to the exact response in Figure 5. Note the
strong improvement from 80 to 250 states.

5 Conclusions

In this paper we showed that combining a recycled
Krylov-subspace iterative algorithm and multipole-
acceleration with the PEECmethod with Mesh Analy-
sis can be used to e�ciently generate low order models
of three-dimensional interconnect structures.

As can be seen from Figure 5, a 250th order model
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Figure 5: Various reduced order models for the con-
nector

was needed to capture the response up to 3 GHz. Fu-
ture work involves fast methods for generating models
about expansion points other than s = 0 for more
compact models.

The authors would like to thank Mark Gailus for
the valuable discussions and the motivational exam-
ple.
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