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Abstract

In this paper we describe an algorithm for e�cient

circuit-level simulation of transmission lines which can

be speci�ed by tables of frequency-dependent scatter-

ing parameters. The approach uses a forced stable

section-by-section `2 minimization approach to con-

struct a high order rational function approximation to

the frequency domain data, and then applies guaran-

teed stable balanced realization techniques to reduce

the order of the rational function. The rational func-

tion is then incorporated in a circuit simulator using

fast recursive convolution. An example of a transmis-

sion line with skin-e�ect is examined to both demon-

strate the e�ectiveness of the approach and to show

its generality.

1 Introduction

In the design of communication, high-speed dig-

ital, and microwave electronic systems, the behav-

ior of transmission lines formed from packaging and

interconnect can have an important impact on sys-

tem performance. For this reason, including non-ideal

transmission lines in circuit simulation has become a

topic of much current research [1, 2, 3, 4]. In gen-

eral, the behavior of stripline and microstrip printed

circuit board traces, interchip connections on multi-

chip modules, and coaxial cable connections are most

easily represented by frequency-dependent scattering

parameters. Since the scattering parameters may be

derived from measured data, detailed �nite-element

simulation, or analytic formulas, a general approach

to including transmission lines in circuit simulators is

to allow for frequency-dependent elements speci�ed by

tables of data.

The most straightforward approach to including

general frequency-domain transmission line models in

a circuit simulator is to calculate the associated im-

pulse response using an inverse fast Fourier trans-

form [1]. Then, the response of the line at any given

time can be determined by convolving the impulse

response with an excitation waveform. Such an ap-

proach is too computationally expensive for use in

general circuit simulation, as it requires that at every

simulator timestep, the impulse response be convolved

with the entire computed excitation waveform.

An alternative approach is to approximate the

frequency-domain representation with a rational func-

tion, in which case the associated convolution can be

accelerated using a recursive algorithm [2, 3]. Very

e�cient circuit simulation programs which handle

RLCG transmission lines have been developed using

such an approach, where the rational function approx-

imation was derived using Pad�e or moment-matching

methods [5, 3, 4].

In this paper we describe a multistage algorithm for

e�cient circuit simulation of transmission lines which

allows general frequency-domain scattering parame-

ter descriptions. First, a decade-by-decade `2 mini-

mization approach is used to construct a collection of

forced stable rational functions whose sum, after a �-

nal global `2 minimization, approximates the original

frequency-domain data. This algorithm is described in

the next section, and it is observed that the resulting
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approximation, though extremely accurate, can have

dozens of poles and zeros. Therefore, as described in

Section 4, a second step is performed. The unneces-

sarily high-order model is reduced using a guaranteed

stable scheme based on balanced realizations [6, 7].

Once the reduced-order model is derived, it can be

combined with the transmission line's inherent delay

to generate an impulse response. Then, followingwhat

is now a standard approach, the impulse response is ef-

�ciently incorporated into the circuit simulator spice

using recursive convolution. In Section 5, we present

results of the time-domain simulation of circuits con-

taining a transmission line with skin-e�ect.

2 Background

In general, a transmission line can be described in

the frequency domain using scattering parameters, in

which case

�
Y o(j!)V a(j!) + Ia(j!)

Y o(j!)V b(j!) + Ib(j!)

�
= (1)

�
0 S12(j!)

S12(j!) 0

� �
Y o(j!)V a(j!) � Ia(j!)

Y o(j!)V b(j!)� Ib(j!)

�

where V a(j!); Ia(j!) and V b(j!); Ib(j!) are the

voltages and currents at terminals a and b of the trans-

mission line, Y o(j!) is its characteristic admittance,

and S12(j!) is the relation between the incident and

re
ected waves on opposite ends of the transmission

line. Note, the reason for the unusual choice of Y o(j!)

instead of Zo(j!) = 1=Y o(j!) is that for a line with

no shunt loss, Zo(0) =1.

To incorporate such a general transmission line rep-

resentation in a circuit simulator, it is necessary to

compute the inverse Fourier transforms of S12(j!),

Y o(j!), and (Y oS12)(j!) so as to determine the im-

pulse responses S12(t);Y o(t), and (Y oS12)(t). Then

(1) becomes

Y o(t) ? V a(t) + Ia(t) =

(Y oS12)(t) ? V b(t) � S12(t) ? Ib(t)

Y o(t) ? V b(t) + Ib(t) =

(Y oS12)(t) ? V a(t) � S12(t) ? Ia(t)

where ? is used to denote convolution.

As mentioned in the introduction, if S12(t);Y o(t)

and (Y oS12)(t) are derived by applying the inverse

FFT to S12(j!), Y o(j!), and (Y oS12)(j!) respec-

tively, then the convolutions will be expensive to com-

pute. If, however, S12(j!), Y o(j!), and (Y oS12)(j!)

can be represented using rational function approxima-

tions, then the convolution can be performed much

faster, and deriving this rational functions is the sub-

ject of the subsequent sections. It should be noted

that any ideal delay in S12(j!) or (Y oS12)(j!) must

be cancelled before beginning a rational function �t-

ting. This is easily accomplished by multiplying by

the associated exponentials [3, 4].

3 Section-by-Section Approximations

The most commonly used approaches to �tting ra-

tional functions to frequency domain data are the

Pad�e or moment-matching methods. These meth-

ods compute the coe�cients of a rational function by

matching the function and its derivatives at s = 0

and s = 1. If the data available is a table of values

measured at certain frequencies, the Pad�e approach

will become less e�ective, as derivative information at

s = 0 or s = 1 may be obscured by measurement

noise in the table. Below, we take an approach which

deals more directly with the frequency-domain data.

3.1 Computing Global Approximants by

Weighted `2 Minimization

One approach to generating a rational function

which best matches a frequency response F (s) spec-

i�ed at a set of frequencies fs1; s2; � � � ; smg, is to set

up and solve, as accurately as possible, the following

set of equations:

H(sj) = F (sj) j = 1; 2; � � �;m (2)

where

H(s) =
U (s)

V (s)
=

uqs
q + � � �+ u1s + u0

vps
p + � � �+ v1s + 1

(3)

is the low-order approximation.

The system in (2) will typically be over-determined.

That is, the number of frequency points, m, will ex-

ceed the number of unknown coe�cients in the ap-

proximation, p+ q+ 1, and then (2) can not be satis-

�ed exactly. Instead, consider minimizing the 2-norm

of the error, in which case the coe�cients of the poly-

nomials U (s) and V (s) are chosen such that

kH(s) � F (s)k2 = k
U (s)

V (s)
� F (s)k2 (4)

is minimized for all s 2 fs1; s2; � � � ; smg. However,

this is a nonlinear optimization problem whose so-

lution is di�cult to compute. Instead, the problem
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can be made linear by weighting the 2-norm by V (s).

Then, the minimization problem becomes

min
U ;V

kU(sj) � V (sj)F (sj)k2 j = 1; � � � ;m: (5)

Minimizing this weighted 2-norm does not guaran-

tee that the resulting rational function will be accurate

at any particular frequency, and this is unacceptable

for use in circuit simulation. In order to insure that

the steady-state will be computed exactly, the `2 min-

imization must be constrained as follows:

8>><
>>:

U (0)

V (0)
= F (0)

min U ;V kU (sj) � V (sj)F (sj)k2 j = 1; � � � ;m

lims!1

U (s)

V (s)
= lims!1 F (s):

(6)

The above constrained `2-minimization procedure

can still produce poor results if the frequency range

is more than a few decades. One of the di�culties

is that the weighting introduced to generate the lin-

ear problem in (6) substantially favors high frequen-

cies. This results in a rational function approximant

which is very accurate at the high frequencies but in-

accurate in the low frequency range. A second di�-

cultly is that the minimization becomes ill-conditioned

if the frequency range is more than a few decades.

This is easily understood by examining the structure

of the matrix obtained from the minimization portion

of (6). Each row of this matrix corresponds to com-

puting U (sj) � V (sj)F (sj) at some frequency value

sj . Therefore, the entries along each row of the ma-

trix are powers of the corresponding frequency value.

This implies that if the span of frequencies is large,

then the magnitude of the entries on rows associated

with high frequencies will be much larger than those

in rows corresponding to low frequency values. Not

only may this cause over
ow in the computation, but

also results in an extremely ill-conditioned matrix.

3.2 Computing Section-by-Section Ap-

proximants

In order to avoid the numerical ill-conditioning and

the uneven frequency weighting, it is desirable to limit

the frequency range for the `2 minimization. The idea

of computing local approximations leads to a section-

ing algorithm in which only accurate local approxima-

tions are computed. The remaining problem is how to

incorporate all the local information resulting from the

various approximations into a global approximant.

d a

c b

Algorithm 1 (Section-by-Section Approx.)

Eliminate ideal delay.

Partition frequency range into

sections 
1; � � � ;
M with associated

frequencies fwi1; � � � ; wim

i

g,

i = 1; � � � ;M.

for (k = 1; k <= M; k ++) f

subtract previous approximants

F k(wk;j) = F (wk;j)�
P

k�1

l=1
H l(jwk;j)

Fit Hk(s) to F k(wi;j).

Delete unstable poles in Hk(s).

g

Our approach is to perform the local approxima-

tions in a repeated fashion. Initially, the frequency

range of interest, 
 = [wmin; wmax], is partitioned

into small sections, 
1;
2; � � � ;
M , such that 
 =SM

i=1

i, where each 
i is a decade or two long.

Then, starting with the lowest frequency range 
1,

with frequency values F (w11);F (w12); � � � ;F (w1m), a

constrained `2 minimization is performed and a local

approximant is computed. Once the �rst local ap-

proximation, ~H1(s), is obtained in the form of a col-

lection of poles and their corresponding residues, it is

examined and the stable poles are retained while the

unstable ones are discarded. This results in a forced

stable approximation, H1(s). Next, in the second

section 
2, the values F (w21) �H1(w21);F (w22) �

H1(w22); � � � ;F (w2m) �H1(w2m) are �t with H2(s),

using the constrained weighted `2 minimization. The

result of the second �t is an improved approximation,

H1(s)+H2(s) � F (s). The procedure is repeated un-

til data in the last frequency section, 
M , is approxi-

mated. A simpli�ed form of this sectioning algorithm

is shown in pseudo-code form as Algorithm 1.

It should be noted that this iterative section-

by-section algorithm computes approximations which

match successively higher frequency ranges. However,

when subtracting the already computed approxima-

tions from the exact data, some erroneous dynamics

may be introduced at lower frequencies. Therefore, a

�nal constrained global `2 minimization is performed

in which the computed poles are used and the residues

recalculated.
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4 Model-Order Reduction by Trun-

cated Balanced Realization

The frequency-domain data �tting method de-

scribed in the previous section generates a stable

transfer functionH(s), but generally the function will

have a large number of poles. Since the computational

cost of including transfer functions in circuit simu-

lation is proportional to the number of poles, these

transfer functions will be computationally expensive.

To improve the e�ciency, we use a model-order re-

duction approach which has three main steps. First,

a well-conditioned state-space realization of H(s) is

formed. Second, the state-space realization is bal-

anced. Third, the balanced realization is truncated.

Using this type of balanced realization approach has

a key advantage. The resulting simpli�ed Hr(s) is

guaranteed stable if H(s) is stable.

4.1 State-Space Realization

To reduce the order of the transmission line model

derived in the previous section, �rst we consider its

state-space representation

_x = Ax+Bu; x;B 2 Rn; u 2 R; A 2 Rn�n

y = Cx; y 2 R;C 2 Rn

(7)

such that H(s) = C(sI �A)�1B.

ConvertingH(s) in a pole-residual form to a state-

space form is a standard problem, and it is tempting to

use one of the common techniques (canonical control-

lability realization, canonical observability realization,

etc.) to �nd the matricesA;B, andC:However, these

approaches can result in a system matrix A which is

poorly scaled and therefore unsuitable for computa-

tions.

Instead, when all the poles are simple and real, the

matrix A can be chosen equal to a diagonal matrix

where the real poles are the diagonal coe�cients. The

control and observation matrices B and C can then

be chosen based on the residues of the poles. More

explicitly, given

H(s) =

nX
k=1

rk

s� pk
(8)

where all the poles are negative reals and all the

residues are real,

A = diag(p1; : : : ; pn)

B = (
p
jr1j; : : : ;

p
jrnj)

T

C = (sign(r1)
p
jr1j; : : : ; sign(rn)

p
jrnj)

When H(s) has pairs of complex conjugate poles,

a block diagonal matrix A can be constructed where

the blocks are all 2� 2 and correspond to pairing the

complex conjugate poles in state-space realizations of

order 2. It is also possible to �nd suitable state-space

realizations when some of the poles are repeated. For

transmission line examples there are only real, sim-

ple poles, and therefore the purely diagonal realization

can be used.

4.2 Balanced Realizations

Once the state-space representation is adopted, it

has to be internally balanced [6]. That is, given

H(s) = C(sI � A)�1B, the choice of the triplet

[A;B;C] is not unique. Indeed, a linear coordinate

transformation ~x = Tx modi�es the triplet [A;B;C]

to [ ~A; ~B; ~C] without modifyingH(s).

For the speci�c purpose of extracting stable

reduced-order models from the state-space representa-

tion, it is desirable that the new triplet [ ~A; ~B; ~C] be

in a form that allows such an extraction using some

simple operation on the new state ~x = Tx. The eas-

iest conceivable such operation would be simple state

truncation. Moore has shown [6] that such a transfor-

mation exists and he called the corresponding triplet

[ ~A; ~B; ~C] a balanced realization of the transfer func-

tion H(s). The word \balanced" refers to the fact

that the controllability and observability gramians of

the triplet [ ~A; ~B; ~C] are both equal to the same di-

agonal matrix. The balancing transformation T can

be computed explicitly for any triplet [A;B;C], and

in particular for the diagonal realization that we have

proposed in the previous paragraph. The numerical

cost of such a computation is that of solving two ma-

trix Lyapunov equations to obtain the controllability

and observability gramians, and one symmetric eigen-

value problem to diagonalize their product.

4.3 Truncated Realization

The triplet [ ~A; ~B; ~C] obtained by applying the bal-

ancing transformation T to the triplet [A;B;C] has

the property that simple reordering and truncation

of the state vector ~x with the corresponding reorder-

ing of the system matrices necessarily produce stable

reduced-order models at any desirable order. Let k

be this order, and let [ ~Ak;
~Bk;

~Ck] be the reduced-

order model with a transfer function Hk(s). It can

then be shown [6, 7] that the error transfer function
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Figure 1: Accuracy of the reduced-order model �t for

the magnitude of the S12 transfer function with re-

spect to the transmission line data points.

Ek(s) = H(s) �Hk(s) has an L1 norm which con-

sistently decreases to zero as k is increases. This L1
norm corresponds to the peak of the magnitude of

Ek(s). Note that Pad�e approximation methods [5] do

not enjoy such an error reduction property.

The above approach, combined with an a posteriori

least-squares/collocation technique to insure an exact

match at zero frequency, produces low order models

which are stable, have a small number of poles, and

match well at all frequencies. To show this, consider

the example of matching S12(j!) in a transmission

line where skin e�ects are signi�cant (Figure 1). In

this case, the section-by-section algorithm created a

21 pole approximation, but it was found that reduced

order model with seven poles accurately approximated

the transfer function. As Figure 1 shows, the match

between the reduced-order model and the transmission

line data is well within 1%.

5 Experimental Results

In this Section, we present results from an imple-

mentation of the above algorithm based on a mod-

i�ed version of spice3 [8]. We �rst show that the

reduced order model produces nearly the same time-

domain waveforms as the more complete sectioning

based model, but with many fewer poles. Second, we

show an example with realistic transistor drivers and

receivers, to demonstrate the ability of the method to

simulate complete circuit descriptions. Note, a com-

parison to the more commonly used FFT methods

input pulse                      
load voltage (7th order)         
load voltage (section-by-section)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
-6

-1

0

1

2

3

4

5

time

vo
lta

ge

Transmission Line Response with Resistive load

Figure 2: Time response obtained from applying a

pulse to a resistively terminated transmission line.

The �gure shows the response of a line modeled with a

7 pole reduced-order model and that of a line modeled

with the approximation resulting from our sectioning

algorithm, which has more than 20 poles.

S12, Yo

5pF8pF

Figure 3: CMOS driver and load connected by a trans-

mission line with skin-e�ect.

was not included, recursive convolution has previously

been shown to be both more accurate and much more

e�cient[3].

In Figure 2 we present the time-domain results of

applying a 5 volt step to a 50
 terminated transmis-

sion line with signi�cant skin-e�ect. In the �gure, we

compare the time response of the 7-th order reduced-

order model with the time response obtained using

the full sectioning based approximant, which has more

than twenty poles. The fact that the two responses are

indistinguishable in the �gure shows that an excellent

match has been obtained. And since the cost of re-

cursive convolution is proportional to the number of

poles in the reduced-order model, the 7-th order model

is nearly three times more e�cient.

In Figure 4 we present the time-domain results ob-

tained from the circuit in Figure 3, where the trans-

mission line is the one from the previous example. The

driver and the load are both CMOS inverters, where

the transistors are described using spice3's default

level 2 model with W=L = 750 for the p-type pullup

devices and W=L = 400 for the n-type pull-down de-

vices. The simulation results show clearly that the
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Response of Driver/Load transmission line connected pair

Figure 4: Time response obtained from a nonlin-

ear circuit with a transmission connecting driver and

load. The transmission line is modeled with a 7 pole

reduced-order model.

improper line termination causes re
ections to trans-

mit back and forth on the line and falsely trigger the

load inverter.

6 Conclusions and Acknowledgements

In this paper we presented a robust and e�cient

multistage algorithm for including general transmis-

sion lines, described by frequency-domain data, in a

circuit simulation program. The algorithm constructs

a rational function �t to the frequency-domain data

using a section-by-section least-squares �tting proce-

dure followed by model-order reduction based on bal-

anced realizations. Then, the resulting rational trans-

fer function can be incorporated in a circuit simulator

using recursive convolution. Numerical experiments

were presented for a transmission line problem with

skin-e�ects to show that frequency and time-domain

responses could be accurately computed.

It should be noted that the procedure described

above is quite general, and could be used to incor-

porate and frequency-dependent element in a circuit

simulator, not just transmission lines.
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