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Abstract

Since the �rst papers on asymptotic waveform eval-
uation (AWE), reduced order models have become
standard for improving interconnect simulation e�-
ciency, and very recent work has demonstrated that
bi-orthogonalization algorithms can be used to ro-
bustly generate AWE-style macromodels. In this pa-
per we describe using block Arnoldi-based orthogo-
nalization methods to generate reduced order models
from FastHenry, a multipole-accelerated three di-
mensional inductance extraction program. Examples
are analyzed to demonstrate the e�ciency and accu-
racy of the block Arnoldi algorithm.

1 Introduction

The dense three-dimensional packaging used in
compact electronic systems may produce magnetic in-
teractions which interfere with system performance.
Such e�ects are di�cult to simulate because they oc-
cur only as a result of an interaction between the
�eld distribution in a complicated geometry of conduc-
tors, and the circuitry connected to those conductors.
Recent work on reduced-order modeling techniques
have made it possible to e�ciently simulate circuits
combined with interconnect [1], but generating the
reduced-order models from realistic 3-D structures has
received less attention. Reduced-order models can be
generated very e�ciently by exploiting the fact that 3-
D �eld solvers typically use Krylov-subspace based it-
erative methods. These iterative methods can provide
more than just a solution at a particular frequency;
they can be used to directly construct reduced-order
models [2].

In this paper, we present a numerically robust
and accurate approach for computing reduced-order
models of magnetoquasistatic coupling in complicated
3-D structures. The approach is based on using
the multipole-accelerated program FastHenry [3],
combined with the block Krylov-subspace algorithm
Arnoldi [4]. We begin, in section 2, by describing the
mesh-formulation approach of FastHenry. In sec-
tion 3, the standard Pad�e approximation approach as
well as an Arnoldi-based approach are derived. In sec-
tion 4 results are presented comparing the accuracy of
the two model-order reduction methods on a package
example. Finally, in section 5, we present conclusions
and acknowledgments.

2 The Mesh Formulation Approach

The frequency dependent resistance and induc-
tance matrices describing the terminal behavior of a
set of conductors can be rapidly computed with the
multipole-accelerated mesh-formulation approach as
implemented in FastHenry [3]. To describe the ap-
proach, consider that each conductor is approximated
as piecewise-straight sections. The volume of each
straight section is then discretized into a collection
of parallel thin �laments through which current is as-
sumed to 
ow uniformly.

To derive a system of equations for the �lament
currents, we start by assuming the system is in sinu-
soidal steady-state and follow the partial inductance
approach in [5]. The branch current phasors can be
related to branch voltage phasors by

Vb = (R + j!L)Ib = ZIb; (1)

where Vb; Ib 2 C b , b is the number of branches
(number of current �laments), and ! is excitation fre-
quency. The entries of the diagonal matrix R 2 Rb�b

represent the dc resistance of each current �lament,
and L 2 Rb�b is the dense matrix of partial induc-
tances.
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Kirchho�'s voltage law, which implies that the sum
of branch voltages around each mesh in the network
is represented by

MVb = Vs MT Im = Ib; (2)

where Vs 2 C
m is the mostly zero vector of source

branch voltages, Im 2 Cm is the vector of mesh cur-
rents, M 2 Rm�b is the mesh matrix. Combining (2)
and (1) yields

MZM TIm = Vs: (3)

The complex admittance matrix which describes
the external terminal behavior of a t-conductor sys-
tem, denoted Yt = Z�1t , can by derived from (3) by
noting that

It = YtVt

where It and Vt are the terminal source currents and
voltages of the t-conductor system. These values are
related to the mesh quantities by I t = NTIm;Vs =
NVt, where N 2 R

m�t is an easily constructed ter-
minal incidence matrix.

Hence, to compute the ith column of Yt, set Vti = 1
and the rest of Vti to zero. Solve (3) with a Vs = NVt
and then extract the entries of Im associated with the
source branches via I t = N

T
Im.

To solve (3) by Gaussian Elimination would require
O(m3) operations since Z is dense. Instead, pro-
grams like FastHenry solve (3) using a multipole-
accelerated gmres iterative algorithm [4, 6], which
requires O(b) operations.

3 Reduced-Order Modeling

Consider forming the state-space representation of
(3). Expanding Z into R + sL gives

s(MLM
T )Im = �(MRM

T )Im + Vs: (4)

From (4) we can obtain

d
dt
Im = A�1Im +A�1BVt
I t = C

T
Im:

(5)

or equivalently the matrix transfer function

I t

Vt
= Yt(s) = C

T (I � sA)�1B (6)

where A = �(MRMT )�1(MLMT ), B =
(MRMT )�1N , I is the identity matrix inRm�m and
C = N .

It is possible to use (5) directly in a circuit simulator
as a model for the interconnect, but such an approach
can be computationally expensive. For example, in a
complicated package, the dense matrix A can easily
be larger than 10; 000� 10; 000.

3.1 Order Reduction using Pad�e Approx-
imations

A more e�cient approach to including a system de-
scribed by (5) in a circuit simulator is to compute a
reduced-order model. Consider a given entry, Yij , of
the admittance matrix, Yt(s), given by

I ti

Vtj
= Yij(s) = c

T (I � sA)�1 b (7)

where b; c 2 Rm are appropriately chosen columns of
the original matrices B and C respectively. Expand-
ing (7) into a MacLaurin series we get

Yij(s) = c
T (I � sA)�1 b =

1X
k=0

mks
k: (8)

where
mk = c

TAkb (9)

is known as the kth moment of the transfer function.
A diagonal Pad�e approximation of qth order for Yij is
then de�ned as the rational function

GP
q (s) =

uq�1s
q�1 + � � �+ u1s + u0

wqsq +wq�1sq�1 + � � �+ w1s + 1
(10)

in the coe�cients ui and wi such that [7]

lim
s!0

1

k!

dk

dsk
GP

q (s) = mk: (11)

3.2 Order Reduction using Arnoldi Iter-
ations

As pointed out in [8] and applied in [2, 8, 9], a
numerically robust approach for computing GP

q (s) of
very high order is to use a Lanczos-based algorithm.

An alternative approach, which robustly generates
a somewhat di�erent approximation, can be derived
using an Arnoldi process as in the gmres algorithm
used in FastHenry. The idea behind this approach
is similar to that of [4], and is that of selecting an
orthonormal basis for the Krylov subspace Kk(A; b) =
spanfb;Ab;A2b; � � � ;Ak�1bg. The Arnoldi algorithm
is a better conditioned process than direct evaluation
of the moments because it generates an orthogonal set
of vectors which span Akb; k = 0; : : : ; 2q � 1.

After q steps, the Arnoldi algorithm returns a set
of q + 1 orthonormal vectors, as the columns of the
matrix Vq 2 Rm�q and the vector vq+1 where the
�rst column of Vq is v1 = b=kbk2. As a result of
the orthogonalization process, the Arnoldi process also



produces the q � q upper Hessenberg matrix Hq and
scalar hq+1;q which satisfy

AVq = VqHq + hq+1;qvq+1e
T
q (12)

where eq is the qth unit vector in Rm�m.
From (12) and v1 = b=kbk2, it can easily be seen

that after q steps of an Arnoldi process, for k < q� 1,

Akb = kbk2A
kVqe1 = kbk2VqH

k
qe1: (13)

With this relation, the moments (9) can be related to
Hq by

mk = c
TAkb = kbk2c

TVqH
k
qe1 (14)

and so the qth order Arnoldi-based approximation to
Yij can be written as

GA
q (s) = kbk2c

TVq (I � sHq)
�1
e1 (15)

corresponding to the state-space realization using the
triplet [Ak; bk; ck] = [Hq ; e1; kbk2V

T
q c].

Note that the rational functionGA
q (s) is not a Pad�e

approximation. Equation (13) is only valid for k <

q� 1, thus GA
q (s) has q poles but only matches q� 2.

Conversely, GP
q (s) matches 2q � 1 moments.

3.3 Systems with Multiple Inputs and
Outputs

Consider the case of a multiple input, multiple out-
put system with r inputs and p outputs (MIMO sys-
tem). Obtaining a reduced-order model of order q for
such a system using Pad�e-based techniques requires at
best O(2rq) computations where it is assumed r � p

without loss of generality. On the other hand, using
the technique described in section 3.2 requires running
the Arnoldi algorithm r times, once for each column
of B. The total cost of computing the matrix transfer
function using this algorithm is thus O(rq) for a qth

order approximation.
An alternative approach to that described in sec-

tion 3.3 for computing a reduced-order model of (6) is
to use a block algorithm. Block versions of the Arnoldi
algorithm exist for handling multiple right-hand side
vectors.

After q̂ steps, the block Arnoldi algorithm returns
a set of q̂ orthonormal blocks as the block columns of
the matrix V b

q̂ 2 Rm�rq̂, and a rq̂ � rq̂ upper band

Hessenberg matrix Hb
q̂ whose entries are r � r blocks

Hi;j. These two matrices satisfy a relationship similar
to that in (12), namely

AV b
q̂ = V b

q̂ H
b
q̂ + V q̂+1Hq+1;qE

T
q̂ (16)

Method # mv prods # nonzeros in Ak

Pad�e 2pq � 3p2q

Arnoldi pq � 3

2
pq2

Block Arnoldi q � 1

2
q2

Table 1: Costs for a qth order approximation of a
p-input, p-output system (number of matrix vector
products and number of nonzeros in the system ma-
trix).

where Eq̂ is the matrix of the last r columns of the
identity in Rm�m.

From (16), the q̂th order block Arnoldi-based ap-
proximation to Yij can be written as

GbA
q̂ (s) = R1C

TV b
q̂

�
I � sHb

q̂

�
�1

E1 (17)

corresponding to the state-space realization using the

triplet [Ak;Bk;Ck] = [Hb
q̂ ;E1;R1V

bT

q̂ C] where R1

results from the QR factorization of B.
The total cost of computing the matrix transfer

function using the block Arnoldi algorithm is O(rq̂)
resulting in an approximation of order rq̂.

3.4 Complexity Comparisons

In all of these methods, the computation of b is
inexpensive since MRM

T is sparse. However, be-
cause L is dense, the dominant cost of each iteration
or moment computation is a matrix-vector product,
Ax = �(MRMT )�1(MLMT )x. In practice, the
matrix-vector cost dominates even when the dense
part, (MLM

T )x, is rapidly computed with a hier-
archical multipole-algorithm as in FastHenry.

Table 1 compares the number of matrix-vector
products and also the number of nonzeros in the
reduced-order system matrix for each method where,
for simplicity, we assume r = p. Based on the number
of matrix-vector products, block Arnoldi is the most
e�cient at forming the reduced-order model. Also,
since block Arnoldi has the fewest nonzeros, its sys-
tem matrix would be the most e�cient during circuit
simulation.

The authors would like to note that the researchers
in [2] have developed an a block Lanczos algorithm
which we understand will produce an A matrix with
fewer nonzero entries.



Figure 1: Seven pins of a cerquad pin package.
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Each method required 56 matrix-vector products.

4 Experimental Results

Consider the small set of package pins. as shown in
Figure 1. To compute the resistance and inductance
matrices with FastHenry, the pins were discretized
into three �laments along their height and four along
their width producing a system of size m = 887. This
discretization allows the modeling of changes in resis-
tance and inductance due to skin and proximity ef-
fects. Since there are seven pins, the model to be
produced has only seven inputs and seven outputs.

For the admittance between pins 1 and 2, Figure 2
shows the relative error for Pad�e, Arnoldi, and block
Arnoldi admittance modes with model order 4, 8, and
56, respectively. The model order was chosen such
that the computation would require 56 matrix-vector
products for each method. It is worth noting that
Pad�e, Arnoldi, and block Arnoldi match 7, 6, and 6
moments, respectively, yet block Arnoldi clearly gives
the best approximation.

Table 2 compares the computational cost and the
complexity of the reduced order models for a desired
�xed accuracy of 5% pointwise error. The table shows
that block Arnoldi requires the fewest matrix-vector

Method Order # mv prods # nonz in Ak

Pad�e 8 112 1764

Arnoldi 8 56 252

Block Arn. 14 14 42

Table 2: Order of approximation, number of ma-
trix vector products and number of nonzeros in the
reduced-order system matrix for approximation yield-
ing an accuracy of 5%.

products, and thus requires the least computation.
The table also shows that with only 42 nonzeros in
the reduced-order system matrix, it is also the most
e�cient for subsequent simulation using its model.

4.1 Coupled Simulation Results

Consider the crosstalk between the pins in Fig. 1.
Assume the �ve middle lines carry output signals from
the chip and the two outer pins carry power and
ground. The signals are driven and received with
cmos inverters. The drivers are capable of driving a
large current to compensate for the impedance of the
package pins. The inductance of the pins is modeled as
described in the previous sections, and the capacitance
is assumed to be 8pF. The interconnect from the end
of pin to the receiver is modeled with a capacitance
of 5pF. A 0:1�F decoupling capacitor is connected
between the driver's power and ground to minimize
supply 
uctuations.

The reduced-order model for each entry in the
admittance matrix is incorporated into spice3 as a
frequency-dependent voltage-controlled current source
vccs. As a sample time domain simulation, imagine
that at time t0 = 4ns the signal on the middle pin of
Fig.1 is to switch from high to low and the other four
signal pins switch from low to high but due to delay
on chip, the other four pins switch at t1 = 5ns. In this
case, signi�cant current will suddenly pass through the
late pins while the middle pin is in transition. Due to
crosstalk, this large transient of current has signi�cant
e�ects on the input of the receiver of the middle pin,
as shown in Fig. 3. Note that the input does not rise
monotonically. Fig. 3 also shows that the bump in the
waveform is carried through to the output of receiver,
as a large glitch.
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Figure 3: The middle pin's receiver when four adjacent
pins switch 1ns after the middle pin.

5 Conclusions

In this paper we described an accurate approach
using block Arnoldi based algorithms to compute
reduced-order models of linear systems, such as the
frequency-dependent inductance matrices associated
with complicated 3-D structures. One key advan-
tage of this method is that it is no more expensive
than computing the inductance matrix at a single fre-
quency. We also compared three approaches to model
order reduction, the Pad�e-based approach, an Arnoldi-
based approach, and a block Arnoldi method. We
showed that both the Arnoldi and block Arnoldi al-
gorithms can have advantages over Pad�e in certain
applications.

We showed that although the original Pad�e algo-
rithm requires order 2pq work to compute a qth or-
der reduced model for a p-terminal package, block
Arnoldi algorithms can reduce the work to produce
a reduced order model to order q. Examples are an-
alyzed to demonstrate the e�ciency and accuracy of
the Arnoldi-based algorithms.

Finally it should be noted that an extension of the
Lanczos algorithm has been developed in [10] for com-
puting multi-point Pad�e approximations.
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