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Abstract

We address the problem of estimating the average
power dissipated in VLSI combinational and sequen-
tial circuits, under random input sequences. Switch-
ing activity is strongly affected by gate delays and for
this resson we use a general delay model in estimating
switching activity. Our method takes into account cor-
relation caused at internal gates in the circuit due to
reconvergence of input signals. In sequential circuits,
the input sequence applied to the combinational por-
tion of the circuit is highly correlated because some of
the inputs to the combinational logic are flip-flop out-
puts representing the state of the circuit. We present
methods to probabilistically estimate switching activ-
ity in sequential circuits. These methods automati-
cally compute the switching rates and correlations be-
tween flip-flop outputs.

1 Introduction

We address the problem of estimating the aver-
age power dissipated in combinational and sequential
VLSI circuits given random input sequences. This
measure can be used to make architectural or design-
style decisions during the VLSI synthesis process.

Probabilistic methods for power or current estima-
tion are attractive because statistical estimates can
be obtained without recourse to time-consuming ex-
haustive simulation. In the ast, robabilistic peak

~ , ~5]) that computecurrent estimation methods e g
probabilistic current waveforms for combinational cir-
cuits have been developed. Estimation of worst-case

J
power dissipation (e.g., [10 , [7]) is a difficult prob-
lem requiring a branch-an -bound search and these
methods have been applied to small to moderate sized
circuits.

The problem of estimating average power in combi-
national circuits can be reduced to one of computing
signal probabilities [1] of a multilevel circuit derived
from the original circuit by a process of symbolic sim-
ulation. The work closest to our own is the work on
transition density calculation by Najm (11 . ‘llansi-

Ation densities correspond to average swltc ing rates
for gates in the circuit. In [11], an interconnection of
combinational logic modules, each with, ? certain de-
lay, makes up a cmcuit. Transition densltles are prop-
agated through combinational logic modules without
regard to their structure. Correlations between inter-

nal lines due to reconvergence are ignored during prop-
agation. It is possible to take into account correlations
by lumping all the modules into one large module, but
in this case the information regardin the delay of the

findividual modules is lost. Cirit in 8] gives methods
to calculate dynamic power dissipation based on ap-
proximate signal probability evaluation procedures.

Our work improves upon the state-of-theart in sev-
eral ways. We use a general delay model for combina-
tional logic in our symbolic simulation method, which
correctly computes the Boolean conditions that cause
glitching (multiple transitions at a gate) in the circuit.
In some cases, glitching may account for a significant
percentage of the dissipated power or switching activ-
ity. Symbolic simulation produces a set of Boolean
functions that represent the conditions for switching
at different time points, for each gate in the circuit.
Given input switching rates, we can use various ex-
act or approximate methods to compute the proba-
bility of each gate switching at any particular time
point. We then sum these probabilities over all the
gates to obtain the expected switching activity in the
entire circuit over all the time points corresponding
to a clock cycle. Our method takes into account cor-
relation caused at internal gatea in the circuit due to
reconvergence of input signals (reconvergent fanout ).

Most VLSI circuits are sequential. We make an
important extension to our estimation algorithms to
handle sequential circuits. The combinational part of
the circuit receives primary inputs as well aa inputs
from flip-flop outputs. Given the pin restrictions on
VLSI chips, the number of flip-flops in large sequen-
tial circuits can be many times the number of primary
inputs. Previous methods for power estimation as-
sume uniform switching rates for all the inputs to the
combinational logic or expect that switching rates are
pre-computed using methods like random simulation.
Further, the correlation 1 between the flip-flop outputs
between one time frame and the next is ignored. Using
inaccurate switching rates and ignoring this correla-
tion can cause substantial errors in power estimation,
especially for datapath circuits. We develop a method
that automatically computes the swiiching rates for
each of the flip-flop inputs, taking into account this
correlation beiween the flip-jlops.

I For ~x=ple, fipflop A may ody switch from o ~ 1 when

Sip-flop B switches from 1 + O.
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2 Preliminaries

2.1 A Power Dissipation Model

The amount of energy dissipated by a CMOS logic
gate each time its output changes is roughly equal to
the change in energy stored in the gate’s output ca-
pacitance. If the gate is part of a synchronous digital
system controlled by a global clock, it follows that the
average power dissipated by the gate is given by:

..9 = 0.5x CIOa~ x (V&/TCvC) x -E(transitions) (1)P

where PaV~ denotes the average power, Cload is the

load capacitance, vdd is the supply Voltage, T~y~ 1s

the global clock period, and 13(transitions) is the ez-

pect ed value of the number of gate output transitions
per global clock cycle[l 1], or equivalently the aver-
age number of gate output transitions per clock cy-
cle. All of the parameters in (1) can be determined
from technolo y or circuit layout information except

!E(transitions , which depends on both the logic func-

tion being performed and the statistical properties of
the primary inputs.

2.2 Static Probabilities

Consider the case of dynamic CMOS logic (e.g.
Domino). At the beginning of each clock cycle, all
the gates are precharged, and gates make transitions
only if their associated Boolean functions are satisfied.
For example, a three-input AND-OR gate’s Boolean
function might be

(i~ . iz) V (iz . is), (2)

where il, i2, and i3 are primary inputs. In this case,
the expected value of the number of transitions at this
gate’s output is

E(transitions) = 2 x P((il . iz) V (i2 . is) = 1) (3)

where P(x) is defined as probability y that z is true,

and the factor of two in the equation accounts for the
reset transition during precharge.

To evaluate (3), it is necessary to determine the
primary input probabilities. We assume that primary
inptds are uncorrelated, and that each is a waveform
in time whose value is either zero or one, changing

instantaneously at global clock edges. Assuming er-
godicity without further comment, the probability of
a particular input ii being one at a given point in time,

denoted pj ‘n e, is given by

Zi)’=l‘j(k)
Pj ““e = lim ~

N+ca
(4)

where N is the total number of global clock cycles
and i (k) is the value of input ij during clo:k cycle. k.
Clear~y, the probability that ij M mm at a gmn point

in time, denoted pj ‘ero is

Pj
zero

= 1 ‘Pj””e

We refer to pjzer” and pj “n’ as static probabilities.
Note that

P((i~ . iz) V (i2 . i3) = 1) # p;”epy’ + py’p:”’

because the first and second product terms are not
independent. Rather,

P((il . i~) V (iz . i3) = 1)=

where the second equality holds because il . i2 is dis-

joint from fi. i2 .i3. In this example, (il .i2)V(fi-i2 .i3)
represents a disjoint cover for the logic function, and

the terms il . i2 and ~ . iz . i3 are referred to aa
cubes in the cover[2]. The equivalent logical expres-

sion ~1 ~ ) ,(iz V iz . i3), does not represent a disjoint
cover ecause al . i2. is is contained in both cubes il . i2

and i2 . i3.
In general, given a disjoint cover for a Boolean func-

tion of uncorrelated inputs described by static proba-

bilities, it is easy to d~termine the pr~bability-of the

function evaluating to a 1. The procedure is given
in the following two theorems whose roof follows di-

rrectly from elementary probability [12 .

Theorem 2.1 : Given any disjoint cover for a
Boolean function, the probability of the function eval-
uating to a 1 is equal to the sum of the probabilities of

each of the cubes in the cover evaluating to a 1.

Theorem 2.2 : Given a logical function of uncorre-
lated inputs in the form

where the i~j’s are nonnegated inputs and the ~‘s are

negated inputs, ihen

2.3 Transition Probabilities

For static combinational CMOS logic, a gate output
can only change when its inputs change, and then only
if the Boolean function describing the gate evaluates
differently. For example, a 2-input AND gate’s output
will change between clock cycle t and t+ 1 if

(ii(t)” ~2(t)] @ (~I(t + 1) - ~2(t + 1)) (5)

evaluates to 1, where ii(t), i2(t) and il(t + 1), iz(t+ 1)
are the inputs to the gate at clock c cle t and t+ 1

Trespectively. The disjoint cover for (5 is

(i~(t).i~(t)).( i~(t + l))V(i~(t).iz(t) ).(i~(t+l).iz(t + l))V

il(t).(il(t+l). iz(t+l)).V(il (t).iz(t))(il (t+l).iz(t+l ).

( 6)
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It is not possible to use Theorem (2.2) to evaluate
the probability of (6), because an input at time t+ 1 is

\
correlated to its behavior at time t as in a sequential
circuit). Instead, transition probabi ities for the tran-
sitions O ~0, O ~ 1, 1 ~0 and 1 e 1 must be used.
We denote these transition probabilities by pioo, piO1,
pi 10, and pi 11, respective y, where for example pi 10 is
defined by:

10 = Iim
~fl=~ ‘ij(k)ij(k + 1)

Pj
N-co N

(7)

The other transition probabilities follow similarly.
Static probabilities can be computed from transi-

tion probabilities, but not vice-versa, because of cor-
relation between one time frame and the next. So in
general it is necessary to specify transition probabil-
ities. The relations between static probabilities and
transition probabilities follow directly from the defini-
tions in (4) and (7), specifically,

Pj
zero = Pj 00 + pjO1 (8)

Pj “n’ = Pjll + Pj10

Both static and transition probabilities are used to
compute E(trandions) for static logic circuits, as can
be seen from the expression for the probability that (6)
evaluates to a 1,

P;” “ Zgne +P;l “P;”+ P:l . p:ne +pp -py (9)

which for this example is also E(transitions). For all
primary inputs, it may be assumed that successive in-
put vectors are uncorrelated and a 1 or a O are equally
likely. Therefore, all transition probabilities may be
be assumed to be 0.25, and all static probabilities to
be 0.5,

2.4 General Combinational Networks

The algorithm for computing the average power dissi-
pated in a dynamic CMOS combinational network fol-
lows directly from the approach in Section (2.2 . That

t!is, for each gate gi in a logical network, we rst de-
termine the Boolean function of the gate, fi, in terms
of the network’s primary inputs. Then we find a dis-
joint cover for fi, and use Theorem (2.1) and (2.2) to
evaluate P(fi = 1).

The average power dissipation for the network is
then

P avg = (v]d/~cyc) x ~ Ci x ~(~ranS~t~O~S Of gi)

= (V&/7’q~) X ~ Ci X P(fi = 1) (lo)

where C’i is the load capacitance of the ith gate and
the summation is over all gates in the circuit. Note
that (10) follows from the fact that the average value

of a sum is equal to the sum of the average values,
regardless of correlation [12].

il

i2
out

Figure 1: Glitching in a Static CMOS Circuit

A similar overall approach can be used to compute
the avera e power dissipated in a static CMOS com-

fbinationa network. However, as described in Section
(2.3), a two-vector input sequence is required to stim-
ulate activity in static gates. Therefore, the Boolean
function for static gate output activity is different than
that for a dynamic gate, and the probability of the
function being satisfied requires transition probabili-
ties for evaluation. In particular, assuming negligible
gate delays, a static CMOS combinational logic gate’s
output will switch with a change in the primary input
vector from VO to Vt ifi

fi = ((~i(vo) = 0) A (hi(vt) = 1)) ~

((hi(VO) = 1) A (hi(Vi!) = O)) (11)

is satisfied, where hi is the logic function correspond-
ing to gate gi’S Output.

The average power dissipated in the static network
is then computed by using (10), with fi being given by
(11 , and P(fi

J )
= 1 is evaluated using both transition

an static probabi itiest as described in Section (2.3).
Instead of enumeratm disjoint covers, Binary De-

fcision Diagrams (BDDs) 3] can be used for the calcu-
lation of signal probability. It has been shown in [6]
and [11] that exact signal probability calculation for a
given function can be performed by a linear traversal
of a BDD representation of a logic function. We have
implemented methods for signal probability calcula-
tion using BDDs.

3 Gate Delay Effects

As mentioned above, for static CMOS circuits, switch-
ing activity must be analyzed based on considering an
input vector pair, denoted < VO, Vt >. If the gates
have appreciable delays, there may be output glitches
that can contribute significantly to dissipated power.

For instance, consider the circuit of Figure 1. As-
suming that the delays of the inverter and the AND gate
are both 1 time unit, if we apply the vector il = O,
is = O, followed by il = 1, i2 = 1, we will obtain
a glitch at the output out, which could cause power
dissipation. Below, we present a symbolic simulation
method that can be used to generate a multiple-output
function that represents total switching activity over
any possible input vector pair, assuming a general de-
lay model for the gates in the circuit.

3.1 Symbolic Simulation

3.1.1 An Example

Consider the multilevel combinational circuit shown
in Figure 2.
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Figure 2: A multilevel combinational circuit

+======
i2 x
i3 x
i4 x

el,l
cl x
e2

e3

d
, , 1 , , m m , , 1 m Nonndkd

0’1’2’3’ 4’5’6’7’8’9’10’ T-

Figure 3: Signal waveforms for the primary inputs and
the outputs of the logic gates

It hss four primary inputs and one output and con-
sists of four CMOS gates. Figure 3 shows the signal
transitions at the primary input nodes as well as the
possible transitions at the internal nodes of the net-
work. The time points are in normalized units. The
first three inputs, il, iz, and is, switch simultaneously
between time periods O and 1. The fourth input, ie, is
a late arriving signal that switches between the time
points 5 and 6. In this example, the delays of both
Gate 1 and Gate 3 are one time unit. Gate 2 has a
delay of two units while Gate 4 has a delay of four
units.

Also shown in Figure 3 are the waveforms, e~‘s, rep-
resenting the signals at the outputs of ith logic gates.
Each of the possible transitions, ei,j, represents either
a low-to-high or high-t-low signal transition between

~l’hand~+ l]’h time points. The number of all pOS-
slble transitions at a gate output may equal the sum
of all possible transitions at the gate inputs. These
transitions are delayed by the gate’s propagation de
lay.

3.1.2 Unit-Delay Model

Even under the idealization of a unit-delay model, the
gate output nodes of a multilevel network can have
multiple transitions in response to a tw-vector input
sequence. In fact, it is possible for a gate output to
have as many transitions as levels in the network.

We construct the Boolean functions describing the
gate outputs at the discrete points in time implied

by the unit-delay model. That is, we consider only
discrete times t, t + 1, . . . . t +/, where t is the time
when the inputs change from VO to Vt, and 1 is the
number of levels in the network. For each gate output
i, we use symbolic simulation to construct the 1 + 1
Boolean functions f“(t +j), j c O, .... 1which evaluate
to 1 if the gate’s output is 1 at time t+j. Note that as
we assume no gate has zero delay and that the network
has settled before the inputs are changed from VO to
Vt, /i(t) is the logic function performed for VO at the

ith gate output. Finally, we can determine whether a
transition occurs at a boundary between discrete time
intervals t +j and t +j+ 1 by exclusive-OR’ing fi(~+j)

with ~i(t+j + 1).

3.1.3 General Delay Model

A gate with a large fanin may have several times the
delay of an inverter. If one uses normalized time units,
one can always introduce unit-delay buffers at the out-
put of gates in a circuit, which have a delay greater
than unity, in order to model differing delays among
logic gates.

Further, all gates have inertial delays, i.e., all gates
require energy to switch their output nodes. For a
transition at an input terminal to propagate through
the gate, the state of the input signal before and after
the transition must persist for a minimum duration
equal to the delay of the gate. Any high frequency
pulse at the inputs whose pulse duration is shorter
than the gate delay (or some fraction of the gate delay)
will be filtered out.

Our general symbolic simulator is able to simulate
circuits with arbitrary gate transport and inertial de-
lays (without introducing any unit delay buffers in the
circuit). The simulator processes one gate at a time,
movin from the primary inputs to the primary out-

!puts o the circuit. For each gate, the possible transi-
tion times of its inputs are first obtained. Then, PW
sible transitions at the output of the gate is derived,
taking into account transport and inertial delays. If
the inertial delay of a gate is non-zero, then all inputs
to the gate must remain the same for a period equal
to the inertial delay (or a fraction of it) for the output
of the gate to make a transition.

4

4.1

Sequential Circuits

Introduction and Motivation

VLSI circuits are sequential, i.e., they contain mem-
ory elements or flip-flops. This sequential nature of
VLSI circuits makes the estimation of power dissipa-
tion more complicated than for combinational circuits.

A common model for a sequential circuit is shown
in Figure 4. We will denote the vector pair applied
to the combinational logic as < VO, Vt >. VO and
Vt have a primary input part and a present-state part.
VO is denoted IO@PO and Vt is denoted It @Pt, where

IO and It correspond to the primary input parts, and
PO and Pt correspond to the present-state parts.

Paper 15.4
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Figure4: AGeneral Synchronous Sequential Circuit
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Figure5: A8-State Counter

One can ignore the feedback corresponding to the
next-state lines and present-state lines, and estimate
the power dissipated by the combinational logic using
the methods presented in the previous sections. This
strategy is a relatively crude approximation for two
reasons as we will illustrate with a simple example.

Consider the STG of Figure 5(b). It represents
the behavior of an 8-state autonomous counter, whose
logic implementation is shown in Figure 5(a). Assum-
ing that the counter can begin from any state with
uniform probability, the probability of line PS2 mak-
ing a 1 + O transition is 0.125, and probabilities for
O + 1, 0 + O and 1 + O transitions are 0.125, 0.375
and 0.375, respectively. On the other hand, the proba-
bility of the line PSO making a 1 + O transition is 0.5,
and the probabilities for a O + 1, 0 + O and 1 + 1 are
0.5,0, and O, respectively. The transition probabilities
for the different present-state lines are different.

To make matters worse, the transitions on one
present-state line are correlated to the transitions on
the other present-state lines. For instance, in Figure
5> it is easy to see that PS2 makes a O ~ 1 transi-
tion only when PSO makes a 1 + O transition, Simply
computing the correct switchin rates does not nec-

tessarily result in exact power issipation estimation
if we ignore this correlation of the transitions. Note
however, that in this example, the present-state lines
are uncorrelated, i.e., given the static probability of
each present-state line, the probability of a particular
state can be computed correctly.

Itl .

It. +
t--

t I I

1[ i

1’ -i

Symbolic

Simulation

Equations

Figure 6: Taking Correlation Into Account

4.2 Power Estimation Method

We will assume that the circuit, upon power-up, can
begin in any of the 2“ states, where n is the number
of flip-flops. Further, we assume that the STG of the
machine is strongly connected, and that an arbitrary
number of cycles after power-up, the probability that
the machine is in any of its 2n states is uniform.

Consider the circuit of Figure 6. It has two blocks:
the first is the combinational logic implementing the
next-state function of the given machine, and is used
to derive the next state from the present state. The
first block feeds a second block, which represents the
Boolean function obtained by symbolic simulation of
the combinational logic of the machine.

The decomposition of Figure 6 implies that the gate
output switching activity can be determined given the
vector pair <10, It > for the primary inputs, but only
PO for the states. Therefore, to compute gate out-
put transition probabilities, we require the transition
probabilities for the primary inputs, but only require
the static probabilities for the present state. This use
of the next-state logic generates Boolean equations
which model the correlation between the present and
the next states, whereby the transition probabilities
are automatically computed, taking into account the
correlation between transitions. However, to use the
average power estimation techniques described in Sec-
tion 2, we must assume that the present-state lines are
uncorrelated. We discuss the validity of this assump-
tion in the next section.

4.3 STG Characteristics

The state bits in a synchronous sequential circuit are
uncorrelated if the machine is equally likely to be in
any of its 2* states an arbitrary number of cycles af-
ter power-up (in which case the static probability of
each present-state line is 0.5). There are many reasons
why this might not be true. In particular if the en-
tire state space is not strongly connected, the machine
might operate only in a strongly connected portion of
the state space. In general, after an arbitrarily long
period of time, the machine will be in a strongly con-
nected portion of its STG, which might contain just
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a single state. If the assumption above is not valid,
then static probability of 0.5 cannot be aaaumed for
the present-state lines. Moreover, because of the cor-
relation between the present-state lines, the power es-
timate obtained is approximate.

Given a set of statea in a strongly connected portion
of the STG in which the machine can be, the probabil-
ity of being in any particular state within the set is not
necessarily uniform. In particular, it might depend on
the in-degree 2 of a state. States with a large in-degree
may have greater probabilities of being entered. The
exact probabilities of being in particular states can be
derived from the Chapman-Kolmogorov equations for
discrete-time Markov Chains [12]. However, the num-
ber of equations will be exponential in the number of
latches and inputs in the circuit, and therefore cannot
be solved for most practical circuits.

In practice, large datapath circuits satisfy the as-
sumptions because of their highly connected STGS
that include almost all of 2“ statea, and states with
similar in-degrees. Thus, the assumption made re-
garding the structure of the STG is quite realistic for
such circuits. However, controllers mi ht violate these

fassumptions. In that case, because o the correlation
between present-state linea, we will only be able to ob-
tain an approximate power estimate. We can increase
the accuracy of the power estimate by calculating the
static probabilities of the present-state lines more ac-
curately. Techniques to compute the reachable set of
states, or the strongly connected portion of the STG
of a sequential machine, can be developed, based on
the strategies of [9, 4]. These techniques are viable
for machines with up to approximately 50 flip-flops.
Thereafter, the static probability of each present-state
line can be calculated. For example, if a machine haa
states 00, 01, and 10, and it is in these states with
proabilitles 0.1, 0.5, 0.4, respectively, then the proba-
bility of the first present-state line being 1 is 0.4 and
that of the second is 0.5. Finally, during signal prob-
ability calculation, we have to exclude the set of un-
reachable states. This is performed by computing the
logical AND of the BDD representing the set of reach-
able states with the BDD representing the switching
function.

5 Experimental Results

Throughout this section , we will be measuring the
average power dissipation of the circuit by using (1)
summed over all the gatea in the circuit. The ~G val-
ues are computed for the gates in the circuit under
different delay models. The capacitance values of the
gates are assumed to be given, or can be computed
using the fanin and fanout numbers and the size (in
terms of the number of transistors) for each gate, or
can be obtained after mapping.

The statistics of the examples used are shown in
Table 1. All of the examples except the last two belong
to the ISCAS-89 Sequential Benchmark set. Example
add16 is a 16-bit adder and accumulator, where the

2 The ~mber of edges in the STG that enter this state.

11nputs lo Utputs IL atches Gates 0

Table 1: Statistics of examples

Uombmatlon al I SequentmJ
I-’ower I 1 lme Yower I ‘1’lme II

Table 2: Power estimation for dynamic circuits

output of the adder is fed back to one set of inputs.
Example max16 is similar, with the adder replaced
by maximum finder. Some of these circuits have over
200 inputs and outputs (e.g., s5378). All the circuits
considered are technology mapped circuits.

If the circuits are treated as purely combinational
dynamic circuits, then the average-case power dissipa-
tion is shown in the second column of Table 2, while
the time required to obtain the power dissipation is
shown in the third column. These times have been
obtained on a DEC-station 5900 with 440Mb of mem-
ory, and are in seconds. The power estimates, in mi-
crowatt, have been obtained assuming a clock fre-
quency of 20MHz. Treating the circuit as a dynamic
sequential circuit, the average power dissipation and
the time required to derive the power dissipation are
shown in columns four and five respectively of Table 2.
Note that taking correlations of state transitions into
account, as described in Section 4.2, produces signifi-
cant differences in the power estimate.

For the remainder of this section, we consider the
circuits to be static CMOS circuits. In Table 3, we
treat the circuits as purely combinational and show
the effects of various delay models on the power esti-
mate. In the zero delay model, all gates have zero de-
lay and therefore they switch instantaneously. In the
unit delay model, all gatea have one unit delay. Us-
ing the zero delay model ignores glitches in the circuit,
and therefore power dissipation due to glitches are not
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Aero Delay U mt Delay IV anable Delay
power 1 k’ower power I 1 lme [

,, —.

&-ii
t. 1

,- 1 .“” 1 “!A m
)x I 137 128

304 3.1
““” , 41.0

Table 3: Power estimation for combinational circuits

Zero Delay Iu” mt Delay Iv anable Delay
Fewer Power Power I 1 lme I

Table 4: Power estimation for sequential circuits

taken into account. The unit delay model takes into
account glitches, but does not take the inertial delay
of gates into account and therefore may overestimate
the power dissipation. The variable delay model with
inertial gate delays is the most realistic one, and its
estimates, as expected, lie between the zero delay and
the unit delay model. Only the times required to ob-
tain the power estimate for the variable delay model
is shown in the last column.

The results obtained by treating the circuits aa se-
quential, using the method of Section 4.2, are shown
in Table 4. While considering these circuits aa se-
quential, we have taken into account the correlation
between two successive values on a present-state line
using the method of Section 4.2. This again results in
significant differences in the power estimate, as can be
seen by comparing Tables 3 and 4.

For each circuit, we compared the power estimates
obtained by our method to that obtained by simu-
lating the circuit. The power estimate was obtained
by logic simulation, until convergence, with randomly
generated input sequence applied to the sequential cir-
cuit. The same power dissipation model was used. We
obtained excellent agreement (to within 2Yo)between
the power estimate using our method and the ran-
dom simulation estimate. However, power estimation

by simulation took anywhere between 2 to 100 times
longer.
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