
E�cient Steady-State Analysis based on Matrix-Free
Krylov-Subspace Methods

Ricardo Telichevesky
Cadence Design Systems

San Jose, California

Kenneth S. Kundert
Cadence Design Systems

San Jose, California

Jacob K. White
Massachusetts Institute of Technology

Cambridge, Massachusetts

Abstract

Gaussian-elimination based shooting-Newton

methods, a commonly used approach for com-

puting steady-state solutions, grow in computa-

tional complexity like N3, where N is the number

of circuit equations. Just using iterative meth-

ods to solve the shooting-Newton equations re-

sults in an algorithm which is still order N2 be-

cause of the cost of calculating the dense sensitiv-

ity matrix. Below, a matrix-free Krylov-subspace

approach is presented, and the method is shown to

reduce shooting-Newton computational complex-

ity to that of ordinary transient analysis. Results

from several examples are given to demonstrate

that the matrix-free approach is more than ten

times faster than using iterative methods alone

for circuits with as few as 400 equations.

1 Introduction

The growing importance of integrated circuits for com-

munication systems has renewed interest in steady-state

methods for distortion analysis of large analog circuits.

Finding fast algorithms for accurately computing steady-

state solutions is particularly important because many

steady-state solutions are needed to determine a single

circuit's behavior. For example, to fully characterize a

given analog circuit's distortion, it is necessary to sweep

both the frequency and amplitude of the applied signal.

This implies that an accurate steady-state solution must

be computed at each of at least several hundred points in

the two sweeps.

Since analog circuits are relatively stable problems,

�nite-di�erence methods are not commonly used to com-

pute steady-state solutions. Instead, the two most pop-

ular approaches are the harmonic balance algorithm for

mildly nonlinear circuits, and the shooting-Newton meth-

ods for more drastically nonlinear circuits [Kundert90]. It

is also possible to simulate the circuit for a time interval

long enough to insure steady-state has been achieved, but

for many circuits this time interval may be prohibitively

long.

In this paper we focus on shooting-Newton methods.

For such methods, if Gaussian-elimination is used to solve

the dense shooting-Newton update equations, the method

grows in computational complexity like N3, where N is

the number of circuit equations. It is possible to use

iterative methods to solve the shooting-Newton update

equations, but this results in an algorithm which is still

order N2. In this paper, a matrix-free Krylov-subspace

approach is presented, and is shown to reduce shooting-

Newton computational complexity to that of ordinary

transient analysis. In the following background section,

we describe the shooting-Newton method, and then de-

scribe the matrix-free Krylov-subspace approach in sec-

tion 3. In section 4, computational results on a several

examples are examined, and the results used to show that

the matrix-free approach substantially reduces simulation

time, particularly for larger circuits. For example, the

matrix-free method is more than ten times faster than us-

ing iterative methods alone for circuits with as few as 400

equations.

2 Shooting Methods

Finding the periodic steady-state solution of a circuit in-

volves �nding the initial condition for the circuit's associ-

ated system of di�erential equations such that the solution

at the end of the period matches the initial condition.

More precisely, �nding the steady-state solution means

�nding a particular solution to the circuit equations, as

32nd ACM/IEEE Design Automation Conference 
Permission to copy without fee all or part of this material is granted, provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.  1995 ACM 0-89791-756-1/95/0006 $3.50

in

f(v(t); t) = i(v(t)) + _q(v(t)) + u(t) = 0; (1)

where u(t) 2 <N is the vector of input sources, v(t) 2
<N is the vector of node voltages, and i(v(t)); q(v(t)) 2
<N are the vectors of resistive node currents and node

charges or
uxes. The periodic steady-state solution is the

solution of (1) that also satis�es the two-point constraint

v(T) � v(0) = 0: (2)

Generally, shooting methods reformulate (1) and (2) as

�(v(0); 0; T)� v(0) = 0; (3)

where � is the state-transition function for (1). As (3) is

a nonlinear algebraic problem, standard Newton methods

can be used to solve for v(0). We refer to the combina-

tion of the Newton and shooting methods as the shooting-

Newton algorithm.

When applying Newton's method directly to (3), it is

necessary to compute both the response of the circuit

over one period and the sensitivity of the �nal state with

respect to changes in the initial state v(0). The sen-

sitivity is used to determine how to correct the initial

state to reduce the di�erence between the initial and �nal

state [Aprille72].

Applying Newton's method to (3) results in the itera-

tion

v
j
0 = v

j�1
0 �h
J�(v

j�1
0 ; 0; T)� I

i
�1 h

�(v
j�1
0 ; 0; T)� v

j�1
0

i
(4)

where j is the iteration number, v0 = v(0), I is the iden-

tity matrix, and

J�(v(0); 0; T) =
d

dv(0)
(�(v(0); 0; T))

=
dv(T)

dv(0)
: (5)

There are two important pieces to the computation of

the Newton iteration given in (4): factoring the matrix

J�(v(0); 0; T)� I, which is a dense matrix in general, and

evaluating the state-transition function �(v(0); 0; T) and

its derivative J�(v(0); 0; T).

The state-transition function is computed by integrat-

ing (1) numerically over the shooting interval. The deriva-

tive of the state-transition function, referred to as the

sensitivity matrix, is computed simultaneously because

there are several quantities that are common to both com-

putations. To see this, consider solving (1) using the

backward-Euler integration method. The resulting dis-

cretized equation for v at the mth time-step is then

f(vm) =
1

hm
[q(vm) � q(vm�1)] + i(vm) + um = 0 (6)

where vm is an approximation to v(tm), um = u(tm),

m = 1; 2; : : : ;M , hm = tm� tm�1 is the time-step, t0 = 0,

and tM = T .

Using Newton's method to solve the implicit relation in

(6) leads to the iteration

�
1

hm

dq(v`�1m)

dvm
+

di(v`�1m)

dvm

�
(v`m � v`�1m) =

�
1

hm

�
q(v`�1m)� q(vm�1)

�
� i(v`�1m) � um;

(7)

where ` is the Newton iteration index.

Using the notation di(v)=dv = G(v) and dq(v)=dv =

C(v) results in

�
C(v`�1m)

hm
+ G(v`�1m)

�
(v`m � v`�1m) =

�
1

hm

�
q(v`�1m)� q(vm�1)

�
� i(v`�1m)� um

(8)

The sensitivity matrix, J� = dvM=dv0, can be computed

by di�erentiating both sides of (6) with respect to v0,

1

hm

d

dv0
(q(vm)� q(vm�1)) +

d

dv0
i(vm) = 0; (9)

which, after applying the chain rule, can be written as

�
C(vm)

hm
+G(vm)

�
dvm

dv0
=

C(vm�1)

hm

dvm�1

dv0
(10)

or

Jf (vm)
dvm

dv0
=

C(vm�1)

hm

dvm�1

dv0
(11)

where Jf (vm) = C(vm)=hm +G(vm).

The Jacobian J�(v0; 0; T) = dvM=dv0 is computed by

repeated application of (11) starting from the initial con-

dition dv0=dv0 = I. Note that for each time-step the

derivatives Jf (vm) and C(vm�1) in (11) are already avail-

able, as they are required in (8), and Jf (vm) will al-

ready be factored. Then to compute the dvm=dv0 matrix

from the dvm�1=dv0 matrix requires that each column of

the dvm�1=dv0 matrix be multiplied by C(vm�1)=hm and

then solved using the sparse LU factored Jf (vm). Since

dvm�1=dv0 is dense, the computational work per time-step

for computing the sensitivity matrix is at least order N2;

there are at least order N computations for each of the N

solves. The size of J�(v0; 0; T) can be reduced somewhat

by eliminating columns associated with rapidly decaying

states [Kakizaki85].

Algorithm I

(GMRES algorithm for solving Ax = b)

Guess at a solution, x0.

Initialize the search direction p0 = b�Ax0.

Set k = 1.

do f
Compute the new search direction, pk = Apk�1.

Orthogonalize, pk = pk �
Pk�1

j=0 �k;jp
j.

Choose �k in

xk = xk�1 + �kp
k

to minimize krkk = kb�Axkk.

If krkk < tolerancegmres, return vk as the solution.

else Set k = k + 1.

g

3 The Matrix-Free Krylov-Subspace
Approach

Each iteration of the shooting-Newton method requires

solving the dense linear system given in (4). If Gaus-

sian elimination is used to solve (4), the number of
oat-

ing point operations required will grow proportionly with

the cube of the number of unknowns. Clearly, the Gaus-

sian elimination approach will become computationally

intractable if the number of circuit equations exceeds sev-

eral hundred. Instead, consider solving the linear system

(4) using an iterative method like the Krylov-subspace

based GMRES algorithm [Saad86]. A simpli�ed version

of GMRES is given in Algorithm I.

The dominant costs of Algorithm I are in calculating the

N2 entries of A = J� � I using (11) before the iterations

begin, and performing N2 operations to compute Apk�1

on each GMRES iteration. Below, we describe a matrix-

free approach which represents J� � I in a sparse form.

The approach avoids forming most of A and, for typical

circuit problems, reduces the cost of computing J�p
k�1 to

nearly order N operations.

3.1 The Matrix Free Approach

To derive an approach which avoids forming A = J� � I,

recall that GMRES does not require an explicit represen-

tation of A, only the ability to compute Apk�1 is neces-

sary. Note that

Apk�1 = (J� � I)pk�1

Algorithm II

(Backward-Euler Matrix-Free Shooting-Newton)

Guess a solution, v00.

For j = 1 to Newton Limit f

Integrate (1) from 0 to T with v0 = v
j�1
0 :

For m = 1 to M f
Solve (6) for vm.

Store the factored Jf (vm) and C(vm)).

g

Solve (J�(v
j�1) � I)�vj = vj�1 � �(vj�1):

(with GMRES)

In GMRES Compute pk+1 = J�(v
j�1)pk using:

pk+1 = pk.

For m = 1 to M solve Jf (vm)p
k+1 = C(vm�1)p

k+1.

Upate vj = vj�1 + �vj .

If k�vjk < toleranceNewton, return.

g

�
�(v0 + �pk�1; 0; T)� �(v(0))

�
� pk�1: (12)

Therefore, Apk�1 can be computed just by perturbing

v(0) in the direction of pk, then integrating for one period

to evaluate �(v0 + �pk�1; 0; T), and �nally applying the

relation in (12) [Skelboe80].

Even though (12) can be used directly as a matrix-free

approach to forming the matrix-vector products required

when GMRES is applied to solving (4), a computationally

more e�cient and numerically more robust approach is to

save C(vm) and the LU factorization of Jf (vm) at each

time-step, and use (11) to compute J�p
k�1. This leads to

the Algorithm II for computing the steady-state.

Note that computing the GMRES matrix-vector prod-

uct in Algorithm II requires nearly the same work as com-

puting one column of J� using (11). Therefore, if the

GMRES algorithm converges in many fewer than N iter-

ations, the net computational saving over computing all

N columns of J� needed in a standard shooting-Newton

method will be considerable. In the results section below,

we will demonstrate by example that on practical circuits

the GMRES algorithm converges very rapidly.

It may seem to be a misnomer to refer to Algorithm II

as a matrix-free shooting-Newton method, given that so

many Jf (vm) and C(vm) matrices are being computed

and stored. However, A = J� � I is not being computed

explicitly, and therefore the method is formally referred

to as being matrix-free.

3.2 Saving Jf (vm) and C(vm) at Each Time-
Step

As mentioned above, (12) can be used directly to ap-

proximately compute matrix-vector products, but such an

approach would be somewhat ine�cient. Each matrix-

vector product would require an entire single-period time

integration. Instead, substantial additional storage can

be allocated so that C(vm) and the factored version of

Jf (vm) can be stored at each time-step. Although this

matrix storage can be signi�cant, for very large circuits

the required storage is less than the N2 storage which

would be needed for the dense representation of the sen-

sitivity matrix. In addition, since the nonzero pattern of

C(vm) and the factored version of Jf (vm) does not change

with m, matrix structure information can be stored just

once.

3.3 Higher Order Integration Methods

Certainly, to achieve e�ciently the high accuracy needed

in distortion computation, it is necessary to use a higher

order integration method in the transient simulation than

backward-Euler. If any of the backward-di�erence formu-

las are used, which have the general form

i(vm) + um +

p=PX
p=0

�pq(vm�p) = 0; (13)

where P is the integration method order, they can be

adapted for use in matrix-free steady-state method with-

out further increasing the storage over what is required

for backward-Euler. As is clear from the derivation in

Section 2, the equation for dvm=dv0 is

G(vm)
dvm

dv0
+

p=PX
p=0

�pC(vm�p)
dvm�p

dv0
= 0; (14)

and therefore no new capacitance matrices must be stored

when changing from backward-Euler to higher order

methods, it is only necessary to access the already stored

C matrices from previous time-steps.

4 Results

In this section we experimentally examine the perfor-

mance of three shooting-Newton schemes: Gaussian elim-

ination, explicit GMRES, and matrix-free GMRES.

Table 1 compares the performance of the vari-

ous shooting-Newton methods as implemented in the

circuit eqns it GE GMRES MF GE/MF

xtal 29 3 0.50 0.50 0.39 1.28

mixer 24 4 1.85 1.74 1.20 1.54

dbmixer 100 4 4.15 4.07 1.34 3.09

lmixer 126 3 3.72 3.63 1.03 3.61

cheby 237 4 23.39 21.97 3.01 7.96

scf 377 6 2962 2954 281.4 10.52

Table 1: Comparison of di�erent shooting method

schemes

0 50 100 150 200 250 300 350
0

5

10

15

20

25

Number of Equations

R
at

io

Gaussian
Matrix−Free

Figure 1: Cost ratio of shooting method overhead to tran-

sient analysis

SpectreTM circuit simulator available from Cadence De-

sign Systems. The test suite includes xtal, a crystal �lter;

mixer is a small GaAs mixer; dbmixer is a double balanced

mixer; lmixer is a large bipolar mixer; cheby is an active

�lter; and scf is a relatively large switched capacitor �lter.

The second column in Table 1 lists the number of equa-

tions in each circuit. The third column represents the

number of one-period transient analyses that were nec-

essary to achieve steady-state using the shooting-Newton

method. The fourth, �fth, and sixth columns represent,

respectively, the time in seconds to achieve steady-state

using Gaussian elimination (GE), explicit GMRES, and

the matrix-free (MF) algorithm. All the results were

obtained on a hp712/80 workstation. The seventh col-

umn demonstrates the e�ectiveness of the matrix-free ap-

proach, listing the speedup obtained with respect to the

Gaussian-elimination method. Note that the speed-up

over the explicit GMRES algorithm would be similar for

the examples examined.

1 2 3 4 5 6
−100

−80

−60

−40

−20

0

Iteration Count

||E
rr

or
||

(d
B

)

Gaussian

Matrix−Free

Figure 2: Convergence rate behavior for scf.

Figure 1 compares the shooting update time relative to

the costs of performing a one-period transient analysis for

the di�erent methods. The matrix-free method exhibits a

relatively constant ratio, i.e. the time for computing the

update remains comparable to the transient analysis time

regardless of the number of equations, while the other

methods exhibit nearly a linear growth in this ratio. In

circuits with as few as 100 nodes, the costs of computing

the shooting update are an order of magnitude larger than

the transient simulation costs.

Figure 2 shows the convergence rate of the shooting-

Newton method for the relatively large switched-capacitor

�lter example. The �gure clearly indicates that using

matrix-free GMRES to compute the shooting-Newton up-

date instead of using conventional Gaussian elimination

has little e�ect on the Newton method's convergence.

5 Conclusions

In this paper we described how to use a matrix-free

Krylov-subspace based matrix solution method to reduce

the shooting method computational complexity to nearly

order N in practice, and gave computational results on

a variety of examples to demonstrate the e�ectiveness of

this approach. In particular, we demonstrated the method

reduces simulation time by more than a factor of ten for

circuits with as few as four hundred equations.

Algorithms based on matrix-free Krylov-subspace

methods are likely to have impact on other matrix so-

lution problems in circuit simulation, such as harmonic

balance and mixed frequency-time methods [Kundert90,

Heikkila92].

References

[Aprille72] Thomas J. Aprille and Timothy N. Trick.

\Steady-state analysis of nonlinear circuits

with periodic inputs." Proceedings of the

IEEE, vol. 60, no. 1, pp. 108{114, January

1972.

[Heikkila92] Pauli Heikkil�a. Object-Oriented Approach to

Numerical Circuit Analysis. Ph. D. disserta-

tion, Helsinki University of Technology, Jan-

uary 1992.

[Kakizaki85] Makiko Kakizaki and Tsutomu Sugawara.

\A modi�ed Newton method for the steady-

state analysis." IEEE Transactions on

Computer-Aided Design of Integrated Cir-

cuits and Systems, vol. CAD-4, no. 4,

pp. 662{667, October 1985.

[Kundert90] Kenneth S. Kundert, Jacob K. White,

and Alberto Sangiovanni-Vincentelli. Steady-

State Methods for Simulating Analog And

Microwave Circuits. Kluwer Academic Pub-

lishers, Boston 1990.

[Nagel75] L. W. Nagel. SPICE2: A Computer Program

to Simulate Semiconductor Circuits. Elec-

tronics Research Lab Report, ERL M520,

University of California, Berkeley, May 1975.

[Saad86] Y. Saad and M. H. Schultz. \GMRES: A

generalized minimal residual algorithm for

solving nonsymmetric linear systems." SIAM

Journal on Scienti�c and Statistical Comput-

ing, vol. 7, pp. 856{869, July 1986.

[Skelboe80] Stig Skelboe. \Computation of the periodic

steady-state response of nonlinear networks

by extrapolation methods." IEEE Transac-

tions on Circuits and Systems, vol. CAS-27,

no. 3, pp. 161-175, March 1980.

	DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

