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Abstract

In [1], ii was shown that an equaiion formula-

tion based on mesh analysis can be combined with a

GMRES-style iterative matrix solution technique to

make a reasonably fast 3-D frequency dependent in-

ductance and resistance extraction algorithm. Unfor-

tunately, both the computation time and memory re-

quired for that approach grow faster than n2, where n

is the number of volume-filaments. In this paper, we

show that it is possible to use multipole-accele ration

to reduce both required memory and computation time

to nearly order n. Results from examples are given to

demonstrate that the multipole acceleration can reduce

required computation time and memory by more than

an order of magnitude for realistic packaging problems.

1 Introduction

In high performance VLSI integrated circuits and

integrated circuit packaging, there are many cases

where accurate estimates of the coupling inductances

of complicated three-dimensional structures are im-

portant for determining final circuit speeds or func-

tionality. The most obvious examples are the pin-

connect structures used in advanced packaging. For

the past decade, volume-element techniques have been

used to compute self and coupling inductances of com-

plex three dimensional geometries, but the techniques

were intended for geometries which could be repr~

aertted with at most a few hundred volume filaments.
However, the complex structures currently used in in-

tegrated circuit packaging can require up to ten thou-

sand filaments to be accurately analyzed. Existing

programs become extraordinarily computationally ex-

pensive for such large problems, and new algorithms

whose computational cost grows more slowly with

problem size must be developed.

In [1], it was shown that an equation formula-

tion based on mesh analysis can be combined with

a GMRES-based iterative matrix solution technique

to make a reasonably fast 3-D frequency dependent

inductance and resistance extraction algorithm. Un-

fortunately, both the computation time and memory

required for the approach described in [1] grow faster

than n2, where n is the number of volume-filaments.

In order to analyze very complicated structures, an

algorithm whose complexity grows more slowly with

problem size must be derived. In this paper, we show

that it is possible to use multipole-acceleration to re-

duce both required memory and computation time

to nearly order n. We start in the next section by

reviewing the mesh formulation and iterative matrix

solution approach from [1]. In Section 3, we show

that the matrix-vector product required in the iter-

ative algorithm can be reinterpreted as a sequence of

electrostatic potential evaluations, and briefly describe

how the multipole algorithm can be used to accelerate

those potential evaluations. Results from our imple-

mentation in FASTHENRY are given in Section 4, and

they show that for an example package, multipole-

acceleration reduces memory and computation time

by more than an order of magnitude. Finally, we give

our conclusions and acknowledgements.

2 The Mesh-based Formulation

One approach to computing the frequency depen-

dent inductance and resistance matrix associated with

the terminal behavior of a collection of conductors in-
volves first approximating each conductor with a set of

piecewise-straight conducting sections. The volume of

each straight section is then discretized into a collec-

tion of parallel thin filaments through which current

is assumed to flow uniformly. The interconnection of

these current filaments can be represented with a pla-

nar graph, where the n nodes in the graph are asao-
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ciated with connection points between conductor seg-

ments, and the b branchea in the graph represent the

current filaments into which each conductor segment

is discretized (See Fig. 1).

To derive a system of equations from which the re-

sistance and inductance matrix, Zr, can be deduced,

we start by assuming the applied currents and volt-

ages are sinusoidal, and that the system is in sinu-

soidal steady-state. Following the partial inductance

approach in [2, 3], the branch current phasors can be

related to branch voltage phasors (hereafter, phasors

will be assumed and not restated) by

ZIb = vb , (1)

where Vi, Ib 6 C*, b is the number of branches (num-

ber of current filaments), and Z c C’bxb is the complex

impedance matrix given by

Z= R+jwL, (2)

where u is excitation frequency. The entries of the

diagonal matrix R 6 %bxb represent the dc resistance

of each current filament, and L 6 !Rbx b is the dense

matrix of partial inductances [4]. Specifically,

.,
where Xi, Xj E ~ are the positions in filament i and
j respectively, Ii, lj c ~ are the unit vectors in the

direction of current flow in filaments i and j, ai, aj

are the cross sectional areas of filaments i and j, and

t d i, fil j represent the volumes of filaments i and j.

Now assume that sources attached to the conduc-

tor system’s terminals generate explicit branches in

the graph representing the discretized problem. Kir-

choff’s voltage law, which implies that the sum of

branch voltages around each mesh (a mesh is any loop

of branches in the graph which does not enclose any

other branches) in the network is represented by

MV* = Vs (4)

where vb is the vector of voltages across each branch,

V, G W is the mostly zero vector of source branch
voltages, and M c !Rmxb is the mesh matrix. Here,
m=b — s + c, where s is the number of conductor

sections and c is the number of conductors. The M

matrix haz the property that most of its columns (m—c

of them) have no more than two nonzero entries, a plus

one and minus one.
The mesh currents, that is the currents around each

mesh loop, satisfy

M:Im = Ib, (5)

Algorithm 1 (GMRES Alg. for Ax= b)

guess X“

fork =O,l,... until converged {

compute the error, rk = b – Axk

Find Xk+l to minimize rk+l
based on xi and ri, i= O,. ... k

1}

where the superscript t denotea matrix transpose, and

1~ E ?Rm is the vector of mesh currents. Note that

one of the entries in the mesh current vector will be

identically equal to the source branch current, shown

as ~m.so. . . . in Fig. 1. Combining (5) with (4) and (1)
yields

MZMtIm = V,. (6)

The complex admittance matrix which describes

the terminal behavior of the conductor system, de-

noted Y~ = ZJl, can by derived from (6) by noting

that

f. =Y,v,, (7)

where j~ and ~s are the vectors of terminal source

currents and voltages. Therefore, to compute the ith

column of Yr, solve (6) with a V$ whose only nonzero

entry corresponds to 13,, and then extract the entries

of Im associated with the source branches.

The standard approach to solving the complex lin-

ear system in (6) is Gaussian elimination, but the cost

is m3 operations. For this reason, inductance extrac-

tion of packages requiring more than a few thousand

filaments is considered computationally intractable.

To improve the situation, consider using a conjugate-

residual style iterative method like GMRES [5]. Such

methods have the general form given in Algorithm 1.

The GMRES algorithm can be applied to solving

(6); however, the cost of each iteration of the GMRES
algorithm is at least order m2 operations. This follows

from the fact that evaluating rk implies computing a

matrix-vector product, where in this case the matrix is

MZMt and is dense. Note also that forming MZMt

explicitly requires order m2 storage.

3 The Multipole Approach

It is possible to approximately compute MZMtl&

in order b operations using a hierarchical multipole
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F@re 1: One conductor, (a) as piecewise-straight sections, (b) discretized into filaments, (c) modelled as a

circuit.

algorithm [6]. Such algorithms also avoid explicitly

forming MZM*, and so reduce the memory required

to order b. To show how a multipole algorithm can be

applied to computing MZMt I:, consider expanding

the matrix-vector product using (2),

MZMf I; = MRMtI& + jwMLMt I~. (8)

The MRMtI~ term can be computed in order m

operations because R is the diagonal matrix derived

from the filament resistances, and M is the sparse

mesh matrix with order m nonzero elements. Form-

ing MLMt I; is more expensive, requiring order m2

operations as L is dense. By separating LMtI&, or

equivalently LIb, from the product, and by using the

definition in (3), it is easily shown that LIb can be

written in terms of the vector potential, A c C3, which

is given by

“th element in the LIb vector is theSpecifically, the z
average over the filament cross section of the integral

of the vector potential along filament i,

(L~b)i = ~ ~i,amenti A(Xi) . /i(Xi)d3~i. (10)

680

This decomposition makes clear that LIb can be eval-

uated by integrating the vector potential A over each

filament. Also, from (9), each component of the vec-

tor potential can be identified precisely with a scalar

electrostatic potential due to a collection of filament

charges. That is, for k E {1, 2, 3}, the kt~ component

of A(X), denoted @k(X) G C’, is a scalar potential

given by

~EJ (zj(xj))~ d3~j, (11)#k(x) = ~
j aj fi?.m.tltj lx -‘j I

and therefore (~bj /aj ) lj (Xj )~ can be interpreted ss a

charge density.

In summary, Llb can be computed by combining
the results of evaluating the electrostatic potential

along b filaments due to b filament charges for three

separate sets of filament charges. It is the evaluation

of these electrostatic potentials which can be accel-

erated with the hierarchical multipole algorithm [6].

That is, the electrostatic potential due to b charges

can be evaluated at b points in order b operations us-

ing the hierarchical multipole algorithm. This implies

that by using the algorithm three times, Llb can be

computed in order b operations.
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Figure 2: The evaluation point potentials are approx-

imated with a multipole expansion.

3.1 The Hierarchical Multipole Algo-
rit hm

A complete description of the fast multipole algo-
rithm is quite lengthy, and can be found in [6], or in

the context of 3-D capacitance extraction, in [7, 8].

To see roughly what the algorithm exploits to achieve

its efficiency consider the two configurations given in

Figs. 2 and 3, depicted in 2-D for simplicity. In either

figure, the obvious approach to determining the elec-

trostatic potential at the nl evaluation points from

the nz point-charges involves nl * ra2 operations; at

each of the nl evaluation points one simply sums the

contribution to the potential from n2 charges.

An accurate approximation for the potentials for

the case of Fig. 2 can be computed in many fewer op-

erations using multipole expansions, which exploit the

fact that r >> R (defined in Fig. 2). That is, the

details of the distribution of the charges in the inner

circle of radius R in Fig. 2 do not strongly affect the

potentials at the evaluation points outside the outer

circle of radius r. It is also possible to compute an

accurate approximation for the potentials at the eval-

uation points in the inner circle of Fig. 3 in many fewer

than nl * n2 operations using local expansions, which

again exploit the fact that r >> R (as in Fig. 3). In

this second case, what can be ignored is the details of
the evaluation point distribution.

This brief description of the hierarchical multipole

algorithm is only intended to make clear that the al-

gorithm’s efficiency stems from coalescing charges and
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Figure 3: The evaluation point potentials are approx-

imated with a local expansion.

evaluation points using multipole and local expan-

sions. A few points about the algorithm’s applica-

tion to computing L& should be considered however.

When filaments are very near each other, a multipole

expansion representation would lead to excessive er-

ror, so the interaction is evaluated directly using (3).

Direct evaluations are also used for small groups of dis-

tant filaments when the computation required to build

the multipole and local expansions exceeds the direct

evaluation cost, thus making the algorithm adaptive.

Therefore, when the hierarchical multipole algorithm

is used to compute LIb, the evaluation is typically a

combination of three sets of multipole and local ex-

pansion evaluations, along with a single set of nearby-

filament direct evaluations.

3.2 Accelerating Iteration Convergence

In general, the GMRES iterative method applied

to solving (6) can be significantly accelerated by pre-

conditioning if there is an easily computed good ap-

proximation to the inverse of MZMt. We denote the

approximation to (M ZM:)- 1 by P, in which case pre-

conditioning the GMRES algorithm is equivalent to

using GMRES to solve

(MZM’)PZ = ~ (12)

for the unknown vector x. The mesh currents are then

computed with Im = Px. Clearly, if P is precisely
(MZM’)-l, then (12) is trivial to solve, but then P

will be very expensive to compute.
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Figure 4: Comparison of the CPU time (IBM

RS6000/540) to compute the reduced inductance mw

trix with and without a preconditioned.

A good approximation to (TfZA4~)- 1 that is eas-

ily computed can be derived by exploiting the fact

that the part of MZMt corresponding to nearby, and

therefore tightly coupled, meshes is computed explic-

itly. For each mesh i, the submatrix of MZMt corre-

sponding to all meshes near mesh i is inverted directly.

Then, the row of the inverted submatrix associated

with mesh i becomes the dh row of P. That this

preconditioned is effective is demonstrated in figure 4,

which compares the CPU time required to compute

the reduced inductance matrix with and without the

preconditioned for the example in the next section.

4 Results

In this section we demonstrate the accuracy and

computational efficiency of our multipole-accelerated

version of FASTHENRY. We consider a typical indus-

trial example, part of a 68-pin package, shown in Fig-

ure 5. Each pin consists of eight to ten conductor

sections. For an accuracy comparison, we discretized

each section into 2 x 2 filaments. This generated a

problem with 1368 branches for which MZMt is a

1061 x 1061 dense matrix. Note, using only four fil-

aments per section is hardly sufficient to model the

skin effect, though the coarse discretization does cre-

ate a problem which is small enough to make possible

an accuracy comparison between direct factorization,

GMRES, and multipol~accelerated GMRES.

For the example package, the mutual inductance

between pins 1 and 2 (labeled clockwise from the right)

is much larger than the mutual inductance between

Figure 5: Half of a pin-connect structure. Thirty-five

pins shown.

pin pair direct gmrea multipole

lto2 5.31870e+O0 5.31867e+O0 5.31403e+O0

1 to 18 3.68292e-02 3.68223*O2 3.71027e-02

Table 1: Comparison of the accuracy of the com-

puted inductance matrix entries between direct factor-

ization, GMRES with explicit matrix-vector products,

and the multipole-accelerated GMRES algorithm.

pins 1 and 18 which are perpendicular to each other

except for their vertical sections. To show that the

approximations used by the hierarchical multipole al-

gorithm are sufficiently well-controlled to make it pos-

sible to accurately compute the small coupling induc-

tances, consider the results in Table 1. The mutual

inductance between pins 1 and 18 is more than two or-

ders of magnitude smaller than the mutual inductance

between pins 1 and 2, yet the solution computed using

the multipole-accelerated algorithm is still within one

percent of the solution computed using direct factor-

ization.

To accurately model skin and proximity effects,

each conductor section in the pin-connect structure

should be divided into many more than 2 x 2 fil~

ments. As the discretization is refined, the size of

the problem will grow quickly, making the memory
and CPU time advantage of the multipole-accelerated

GMRES algorithm apparent (see figures 6 and 7). As
the graphs clearly indicate, the cost of direct factoriza-

tion grows like rn3, the cost of explicit GMRES grows

as m2, but the cost of multipole-accelerated GMRES

grows only linearly with m. In addition, the memory

requirement for multipole-accelerated GM RES algo-

rithm grows linearly with m, but grows like m2 for

either explicit GMRES or direct factorization. In par-

ticular, for a 10,000 filament problem, the multipole
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Figure 6: Comparison of the CPU time (IBM

RS6000/540) to compute the reduced inductance ma-

trix using direct factorization, GMRES, and GMRES

with with multipole acceleration.

accelerated algorithm is two orders of magnitude faster

than direct factorization, and uses an order of magni-

tude leas time and memory than explicit GMRES.
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explicit matrix-vector products and using the multi-
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