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Abstract|This paper describes a new boundary integral

formulation for the three-dimensional capacitance calcu-

lation of structures with multiple dielectrics. Unlike the

existing equivalent-charge formulation, the new approach

allows accurate numerical approximations when the per-

mittivity ratios of the dielectrics are large. A multipole-

accelerated algorithm based on this approach is described,

and numerical results of its implementation are presented.

I. Introduction

The self and coupling capacitances associated with

integrated circuit interconnect and packaging are be-

coming increasingly important in determining �nal cir-

cuit performance and reliability. However, accurate es-

timation of these capacitances involves analyzing in-

nately three-dimensional structures with dielectric ma-

terials surrounding conductors in a complicated fashion.

Integrated circuits, for example, have multiple layers of

polysilicon or metal conductors, separated by conformal

or space-�lling dielectrics. Also, packaging and o�-chip

interconnection problems often involve connectors pass-

ing through several plastic or ceramic dielectrics. The

recent development of multipole-accelerated boundary-

element methods for three-dimensional capacitance ex-

traction has made accurate analysis of very complex

structures in a uniform dielectric computationally inex-

pensive [1]. Moreover, the fast multipole method has

been extended to problems where the conductors are sur-

rounded by multiple dielectric regions of arbitrary shape,

thus allowing the analysis of more realistic integrated cir-

cuit interconnect and packaging problems [6].

Traditionally, the extension to multiple dielectrics is

based on the equivalent-charge approach. However, it has

been observed by Nabors et al. [6] that this formulation

can result in very poor numerical approximations of ca-

pacitances when the ratios of the involved permittivities
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are large.

This article gives an explanation why any numeri-

cal scheme discretizing the equivalent-charge formulation

will fail when the permittivity ratio is high enough. Fur-

thermore, we present a modi�cation which results in sta-

ble approximations of capacitances: the error of the mod-

i�ed method is independent of the permittivity ratio.

Section II brie
y reviews the equivalent-charge formu-

lation and describes the numerical problems in the case of

high permittivity ratios. The following section proposes

a modi�cation of the existing technique which avoids the

di�culties of the original formulation. The method's

utility is demonstrated in Section V by applying our

multipole-accelerated implementation of the algorithm to

two examples.

II. Equivalent Charge Formulation

The equivalent charge approach [2], [3] to computing

capacitances involves replacing the conductor surfaces Sc
with a charge density �c and the dielectric interfaces Sd
with a charge density �d. The potential produced by this

combined density is then given by

 (x) = Vc�c(x) + Vd�d(x) ; x 2 R3 : (1)

Here Vc and Vd denote the potentials due to charges on

Sc and Sd, respectively, which can be obtained by replac-

ing S with the appropriate surface in the superposition

integral

V �(x) =
1

4�

Z
S

1

jx� yj
�(y) dS(y) :

Note that we will use dimension-less notations through-

out this article, i.e., we set the permittivity of the free-

space to unity.

There are two types of boundary conditions which will

determine the charge densities �c and �d. On the con-

ductor surfaces the potential is speci�ed, whereas on the

interface of two dielectrics a condition on the potentials

normal derivative is given. In particular, we have

 (x) = 1 ; x 2 Sc

"a
@ a

@n
(x) = "b

@ b

@n
(x) ; x 2 Sd :

(2)

Here n denotes the normal of the interface and  a is the

potential approached from the side of the interface with

permittivity "a and  b is the analogous potential for the
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Fig. 1. Conductor C surrounded by dielectric materials with per-
mittivities "a and "b

"b-side. The normal on the interface is chosen to point

into the side of the lower permittivity.

It is well known that the electric �eld V � due to the

surface charge � is not continuous across this surface [7].

More precisely, we have jump relation for the normal com-

ponent of the �eld

@

@nx
(V �)(x) = �

�(x)

2
+E�(x); x 2 S (3)

where

E�(x) =
1

4�

Z
S

@

@nx

1

jx� yj
�(y) dS(y) : (4)

The negative sign in the formula (3) is chosen for the �eld

on the side of the surface in direction of the normal, the

plus sign is for the opposite side. Subtracting the jump

relation for both sides of the surface yields the important

relation between the charge density and the jump of the

electric �eld

� =
@ b

@n
�
@ a

@n
: (5)

From the formula above and the boundary conditions

the following system of integral equation for the densities

�c and �d can be derived

Vc�c(x) + Vd�d(x) = f(x) ; x 2 Sc
Ec�c(x) +

�
1

2�
+Ed

�
�d(x) = 0 ; x 2 Sd :

(6)

Here the operators Ec and Ed are de�ned by replacing

S in (4) with the surfaces Sc and Sd, respectively, and

the normal nx with the normal of the dielectric interface.

The parameter � is given by

� =
"a � "b

"a + "b
: (7)

To determine the self capacitance of a conductor (for the

case that only one conductor is present), the potential f

on Sc is set to one volt. For mutual capacitances (in the

case of multiple conductors) the right hand side f is set

to one volt on one conductor and zero volts on the other

conductors.

After the charge density �c has been determined, the

capacitance of a conductor can be calculated by

C� = "a

Z
Sc

�c(y) dS(y) : (8)

Typically, system (6) is discretized with piecewise con-

stant collocation. Nabors et al. [6] observed in this con-

text that the error of the numerically approximated so-

lution grows rapidly as the ratio of the permittivities

increases. In the same article they propose to employ

the Galerkin method for the discretization of (6). Even

though the Galerkin scheme improves the approximation,

the method produces inaccurate results if the permittiv-

ity ratio becomes too high.

III. High Permittivity Ratios

For simplicity, consider one conductor raised to one volt

which is embedded in a dielectric material, as depicted

in Figure 1. To study large permittivities set "b = 1

and let "a ! 1 which is equivalent to letting � in (7)

approach 1. Physically, the "a ! 1 limit implies that

the dielectric material is acting like a conductor. Hence

all charges must be located on the dielectric interface and

the conductor density must vanish.

Since there are no charges in the interior of the "a =

1 dielectric, the potential, denoted by  
1
, is constant

throughout the dielectric material and is therefore one

volt on the dielectric interface. This boundary condition

gives rise to the following integral equation for the charge

density �d;1 on the interface

Vd�d;1(x) = 1 ; x 2 Sd : (9)

The latter problem is equivalent to calculating the capac-

itance of the structure where the dielectric material has

been replaced by a conductor. Thus the original problem

which was posed on Sc and Sd is reduced to a problem

posed on Sd only. Moreover, the capacitance of this prob-

lem is given by

C
1

=

Z
Sd

�d;1 dS :

In view of the equivalent charge formulation, we see that

�c = 0 and �d = �d;1 is the solution of (6) for � =

1. The �rst equation is satis�ed, because the potential

 
1
� 1 in the interior of the dielectric medium. The

second equation follows from the jump relation (3) and

the fact that the electric �eld vanishes on the "a-side of

the interface.

Now consider the solution �c; �d of the equivalent

charge formulation (6) for large, but �nite "a. From the

previous discussion it is clear that �c is small compared

to �d because �c converges to zero whereas �d converges

to the non-zero charge �d;1.



When solving (6) numerically, the discretization error

will be distributed evenly over both surfaces which results

in large relative errors in the conductor surface charge.

This has a severe e�ect for the approximation error of

the capacitance. Because of the factor "a in (8), the dis-

cretization error of C� grows linearly with the permit-

tivity for a �xed discretization. Note however, that the

exact value of C� converges to C
1
. This can be seen

by integrating the second equation in (6) over the inter-

face Sd. By Gauss's law, we have
R
Sd
Ec�c =

R
Sc
�c andR

Sd
Ed�d = �1=2

R
Sd
�d. Hence,

C� =

Z
Sc

�c = "a

� 1

2�
�

1

2

�Z
Sd

�d ! C
1
:

Thus we see that in the limit of "a !1 the relative error

of the capacitance grows without bounds.

IV. The Perturbation Approach

The major di�culty associated with high permittivity

ratios is that the solution of the equivalent charge for-

mulation (6) has di�erent scales. The purpose of this

section is to introduce a two step procedure which avoids

di�erent scaling of the densities on the conductor and di-

electric surfaces. To obtain such a method we set up the

potential as the combination of  
1
, the potential gener-

ated by "a =1, and a perturbation e accounting for the

�nite permittivity

 (x) =  
1
(x) + e (x) :

As was shown above, the potential  
1

results only from

the charge �d;1 on the interface, which is given by inte-

gral equation (9). This is a standard capacitance problem

and can be solved numerically to high accuracy [1], [3].

The perturbation e is set up as a super-position of

charges on the conductor surface and the dielectric inter-

face, similar to the de�nition of the potential in (1)

e (x) = Vce�c(x) + Vde�d(x) : (10)

Substituting (10) into (2), we obtain a new set of bound-

ary conditions for perturbation e 
e (x) = 0 ; x 2 Sc

"a
@e a
@n

(x) = "b

�
@e a
@n

(x)� �d;1(x)
�
; x 2 Sd :

(11)

The second equation holds because  
1

is constant within

the dielectric material and hence @ a
1

=@n = 0 and

@ b
1

=@n = ��d;1 by the jump relation (5).

These boundary conditions yield, very much in the

same way as for (6), the following system of integral equa-

tions for the perturbations e�c and e�d
Vce�c(x) + Vde�d(x) = 0 ; x 2 Sc

Ece�c(x) + ( 1

2�
+ Ed)e�d(x) = ��1

�
�
1;d(x) ; x 2 Sd :

(12)

Since the potential  
1

is generated only by charges on

the dielectric interface, we see that e�c = �c. Hence the

capacitance (8) is given by

C = "a

Z
Sc

1

jx� yj
e�c(y) dS(y) : (13)

The system above has the same operator on the left hand

side as the original system (6), only the right hand side

has changed. This is the key observation. The right hand

side is O(1="a) as "a ! 1. Hence, by linearity, we see

that e�c and e�d are both O(1="a) and therefore there is

no di�erent scaling in the solution of equation (12).

By the same argument the error due to discretizing (12)

scales like O(1="a). Hence the error of the capacitance

in (13) can be bounded independently of the permittivity

"a.

The perturbation approach for calculating capacitances

of structures involving dielectrics with high permittivies

can be summarized as follows.

1. Solve problem (9) on the conductor surface for �d.

2. Solve the perturbation equation (12).

3. Calculate the capacitance via formula (13).

V. Results

To demonstrate the accuracy of the capacitance extrac-

tion algorithm described in this article, the capacitances

with two test problems were computed. The calculations

are based on the package FASTCAP [1] with some modi�-

cations to facilitate solving the new integral formulation

discussed in Section IV. The numerical method used here

is piecewise constant collocation with sparsi�cation of the

resulting system matrix by the Fast Multipole Method

[5], [4].

In the �rst example we approximate the capacitance of

the unit radius spherical conductor which is covered by a

unit thick coating.

The analytic values of the capacitance are compared

with the numerical results generated by the equivalent

charge and by the modi�ed formulation. For both calcu-

lations, we used the same discretization into 1536 pan-

els. Figure 2 shows the relative errors for a wide range

of permittivity ratios. As it can be seen from this plot,

the equivalent charge approach gives very poor approxi-

mations for high permittivity ratios, whereas the the er-

ror of our modi�ed method remains bounded, even when

"a !1.

To demonstrate that the modi�ed formulation is also

useful for more complex geometries, the capacitances as-

sociated with the bus-crossing structure of Figure 3 are

calculated.

Table I compares the calculated coupling capacitances

derived from raising conductor three to one volt for the

two approaches described in this article. Both formula-

tions agree (up to marginal di�erences) on the self capac-

itance and the coupling capacitance to conductor four.
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Fig. 2. Relative errors of the capacitance as calculated by the
equivalent charge formulation (Method 1) and the modi�ed for-
mulation (Method 2). Coated sphere example. The exact value
of the capacitance varies between 18 and 25.

However, there is a signi�cant di�erence in the two ap-

proaches for the coupling between conductor three and

the conductors surrounded by the dielectric. It appears

that the results given by the equivalent charge formula-

tion are too high. In fact, the experiments showed that

for increasing permittivity ratios these capacitances di-

verge for the equivalent charge approach, but approached

a �xed limit for our modi�ed formulation.

Cap. "a 2 4 6 8 10

C31 old -12.3 -15.3 -17.3 -19.0 -20.5

new -11.8 -13.9 -14.8 -15.3 -15.7

C32 old -12.3 -15.3 -17.3 -19.0 -20.4

new -11.8 -13.9 -14.8 -15.3 -15.7

C33 old 39.1 43.0 44.8 45.8 46.5

new 39.5 43.8 45.8 46.9 47.6

C34 old -8.1 -7.8 -7.7 -7.7 -7.6

new -8.1 -7.8 -7.7 -7.6 -7.6

TABLE I

Comparison of the calculated coupling capacitances for

various permittivities from conductor three. Bus crossing

example in Figure 3, 'old' refers to the equivalent charge

formulation, 'new' to the perturbation method.

VI. Conclusion

The capacitance calculation for structures with mul-

tiple dielectrics by the equivalent charge formulation

can be erroneous when the ratio of the permittivities

is high. The modi�ed formulation described in this

article does not su�er from an accuracy loss in this

case. Furthermore, calculations via the new approach

can be multipole-accelerated and are therefore e�cient

enough to allow capacitance extractions of complex three-

dimensional, multiple-dielectric geometries.

Fig. 3. The bus crossing example. The two bottom conductors are
numbered 1 and 2, the two top conductors 3 and 4.
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